1
|
He X, Li N, Liu D, Zang M, Zhao M, Ran N, Liu C, Xing L, Wang H, Wang T, Shao Z. Regulatory role of ceRNA network in B lymphocytes of patients with immune thrombocytopenia. Autoimmunity 2023; 56:2281225. [PMID: 38053370 DOI: 10.1080/08916934.2023.2281225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE High-throughput sequencing was used to screen expressing differences of miRNA, lncRNA, and mRNA in CD19+ B peripheral blood samples of newly diagnosed immune thrombocytopenia (ITP) patients and healthy controls. The study aimed to explore the regulatory role of ceRNA network in the pathogenesis of dysfunctional CD19 + B lymphocytes of ITP patients. METHODS CD19+ B lymphocytes were isolated from peripheral blood samples of ITP patients and their healthy counterparts. High-throughput sequencing was used to screen for the expression of miRNA, lncRNA, and mRNA of ITP patients and healthy controls, which were analysed by the ceRNA network. Moreover, qPCR was used to verify the differential expression of miRNA, lncRNA, and mRNA in ITP patients and healthy controls. The correlation between differentially expressed miRNA, lncRNA, mRNA, and B lymphocyte subsets was also analysed. RESULTS The CD19+ B lymphocytes of 4 newly diagnosed ITP patients and 4 healthy controls were sequenced and analysed. There were 65 differentially expressed lncRNA and 149 mRNA forming a ceRNA network showed that 12 lncRNA and 136 differentially expressed mRNA were closely associated. Similarly, miR-144-3p, miR-374c-3p, and miR-451a were highly expressed in ITP patients, as confirmed by qPCR, which was consistent with the high-throughput sequence results. LOC102724852 and CCL20 were highly expressed in ITP patients, while LOC105378901, LOC112268311, ALAS2, and TBC1D3F were not as compared to healthy controls, which was consistent with the high-throughput sequence results. In addition, the expression of miR-374c-3p, LOC112268311, LOC105378901, and CXCL3 were correlated with the percentage of B lymphocyte subsets. CONCLUSIONS The ceRNA network of miRNA, lncRNA, and mRNA in peripheral CD19 + B lymphocytes plays an essential role in the pathogenesis of ITP.
Collapse
Affiliation(s)
- Xin He
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Nianbin Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Donglan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengtong Zang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Manjun Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ningyuan Ran
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Limin Xing
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ting Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Chu X, Wu D, Zhang C, Hu S. Expression pattern of miR-16-2-3p and its prognostic values on pediatric acute lymphoblastic leukemia. Scand J Clin Lab Invest 2023:1-5. [PMID: 37093849 DOI: 10.1080/00365513.2023.2191335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a debilitating illness that easily occurs in adolescents. microRNAs (miRNAs) are potential biomarkers for multiple diseases. This paper was to elaborate on the expression of miR-16-2-3p in childhood ALL and its clinical values on ALL diagnosis and prognosis. First, serum miR-16-2-3p expression in ALL children and healthy volunteers was measured using RT-qPCR. Next, diagnostic potential and prognostic values of miR-16-2-3p on ALL were analyzed through receiver operating characteristic (ROC) curve, Kaplan-Meier survival curve, and multivariate Cox regression analysis, respectively. No significant difference was observed in the clinical baseline data between ALL patients and healthy children. ALL patients showed downregulated serum miR-16-2-3p (0.65 ± 0.27) (p < .01), whose area under the ROC curve was 0.837 with a cut-off value of 0.745 (67.92% sensitivity, 96.94% specificity). ALL patients with higher miR-16-2-3p expression had higher survival rates than those with lower miR-16-2-3p expression. Low miR-16-2-3p expression predicted poor prognosis of ALL patients. After adjusting LDH and lymphomyelocyte proportion (p = 0.003, HR = 0.003, 95%CI = 0.000-0.145), miR-16-2-3p was recognized as an independent prognostic factor for ALL patient survival. Briefly, low serum miR-16-2-3p expression in ALL children could aid ALL diagnosis and predict poor prognosis.
Collapse
Affiliation(s)
- Xinran Chu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Dong Wu
- Department of Pediatric, Qiyuan People's Hospital, Zibo, China
| | - Chenyue Zhang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Li L, Mussack V, Görgens A, Pepeldjiyska E, Hartz AS, Aslan H, Rackl E, Rank A, Schmohl J, El Andaloussi S, Pfaffl MW, Schmetzer H. The potential role of serum extracellular vesicle derived small RNAs in AML research as non-invasive biomarker. NANOSCALE ADVANCES 2023; 5:1691-1705. [PMID: 36926576 PMCID: PMC10012871 DOI: 10.1039/d2na00959e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Extracellular vesicles (EV) are cell-derived vesicles released by all cells in health and disease. Accordingly, EVs are also released by cells in acute myeloid leukemia (AML), a hematologic malignancy characterized by uncontrolled growth of immature myeloid cells, and these EVs likely carry markers and molecular cargo reflecting the malignant transformation occurring in diseased cells. Monitoring antileukemic or proleukemic processes during disease development and treatment is essential. Therefore, EVs and EV-derived microRNA (miRNA) from AML samples were explored as biomarkers to distinguish disease-related patterns ex vivo or in vivo. METHODOLOGY EVs were purified from serum of healthy (H) volunteers and AML patients by immunoaffinity. EV surface protein profiles were analyzed by multiplex bead-based flow cytometry (MBFCM) and total RNA was isolated from EVs prior to miRNA profiling via small RNA sequencing. RESULTS MBFCM revealed different surface protein patterns in H versus AML EVs. miRNA analysis showed individual as well as highly dysregulated patterns in H and AML samples. CONCLUSIONS In this study, we provide a proof-of-concept for the discriminative potential of EV derived miRNA profiles as biomarkers in H versus AML samples.
Collapse
Affiliation(s)
- Lin Li
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich Freising Germany
| | - André Görgens
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet Stockholm Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen Essen Germany
| | - Elena Pepeldjiyska
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Anne Sophie Hartz
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Hazal Aslan
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Elias Rackl
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Andreas Rank
- Department of Hematology and Oncology, University Hospital of Augsburg Augsburg Germany
| | - Jörg Schmohl
- Department of Hematology and Oncology, Hospital of Stuttgart Stuttgart Germany
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet Stockholm Sweden
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich Freising Germany
| | - Helga Schmetzer
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| |
Collapse
|
4
|
Tan JH, Ahmad Azahari AHS, Ali A, Ismail NAS. Scoping Review on Epigenetic Mechanisms in Primary Immune Thrombocytopenia. Genes (Basel) 2023; 14:555. [PMID: 36980827 PMCID: PMC10048672 DOI: 10.3390/genes14030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Immune Thrombocytopenia (ITP) is an autoimmune blood disorder that involves multiple pathways responsible for the homeostasis of the immune system. Numerous pieces of literature have proposed the potential of immune-related genes as diagnostic and prognostic biomarkers, which mostly implicate the role of B cells and T cells in the pathogenesis of ITP. However, a more in-depth understanding is required of how these immune-related genes are regulated. Thus, this scoping review aims to collate evidence and further elucidate each possible epigenetics mechanism in the regulation of immunological pathways pertinent to the pathogenesis of ITP. This encompasses DNA methylation, histone modification, and non-coding RNA. A total of 41 studies were scrutinized to further clarify how each of the epigenetics mechanisms is related to the pathogenesis of ITP. Identifying epigenetics mechanisms will provide a new paradigm that may assist in the diagnosis and treatment of immune thrombocytopenia.
Collapse
Affiliation(s)
- Jian Hong Tan
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Hazim Syakir Ahmad Azahari
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adli Ali
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Ou Y, Zhan Y, Zhuang X, Shao X, Xu P, Li F, Chen H, Ji L, Cheng Y. A bibliometric analysis of primary immune thrombocytopenia from 2011 to 2021. Br J Haematol 2023; 201:954-970. [PMID: 36807900 DOI: 10.1111/bjh.18692] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023]
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune disorder characterized by isolated thrombocytopenia. This bibliometric analysis was applied to identify the characteristics of global scientific output, the hotspots, and frontiers of ITP over the past 10 years. We retrieved publications from 2011 to 2021 from the Web of Science Core Collection (WoSCC). Bibliometrix package, VOSviewer, and Citespace were used to analyse and visualize the trend, distribution, and hotspots of research on ITP. Altogether, there were 2084 papers, written by 9080 authors from 410 organizations in 70 countries/regions, published in 456 journals with 37 160 co-cited references. In the last decades, the most productive journal was British Journal of Haematology, China was the most productive country. and the most cited journal was Blood. Shandong University was the most productive institution in the field of ITP. NEUNERT C, 2011, BLOOD, CHENG G, 2011, LANCET, and PATEL VL, 2012, BLOOD were the top three most cited documents. "Thrombopoietin receptor agonist", "regulatory T cell" and "sialic acid" were three hotspots of the last decade. And "immature platelet fraction", "Th17", and "fostamatinib" would be research frontiers in the feature. The present study provided a novel insight for future research directions and scientific decision-making.
Collapse
Affiliation(s)
- Yang Ou
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xibing Zhuang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Shao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengcheng Xu
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Zhongshan Hospital Qingpu Branch, Department of Hematology, Fudan University, Shanghai, China
| | - Hao Chen
- Zhongshan Hospital Xuhui Branch, Department of Thoracic Surgery, Fudan University, Shanghai, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Zhongshan Hospital Qingpu Branch, Department of Hematology, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
[Expression of miR-106b-5p in children with primary immune thrombocytopenia and its correlation with T cells]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:411-416. [PMID: 35527417 PMCID: PMC9044986 DOI: 10.7499/j.issn.1008-8830.2110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To study the expression level of plasma miR-106b-5p in primary immune thrombocytopenia (ITP) and its correlation with the levels of T helper 17 cell (Th17) and regulatory T cell (Treg) and the Th17/Treg ratio. METHODS A total of 79 children with ITP (ITP group) and 40 healthy children (control group) were selected as subjects. According to the treatment response, the 79 children with ITP were divided into three groups: complete response (n=40), partial response (n=18), and non-response (n=21). Quantitative real-time PCR was used to measure the expression level of miR-106b-5p. Flow cytometry was used to measure the frequencies of Th17 and Treg, and the Th17/Treg ratio was calculated. The correlation of the expression level of plasma miR-106b-5p with the frequencies of Th17 and Treg and the Th17/Treg ratio was analyzed. RESULTS Compared with the control group, the ITP group had significantly higher levels of miR-106b-5p, Th17, and Th17/Treg ratio (P<0.05) and a significantly lower level of Treg (P<0.05). After treatment, the ITP group had significant reductions in the levels of miR-106b-5p, Th17, and Th17/Treg ratio (P<0.05) and a significant increase in the level of Treg (P<0.05). Compared with the partial response and non-response groups, the complete response group had significantly lower levels of miR-106b-5p, Th17, and Th17/Treg ratio (P<0.05) and a significantly higher level of Treg (P<0.05). The correlation analysis showed that in the children with ITP, the expression level of plasma miR-106b-5p was positively correlated with the Th17 level and the Th17/Treg ratio (r=0.730 and 0.816 respectively; P<0.001) and was negatively correlated with the Treg level (r=-0.774, P<0.001). CONCLUSIONS A higher expression level of miR-106b-5p and Th17/Treg imbalance may be observed in children with ITP. The measurement of miR-106b-5p, Th17, Treg, and Th17/Treg ratio during treatment may be useful to the evaluation of treatment outcome in children with ITP.
Collapse
|
7
|
Zhao Y, Cui S, Wang Y, Xu R. The Extensive Regulation of MicroRNA in Immune Thrombocytopenia. Clin Appl Thromb Hemost 2022; 28:10760296221093595. [PMID: 35536600 PMCID: PMC9096216 DOI: 10.1177/10760296221093595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MicroRNA (miRNA) is a small, single-stranded, non-coding RNA molecule that plays
a variety of key roles in different biological processes through
post-transcriptional regulation of gene expression. MiRNA has been proved to be
a variety of cellular processes involved in development, differentiation, signal
transduction, and is an important regulator of immune and autoimmune diseases.
Therefore, it may act as potent modulators of the immune system and play an
important role in the development of several autoimmune diseases. Immune
thrombocytopenia (ITP) is an autoimmune systemic disease characterized by a low
platelet count. Several studies suggest that like other autoimmune disorders,
miRNAs are deeply involved in the pathogenesis of ITP, interacting with the
function of innate and adaptive immune responses. In this review, we discuss
emerging knowledge about the function of miRNAs in ITP and describe miRNAs in
terms of their role in the immune system and autoimmune response. These findings
suggest that miRNA may be a useful therapeutic target for ITP by regulating the
immune system. In the future, we need to have a more comprehensive understanding
of miRNAs and how they regulate the immune system of patients with ITP.
Collapse
Affiliation(s)
- Yuerong Zhao
- 74738Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Institute of Hematology, 74738Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Institute of Hematology, 74738Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Yang LP, Zheng JH, Zhang JK, Huang XH. Dysregulated miR-222-3p in plasma exosomes of preeclampsia patients and its In vitro effect on HTR8/SVneo extravillous trophoblast cells by targeting STMN1. Hum Exp Toxicol 2022; 41:9603271221138550. [PMID: 36475430 DOI: 10.1177/09603271221138550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the diagnostic efficiency of miR-222-3p in plasma exosomes (Exos) and plasma for preeclampsia (PE) and the effect of miR-222-3p targeting STMN1 in PE. METHODS MiR-222-3p levels in total plasma and plasma Exos were detected in PE patients and healthy controls. A bioinformatics database and dual-luciferase reporter assay were employed to verify the targeting relationship between miR-222-3p and STMN1. Trophoblast HTR-8/Svneo cells were transfected with miR-222-3p inhibitors with/without STMN1 shRNA, followed by MTT, wound healing and Transwell invasion assays. The mRNA and protein expressions were measured by qRT‒PCR and Western blotting, respectively. RESULTS MiR-222-3p levels in total plasma and plasma Exos were higher in PE patients than in healthy controls, particularly in severe PE patients. In addition, miR-222-3p levels in total plasma and plasma Exos from PE patients were positively correlated with diastolic and systolic blood pressure. The area under the curve (AUC) of miR-222-3p in total plasma for PE diagnostic efficiency was 0.798, with a sensitivity of 76.67% and specificity of 71.93%, while the AUC of miR-222-3p in plasma Exos was 0.708 (sensitivity: 61.67%; specificity: 78.95%). In vitro, miR-222-3p targeted STMN1 in HTR-8/Svneo cells. Low miR-222-3p expression reversed the inhibitory effect of STMN1 shRNA on the proliferation, invasion and migration of HTR/SVneo cells. CONCLUSION PE patients had increased miR-222-3p expression in total plasma and plasma Exos, which both have high diagnostic efficiency for PE. MiR-222-3p can target STMN1 to promote the proliferation, invasion and migration of HTR-8/Svneo cells and is a potential therapeutic target of PE.
Collapse
Affiliation(s)
- Li-Ping Yang
- Department of Obstetrics and Gynaecology, 71213The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia-Hua Zheng
- Department of Obstetrics and Gynaecology, 71213The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing-Kun Zhang
- Department of Obstetrics and Gynaecology, 71213The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiang-Hua Huang
- Department of Obstetrics and Gynaecology, 71213The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Nelson VS, Jolink ATC, Amini SN, Zwaginga JJ, Netelenbos T, Semple JW, Porcelijn L, de Haas M, Schipperus MR, Kapur R. Platelets in ITP: Victims in Charge of Their Own Fate? Cells 2021; 10:3235. [PMID: 34831457 PMCID: PMC8621961 DOI: 10.3390/cells10113235] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder. The pathophysiological mechanisms leading to low platelet levels in ITP have not been resolved, but at least involve autoantibody-dependent and/or cytotoxic T cell mediated platelet clearance and impaired megakaryopoiesis. In addition, T cell imbalances involving T regulatory cells (Tregs) also appear to play an important role. Intriguingly, over the past years it has become evident that platelets not only mediate hemostasis, but are able to modulate inflammatory and immunological processes upon activation. Platelets, therefore, might play an immuno-modulatory role in the pathogenesis and pathophysiology of ITP. In this respect, we propose several possible pathways in which platelets themselves may participate in the immune response in ITP. First, we will elaborate on how platelets might directly promote inflammation or stimulate immune responses in ITP. Second, we will discuss two ways in which platelet microparticles (PMPs) might contribute to the disrupted immune balance and impaired thrombopoiesis by megakaryocytes in ITP. Importantly, from these insights, new starting points for further research and for the design of potential future therapies for ITP can be envisioned.
Collapse
Affiliation(s)
- Vivianne S. Nelson
- Department of Hematology, Haga Teaching Hospital, 2545 AA The Hague, The Netherlands; (V.S.N.); (S.N.A.); (T.N.)
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (A.-T.C.J.); (M.d.H.)
| | - Anne-Tess C. Jolink
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (A.-T.C.J.); (M.d.H.)
| | - Sufia N. Amini
- Department of Hematology, Haga Teaching Hospital, 2545 AA The Hague, The Netherlands; (V.S.N.); (S.N.A.); (T.N.)
- Department of Hematology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
| | - Jaap Jan Zwaginga
- Department of Hematology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
- CCTR, Sanquin Blood Supply, 1066 CX Amsterdam, The Netherlands
| | - Tanja Netelenbos
- Department of Hematology, Haga Teaching Hospital, 2545 AA The Hague, The Netherlands; (V.S.N.); (S.N.A.); (T.N.)
| | - John W. Semple
- Division of Hematology and Transfusion Medicine, Lund University, 221 84 Lund, Sweden;
- Clinical Immunology and Transfusion Medicine, Office of Medical Services, 221 84 Lund, Sweden
| | - Leendert Porcelijn
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, 1066 CX Amsterdam, The Netherlands;
| | - Masja de Haas
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (A.-T.C.J.); (M.d.H.)
- Department of Hematology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, 1066 CX Amsterdam, The Netherlands;
| | - Martin R. Schipperus
- Department of Hematology, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; (A.-T.C.J.); (M.d.H.)
| |
Collapse
|