1
|
Kumar N, Yang ML, Sun P, Hunker KL, Li J, Jia J, Fan F, Wang J, Ning X, Gao W, Xu M, Zhang J, Chang L, Chen YE, Huo Y, Zhang Y, Ganesh SK. Genetic variation in CCDC93 is associated with elevated central systolic blood pressure, impaired arterial relaxation, and mitochondrial dysfunction. PLoS Genet 2024; 20:e1011151. [PMID: 39250516 PMCID: PMC11421807 DOI: 10.1371/journal.pgen.1011151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/24/2024] [Accepted: 01/23/2024] [Indexed: 09/11/2024] Open
Abstract
Genetic studies of blood pressure (BP) traits to date have been performed on conventional measures by brachial cuff sphygmomanometer for systolic BP (SBP) and diastolic BP, integrating several physiologic occurrences. Genetic associations with central SBP (cSBP) have not been well-studied. Genetic discovery studies of BP have been most often performed in European-ancestry samples. Here, we investigated genetic associations with cSBP in a Chinese population and functionally validated the impact of a novel associated coiled-coil domain containing 93 (CCDC93) gene on BP regulation. An exome-wide association study (EWAS) was performed using a mixed linear model of non-invasive cSBP and peripheral BP traits in a Han Chinese population (N = 5,954) from Beijing, China genotyped with a customized Illumina ExomeChip array. We identified four SNP-trait associations with three SNPs, including two novel associations (rs2165468-SBP and rs33975708-cSBP). rs33975708 is a coding variant in the CCDC93 gene, c.535C>T, p.Arg179Cys (MAF = 0.15%), and was associated with increased cSBP (β = 29.3 mmHg, P = 1.23x10-7). CRISPR/Cas9 genome editing was used to model the effect of Ccdc93 loss in mice. Homozygous Ccdc93 deletion was lethal prior to day 10.5 of embryonic development. Ccdc93+/- heterozygous mice were viable and morphologically normal, with 1.3-fold lower aortic Ccdc93 protein expression (P = 0.0041) and elevated SBP as compared to littermate Ccdc93+/+ controls (110±8 mmHg vs 125±10 mmHg, P = 0.016). Wire myography of Ccdc93+/- aortae showed impaired acetylcholine-induced relaxation and enhanced phenylephrine-induced contraction. RNA-Seq transcriptome analysis of Ccdc93+/- mouse thoracic aortae identified significantly enriched pathways altered in fatty acid metabolism and mitochondrial metabolism. Plasma free fatty acid levels were elevated in Ccdc93+/- mice (96±7mM vs 124±13mM, P = 0.0031) and aortic mitochondrial dysfunction was observed through aberrant Parkin and Nix protein expression. Together, our genetic and functional studies support a novel role of CCDC93 in the regulation of BP through its effects on vascular mitochondrial function and endothelial function.
Collapse
Affiliation(s)
- Nitin Kumar
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pengfei Sun
- Department of Cardiology, Peking University First hospital, Beijing, China
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kristina L. Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jianping Li
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Jia Jia
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Jinghua Wang
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianjia Ning
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Gao
- Department of Cardiology, Peking University Third hospital, Beijing, China
| | - Ming Xu
- Department of Cardiology, Peking University Third hospital, Beijing, China
| | - Jifeng Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lin Chang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Y. Eugene Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yong Huo
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
- Hypertension Precision Diagnosis and Treatment Research Center, Peking University First Hospital, Beijing, China
| | - Santhi K. Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
Yang H, Shi P, Li M, Liu S, Mou B, Xia Y, Sun J. Plasma proteome mediate the impact of PM 2.5 on stroke: A 2-step Mendelian randomization study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116624. [PMID: 38908058 DOI: 10.1016/j.ecoenv.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The objectives of this study were to measure the mediation effect of plasma proteins and to clarify their mediating role in the relationship between stroke risk and particulate matter 2.5 (PM2.5) exposure. The possible mediating role of plasma proteins on the causative link between PM2.5 exposure and stroke incidence were examined using a two-step Mendelian randomization (MR) approach based on two-sample Mendelian randomization (TSMR). The findings revealed a significant positive causal relationship between PM2.5 exposure and stroke, with an inverse variance weighted odds ratio of 1.219 (95 % CI: 1.002 - 1.482, P < 0.05). Additionally, a positive causal association was identified between PM2.5 exposure and several plasma proteins, including FAM134B, SAP, ITGB7, Elafin, and DCLK3. Among these, FAM134B, ITGB7, Elafin, and DCLK3 also demonstrated a positive causal association with stroke, whereas only SAP was found to be negatively causally associated with stroke. Remarkably, four plasma proteins, namely DCLK3, FAM134B, Elafin, and ITGB7, were identified as mediators, accounting for substantial proportions (14.5 %, 13.6 %, 11.1 %, and 9.9 %) of the causal association between PM2.5 and stroke. These results remained robust across various sensitivity analyses. Consequently, the study highlights the significant and independent impact of PM2.5 on stroke risk and identifies specific plasma proteins as potential targets for preventive interventions against PM2.5-induced stroke.
Collapse
Affiliation(s)
- Huajie Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Peng Shi
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Mingzheng Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shuailing Liu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Baohua Mou
- First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Yinglan Xia
- Zhejiang Greentown Cardiovascular Hospital, Hangzhou 310000, China
| | - Jiaxing Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
3
|
Trégouët DA, Morange PE. Next-generation sequencing strategies in venous thromboembolism: in whom and for what purpose? J Thromb Haemost 2024; 22:1826-1834. [PMID: 38641321 DOI: 10.1016/j.jtha.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
This invited review follows the oral presentation "To Sequence or Not to Sequence, That Is Not the Question; But 'When, Who, Which and What For?' Is" given during the State of the Art session "Translational Genomics in Thrombosis: From OMICs to Clinics" of the International Society on Thrombosis and Haemostasis 2023 Congress. Emphasizing the power of next-generation sequencing technologies and the diverse strategies associated with DNA variant analysis, this review highlights the unresolved questions and challenges in their implementation both for the clinical diagnosis of venous thromboembolism and in translational research.
Collapse
Affiliation(s)
- David-Alexandre Trégouët
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center, Unité Mixte de Recherche 1219, Bordeaux, France.
| | - Pierre-Emmanuel Morange
- Cardiovascular and Nutrition Research Center (Centre de Recherche en CardioVasculaire et Nutrition), Institut National de la Santé et de la Recherche Médicale, Institut National de Recherche pour l'agriculture, l' Alimentation et l'Environnement, Aix-Marseille University, Marseille, France
| |
Collapse
|
4
|
Beccacece L, Abondio P, Giorgetti A, Bini C, Pelletti G, Luiselli D, Pelotti S. A Genome-Wide Analysis of a Sudden Cardiac Death Cohort: Identifying Novel Target Variants in the Era of Molecular Autopsy. Genes (Basel) 2023; 14:1265. [PMID: 37372445 DOI: 10.3390/genes14061265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Sudden cardiac death (SCD) is an unexpected natural death due to cardiac causes, usually happening within one hour of symptom manifestation or in individuals in good health up to 24 h before the event. Genomic screening has been increasingly applied as a useful approach to detecting the genetic variants that potentially contribute to SCD and helping the evaluation of SCD cases in the post-mortem setting. Our aim was to identify the genetic markers associated with SCD, which might enable its target screening and prevention. In this scope, a case-control analysis through the post-mortem genome-wide screening of 30 autopsy cases was performed. We identified a high number of novel genetic variants associated with SCD, of which 25 polymorphisms were consistent with a previous link to cardiovascular diseases. We ascertained that many genes have been already linked to cardiovascular system functioning and diseases and that the metabolisms most implicated in SCD are the lipid, cholesterol, arachidonic acid, and drug metabolisms, suggesting their roles as potential risk factors. Overall, the genetic variants pinpointed herein might be useful markers of SCD, but the novelty of these results requires further investigations.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| | - Arianna Giorgetti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Guido Pelletti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
5
|
Seyerle AA, Laurie CA, Coombes BJ, Jain D, Conomos MP, Brody J, Chen MH, Gogarten SM, Beutel KM, Gupta N, Heckbert SR, Jackson RD, Johnson AD, Ko D, Manson JE, McKnight B, Metcalf GA, Morrison AC, Reiner AP, Sofer T, Tang W, Wiggins KL, Boerwinkle E, de Andrade M, Gabriel SB, Gibbs RA, Laurie CC, Psaty BM, Vasan RS, Rice K, Kooperberg C, Pankow JS, Smith NL, Pankratz N. Whole Genome Analysis of Venous Thromboembolism: the Trans-Omics for Precision Medicine Program. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:e003532. [PMID: 36960714 PMCID: PMC10151032 DOI: 10.1161/circgen.121.003532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/04/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Risk for venous thromboembolism has a strong genetic component. Whole genome sequencing from the TOPMed program (Trans-Omics for Precision Medicine) allowed us to look for new associations, particularly rare variants missed by standard genome-wide association studies. METHODS The 3793 cases and 7834 controls (11.6% of cases were individuals of African, Hispanic/Latino, or Asian ancestry) were analyzed using a single variant approach and an aggregate gene-based approach using our primary filter (included only loss-of-function and missense variants predicted to be deleterious) and our secondary filter (included all missense variants). RESULTS Single variant analyses identified associations at 5 known loci. Aggregate gene-based analyses identified only PROC (odds ratio, 6.2 for carriers of rare variants; P=7.4×10-14) when using our primary filter. Employing our secondary variant filter led to a smaller effect size at PROC (odds ratio, 3.8; P=1.6×10-14), while excluding variants found only in rare isoforms led to a larger one (odds ratio, 7.5). Different filtering strategies improved the signal for 2 other known genes: PROS1 became significant (minimum P=1.8×10-6 with the secondary filter), while SERPINC1 did not (minimum P=4.4×10-5 with minor allele frequency <0.0005). Results were largely the same when restricting the analyses to include only unprovoked cases; however, one novel gene, MS4A1, became significant (P=4.4×10-7 using all missense variants with minor allele frequency <0.0005). CONCLUSIONS Here, we have demonstrated the importance of using multiple variant filtering strategies, as we detected additional genes when filtering variants based on their predicted deleteriousness, frequency, and presence on the most expressed isoforms. Our primary analyses did not identify new candidate loci; thus larger follow-up studies are needed to replicate the novel MS4A1 locus and to identify additional rare variation associated with venous thromboembolism.
Collapse
Affiliation(s)
- Amanda A. Seyerle
- Division of Pharmaceutical Outcomes & Policy, Eshelman School of Pharmacy, Univ of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Health Informatics Program, Univ of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | - Deepti Jain
- Dept of Biostatistics, Univ of Washington, Seattle, WA
| | | | - Jennifer Brody
- Cardiovascular Health Rsrch Unit, Univ of Washington, Seattle, WA
| | - Ming-Huei Chen
- NHLB’s The Framingham Heart Study, Population Sciences Branch, Division of Intramural Rsrch, National Heart, Lung, and Blood Inst, Framingham, MA
| | | | - Kathleen M. Beutel
- Dept of Laboratory Medicine & Pathology, School of Medicine, Univ of Minnesota, Minneapolis, MN
| | | | - Susan R. Heckbert
- Cardiovascular Health Rsrch Unit, Univ of Washington, Seattle, WA
- Dept of Epidemiology, Univ of Washington, Seattle, WA
| | - Rebecca D. Jackson
- Division of Endocrinology, Diabetes & Metabolism, Ohio State Univ, Columbus, OH
| | - Andrew D. Johnson
- NHLB’s The Framingham Heart Study, Population Sciences Branch, Division of Intramural Rsrch, National Heart, Lung, and Blood Inst, Framingham, MA
| | - Darae Ko
- Cardiovascular Medicine Section, Boston Univ School of Medicine
| | - JoAnn E. Manson
- Dept of Epidemiology, TH Chan School of Public Health, Harvard Univ, Boston, MA
| | | | | | - Alanna C. Morrison
- Human Genetics Ctr, Dept of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, Univ of Texas Health Science Ctr at Houston, Houston, TX
| | | | - Tamar Sofer
- Division of Sleep & Circadian Disorders, Brigham and Women’s Hospital
- Dept of Medicine, Harvard Medical School, Boston, MA
| | - Weihong Tang
- Division of Epidemiology & Community Health, Univ of Minnesota, Minneapolis, MN
| | - Kerri L. Wiggins
- Cardiovascular Health Rsrch Unit, Univ of Washington, Seattle, WA
| | | | - Eric Boerwinkle
- Human Genetics Ctr, Dept of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, Univ of Texas Health Science Ctr at Houston, Houston, TX
| | | | | | | | | | - Bruce M. Psaty
- Cardiovascular Health Rsrch Unit, Univ of Washington, Seattle, WA
- Dept of Epidemiology, Univ of Washington, Seattle, WA
- Depts of Medicine & Health Services, Univ of Washington, Seattle, WA
- Kaiser Permanente Washington Health Rsrch Inst, Seattle, WA
| | | | - Ken Rice
- Dept of Biostatistics, Univ of Washington, Seattle, WA
| | | | - James S. Pankow
- Division of Epidemiology & Community Health, Univ of Minnesota, Minneapolis, MN
| | - Nicholas L. Smith
- Cardiovascular Health Rsrch Unit, Univ of Washington, Seattle, WA
- Dept of Epidemiology, Univ of Washington, Seattle, WA
- Seattle Epidemiologic Rsrch & Information Ctr, VA Office of Rsrch & Development, Seattle, WA
| | - Nathan Pankratz
- Dept of Laboratory Medicine & Pathology, School of Medicine, Univ of Minnesota, Minneapolis, MN
| |
Collapse
|
6
|
Assessing temporal and geographic contacts across the Adriatic Sea through the analysis of genome-wide data from Southern Italy. Genomics 2022; 114:110405. [PMID: 35709925 DOI: 10.1016/j.ygeno.2022.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022]
Abstract
Southern Italy was characterised by a complex prehistory that started with different Palaeolithic cultures, later followed by the Neolithization and the demic dispersal from the Pontic-Caspian Steppe during the Bronze Age. Archaeological and historical evidences point to a link between Southern Italians and the Balkans still present in modern times. To shed light on these dynamics, we analysed around 700 South Mediterranean genomes combined with informative ancient DNAs. Our findings revealed high affinities of South-Eastern Italians with modern Eastern Peloponnesians, and a closer affinity of ancient Greek genomes with those from specific regions of South Italy than modern Greek genomes. The higher similarity could be associated with a Bronze Age component ultimately originating from the Caucasus with high Iranian and Anatolian Neolithic ancestries. Furthermore, extremely differentiated allele frequencies among Northern and Southern Italy revealed putatively adapted SNPs in genes involved in alcohol metabolism, nevi features and immunological traits.
Collapse
|
7
|
Coleman JR, Deguchi H, Deguchi TK, Cohen MJ, Moore EE, Griffin JH. Full-length plasma skeletal muscle myosin isoform deficiency is associated with coagulopathy in acutely injured patients. J Thromb Haemost 2022; 20:1385-1389. [PMID: 35253989 PMCID: PMC9310574 DOI: 10.1111/jth.15695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Skeletal muscle myosin (SkM) molecules are procoagulant both in vitro and in vivo. The association of plasma SkM isoforms with blood coagulability and hemostatic capacity has not been defined. OBJECTIVES We hypothesized that coagulopathy in acutely injured patients is associated with procoagulant plasma SkM heavy chain levels. METHODS To test this hypothesis, citrated whole blood and plasma from 104 trauma patients were collected and studied to obtain data for rapid thrombelastography, international normalized ratios, and plasma SkM levels. Coagulability parameters were dichotomized by the threshold for the hypercoagulable trauma-induced coagulopathy. RESULTS Lower plasma full-length SkM heavy chain (full-SkM) levels were associated with higher international normalized ratio values (>1.3) (p = .03). The full-SkM levels were also associated with a lower rate of clot propagation (thrombelastography angle <65°) (p = .004), and plasma full-SkM levels were positively correlated with the thrombelastography angle (r2 = .32, p = .0007). The trauma patient group with the lower plasma full-SkM levels showed an association with lower clot strength (maximum amplitude <55 mm) (p = .002), and plasma full-SkM levels positively correlated with maximum amplitude (r2 = .27, p = .005). Hyperfibrinolysis was associated with significantly decreased full-SkM levels (p = .03). Trauma patients who required red blood cells and fresh frozen plasma transfusions had lower plasma full-SkM levels compared with those without transfusions (p = .04 and .02, respectively). CONCLUSIONS In acutely injured trauma patients, lower levels of plasma full-SkM levels are linked to hypocoagulability in trauma-induced coagulopathy, implying that SkM plays a role in the hemostatic capacity in trauma patients and may contribute to trauma-induced coagulopathy.
Collapse
Affiliation(s)
| | - Hiroshi Deguchi
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Taichi K. Deguchi
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Mitchel J. Cohen
- Department of SurgeryUniversity of ColoradoAuroraColoradoUSA
- Ernest E Moore Shock Trauma Center at Denver HealthDenverColoradoUSA
| | - Ernest E. Moore
- Department of SurgeryUniversity of ColoradoAuroraColoradoUSA
- Ernest E Moore Shock Trauma Center at Denver HealthDenverColoradoUSA
| | - John H. Griffin
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- Department of MedicineUniversity of CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
8
|
Morla S, Deguchi H, Zilberman-Rudenko J, Gruber A, McCarty OJT, Srivastava P, Gailani D, Griffin JH. Skeletal muscle myosin promotes coagulation by binding factor XI via its A3 domain and enhancing thrombin-induced factor XI activation. J Biol Chem 2022; 298:101567. [PMID: 35007530 PMCID: PMC8856988 DOI: 10.1016/j.jbc.2022.101567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/01/2022] Open
Abstract
Skeletal muscle myosin (SkM) has been shown to possess procoagulant activity; however, the mechanisms of this coagulation-enhancing activity involving plasma coagulation pathways and factors are incompletely understood. Here, we discovered direct interactions between immobilized SkM and coagulation factor XI (FXI) using biolayer interferometry (Kd = 0.2 nM). In contrast, we show that prekallikrein, a FXI homolog, did not bind to SkM, reflecting the specificity of SkM for FXI binding. We also found that the anti-FXI monoclonal antibody, mAb 1A6, which recognizes the Apple (A) 3 domain of FXI, potently inhibited binding of FXI to immobilized SkM, implying that SkM binds FXI A3 domain. In addition, we show that SkM enhanced FXI activation by thrombin in a concentration-dependent manner. We further used recombinant FXI chimeric proteins in which each of the four A domains of the heavy chain (designated A1 through A4) was individually replaced with the corresponding A domain from prekallikrein to investigate SkM-mediated enhancement of thrombin-induced FXI activation. These results indicated that activation of two FXI chimeras with substitutions of either the A3 domains or A4 domains was not enhanced by SkM, whereas substitution of the A2 domain did not reduce the thrombin-induced activation compared with wildtype FXI. These data strongly suggest that functional interaction sites on FXI for SkM involve the A3 and A4 domains. Thus, this study is the first to reveal and support the novel intrinsic blood coagulation pathway concept that the procoagulant mechanisms of SkM include FXI binding and enhancement of FXI activation by thrombin.
Collapse
Affiliation(s)
- Shravan Morla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Hiroshi Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jevgenia Zilberman-Rudenko
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA; Departments of Biomedical Engineering and Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - András Gruber
- Departments of Biomedical Engineering and Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Owen J T McCarty
- Departments of Biomedical Engineering and Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Priyanka Srivastava
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Gailani
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA; Department of Medicine, University of California, San Diego, California, USA.
| |
Collapse
|
9
|
Li Y, Nieuwenhuis LM, Voskuil MD, Gacesa R, Hu S, Jansen BH, Venema WTU, Hepkema BG, Blokzijl H, Verkade HJ, Lisman T, Weersma RK, Porte RJ, Festen EAM, de Meijer VE. Donor genetic variants as risk factors for thrombosis after liver transplantation: A genome-wide association study. Am J Transplant 2021; 21:3133-3147. [PMID: 33445220 PMCID: PMC8518362 DOI: 10.1111/ajt.16490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/25/2023]
Abstract
Thrombosis after liver transplantation substantially impairs graft- and patient survival. Inevitably, heritable disorders of coagulation originating in the donor liver are transmitted by transplantation. We hypothesized that genetic variants in donor thrombophilia genes are associated with increased risk of posttransplant thrombosis. We genotyped 775 donors for adult recipients and 310 donors for pediatric recipients transplanted between 1993 and 2018. We determined the association between known donor thrombophilia gene variants and recipient posttransplant thrombosis. In addition, we performed a genome-wide association study (GWAS) and meta-analyzed 1085 liver transplantations. In our donor cohort, known thrombosis risk loci were not associated with posttransplant thrombosis, suggesting that it is unnecessary to exclude liver donors based on thrombosis-susceptible polymorphisms. By performing a meta-GWAS from children and adults, we identified 280 variants in 55 loci at suggestive genetic significance threshold. Downstream prioritization strategies identified biologically plausible candidate genes, among which were AK4 (rs11208611-T, p = 4.22 × 10-05 ) which encodes a protein that regulates cellular ATP levels and concurrent activation of AMPK and mTOR, and RGS5 (rs10917696-C, p = 2.62 × 10-05 ) which is involved in vascular development. We provide evidence that common genetic variants in the donor, but not previously known thrombophilia-related variants, are associated with increased risk of thrombosis after liver transplantation.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands,Department of GeneticsUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Lianne M. Nieuwenhuis
- Department of SurgerySection of Hepatobiliary Surgery and Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Michiel D. Voskuil
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Shixian Hu
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Bernadien H. Jansen
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Werna T. U. Venema
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Bouke G. Hepkema
- Department of Laboratory MedicineUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Henkjan J. Verkade
- Department of Pediatric Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Ton Lisman
- Department of SurgerySection of Hepatobiliary Surgery and Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Robert J. Porte
- Department of SurgerySection of Hepatobiliary Surgery and Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Eleonora A. M. Festen
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands,Department of GeneticsUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Vincent E. de Meijer
- Department of SurgerySection of Hepatobiliary Surgery and Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
10
|
Abstract
Venous disease is a term that broadly covers both venous thromboembolic disease and chronic venous disease. The basic pathophysiology of venous thromboembolism and chronic venous disease differ as venous thromboembolism results from an imbalance of hemostasis and thrombosis while chronic venous disease occurs in the setting of tissue damage because of prolonged venous hypertension. Both diseases are common and account for significant mortality and morbidity, respectively, and collectively make up a large health care burden. Despite both diseases having well-characterized environmental components, it has been known for decades that family history is an important risk factor, implicating a genetic element to a patient's risk. Our understanding of the pathogenesis of these diseases has greatly benefited from an expansion of population genetic studies from pioneering familial studies to large genome-wide association studies; we now have multiple risk loci for each venous disease. In this review, we will highlight the current state of knowledge on the epidemiology and genetics of venous thromboembolism and chronic venous disease and directions for future research.
Collapse
Affiliation(s)
- Richard A. Baylis
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, CA
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle WA 98195, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA 98101, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle WA 98108, USA
| | - Derek Klarin
- Division of Vascular Surgery, University of Florida College of Medicine, Gainesville, FL
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eri Fukaya
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, CA
| |
Collapse
|
11
|
Zhu L, Wang X, Wang Y. Roles of FAM134B in diseases from the perspectives of organelle membrane morphogenesis and cellular homeostasis. J Cell Physiol 2021; 236:7242-7255. [PMID: 33843059 DOI: 10.1002/jcp.30377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 11/07/2022]
Abstract
Family with sequence similarity 134 member B (FAM134B)/RETREG1/JK1 is a novel gene with recently reported roles in various diseases. Understanding the function and mechanism of action of FAM134B is necessary to develop disease therapies. Notably, emerging data are clarifying the molecular mechanisms of FAM134B function in organelle membrane morphogenesis and the regulation of signaling pathways, such as the Wnt and AKT signaling pathways. In addition, transcription factors, RNA N6 -methyladenosine-mediated epigenetic regulation, microRNA, and small molecules are involved in the regulation of FAM134B expression. This review comprehensively considers recent studies on the role of FAM134B and its potential mechanisms in neurodegenerative diseases, obesity, viral diseases, cancer, and other diseases. The functions of FAM134B in maintaining cell homeostasis by regulating Golgi morphology, endoplasmic reticulum autophagy, and mitophagy are also highlighted, which may be the underlying mechanism of FAM134B gene mutation-induced diseases. Moreover, the molecular mechanisms of the FAM134B function during numerous biological processes are discussed. This review provides novel insights into the functions and mechanisms of FAM134B in various diseases, which will inform the development of effective drugs to treat diseases.
Collapse
Affiliation(s)
- Luoyi Zhu
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinxia Wang
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Morla S, Deguchi H, Fernández JA, Ruf W, Brekken RA, Griffin JH. Procoagulant activities of skeletal muscle and cardiac myosins require both myosin protein and myosin-associated anionic phospholipids. Blood 2021; 137:1839-1842. [PMID: 33232975 PMCID: PMC8020266 DOI: 10.1182/blood.2020008580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | | | - Wolfram Ruf
- Department of Immunology, Scripps Research Institute, La Jolla, CA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX; and
| | - John H Griffin
- Department of Molecular Medicine and
- Department of Medicine, University of California-San Diego, San Diego, CA
| |
Collapse
|
13
|
Morla S, Deguchi H, Griffin JH. Skeletal muscle myosin and cardiac myosin attenuate heparin's antithrombin-dependent anticoagulant activity. J Thromb Haemost 2021; 19:470-477. [PMID: 33176060 PMCID: PMC7902397 DOI: 10.1111/jth.15169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Heparin enhances the ability of the plasma protease inhibitor, antithrombin, to neutralize coagulation factor Xa and thrombin. Skeletal muscle myosin binds unfractionated heparin. OBJECTIVES The aim of this study was to investigate the influence of myosin binding to heparin on antithrombin's anticoagulant activity. METHODS Inhibition of factor Xa and thrombin by antithrombin in the presence of different heparins and skeletal muscle myosin or cardiac myosin was studied by measuring inhibition of each enzyme's chromogenic substrate hydrolysis. RESULTS AND CONCLUSIONS Skeletal muscle myosin and cardiac myosin neutralized unfractionated heparin's enhancement of antithrombin's inhibition of purified factor Xa and thrombin. Skeletal muscle myosin also reduced the inhibition of factor Xa and thrombin by antithrombin in the presence of heparan sulfate. These two myosins did not protect factor Xa from antithrombin inhibition when tested in the presence of smaller heparins (eg, low molecular weight heparin, heparin pentasaccharide). This chain length dependence for skeletal muscle myosin's ability to reduce heparin's anticoagulant activity might have potential implications for therapy for patients who experience increases in plasma myosin levels (eg, acute trauma patients). In addition to the chain length, the type and extent of sulfation of glycosaminoglycans influenced the ability of skeletal muscle myosin to neutralize the polysaccharide's ability to enhance antithrombin's activity. In summary, these studies show that skeletal muscle myosin and cardiac myosin can influence antithrombin's anticoagulant activity against factor Xa and thrombin, implying that they may significantly influence the hemostatic balance involving bleeding vs clotting.
Collapse
Affiliation(s)
- Shravan Morla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Hiroshi Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Division of Hematology, Department of Medicine, University of California, San Diego CA 92094
| |
Collapse
|
14
|
Deguchi H, Morla S, Griffin JH. Novel blood coagulation molecules: Skeletal muscle myosin and cardiac myosin. J Thromb Haemost 2021; 19:7-19. [PMID: 32920971 PMCID: PMC7819347 DOI: 10.1111/jth.15097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Essentials Striated muscle myosins can promote prothrombin activation by FXa or FVa inactivation by APC. Cardiac myosin and skeletal muscle myosin are pro-hemostatic in murine tail cut bleeding models. Infused cardiac myosin exacerbates myocardial injury caused by myocardial ischemia reperfusion. Skeletal muscle myosin isoforms that circulate in human plasma can be grouped into 3 phenotypes. ABSTRACT: Two striated muscle myosins, namely skeletal muscle myosin (SkM) and cardiac myosin (CM), may potentially contribute to physiologic mechanisms for regulation of thrombosis and hemostasis. Thrombin is generated from activation of prothrombin by the prothrombinase (IIase) complex comprising factor Xa, factor Va, and Ca++ ions located on surfaces where these factors are assembled. We discovered that SkM and CM, which are abundant motor proteins in skeletal and cardiac muscles, can provide a surface for thrombin generation by the prothrombinase complex without any apparent requirement for phosphatidylserine or lipids. These myosins can also provide a surface that supports the inactivation of factor Va by activated protein C/protein S, resulting in negative feedback downregulation of thrombin generation. Although the physiologic significance of these reactions remains to be established for humans, substantive insights may be gleaned from murine studies. In mice, exogenously infused SkM and CM can promote hemostasis as they are capable of reducing tail cut bleeding. In a murine myocardial ischemia-reperfusion injury model, exogenously infused CM exacerbates myocardial infarction damage. Studies of human plasmas show that SkM antigen isoforms of different MWs circulate in human plasma, and they can be used to identify three plasma SkM phenotypes. A pilot clinical study showed that one SkM isoform pattern appeared to be linked to isolated pulmonary embolism. These discoveries enable multiple preclinical and clinical studies of SkM and CM, which should provide novel mechanistic insights with potential translational relevance for the roles of CM and SkM in the pathobiology of hemostasis and thrombosis.
Collapse
Affiliation(s)
- Hiroshi Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shravan Morla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Division of Hematology, Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|