1
|
Abou El Karam S, Duconseille A, Vénien A, Ravel C, Chauvet H, Jamme F, Réfrégiers M, Astruc T. Change in muscle fibre protein structure following salting process assessed by synchrotron deep UV fluorescence microspectroscopy. Food Chem 2025; 471:142801. [PMID: 39808978 DOI: 10.1016/j.foodchem.2025.142801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Samples of pork teres major muscle were salted and tumbled with 0.9 %, 1.3 % & 1.9 % sodium chloride respectively. The emission fluorescence (exc. 275 nm) of intramuscular connective tissue and of muscle fibre subtypes I, IIA and IIB-IIX was investigated by Synchrotron deep UV fluorescence microspectroscopy in order to characterize the change of the macromolecular structure of proteins. On emission spectra, tryptophan fluorescence was predominant and an additional peak assigned to dityrosine was detected around 395 nm. The fluorescence emission spectra vary depending on salt level both on intramuscular connective tissue and muscle fibres which subtypes were discriminated for one animal among the set of four. This result is encouraging in the perspective of developing sensors for meat evolution during the salting process. However, no noticeable prediction law linking the fibre autofluorescence to salt level could be deduced.
Collapse
Affiliation(s)
| | | | - Annie Vénien
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | | | - Hugo Chauvet
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91192 Saint-Aubin, France
| | - Frederic Jamme
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91192 Saint-Aubin, France
| | | | - Thierry Astruc
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
2
|
Goudenhooft C, Melelli A, Durand S, Falourd X, Le-Bot L, Morgillo L, Gaballah S, Cortopassi R, Quiles A, Shah DU, Jamme F, Beaugrand J, Bourmaud A. Comparison of kink-band structures and specificities of cell wall polysaccharides in modern and ancient flax fibres. Carbohydr Polym 2024; 344:122526. [PMID: 39218549 DOI: 10.1016/j.carbpol.2024.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Flax (Linum usitatissimum L.) is a plant of industrial importance, its fibres being presently used for high-value textile applications, composite reinforcements as well as natural actuators. Human interest in this fibre-rich plant dates back several millennia, including to Ancient Egypt where flax was used extensively in various quotidian items. While the recent technical developments of flax fibres continue to diversify through scientific research, the historical use of flax also has rich lessons for today. Through careful examination of ancient Egyptian and modern flax fibres, this study aims to conduct a multi-scale characterization from the yarn to the fibre cell wall scale, linking differences in structure and polysaccharide content to the mechanical performance and durability of flax. Here, a multi-scale biochemical study is enriched by scanning electron microscopy and nanomechanical investigations. A key finding is the similarity of cellulose features, crystallinity index and local mechanical performances between ancient and modern fibres. Biochemically speaking, monosaccharides analysis, deep-UV and NMR investigations demonstrate that ancient fibres exhibit less pectins but a similar hemicellulosic content, especially through uronic acids and galactose, suggesting the sensitivity of these non-crystalline components.
Collapse
Affiliation(s)
| | | | - Sylvie Durand
- INRAE, UR1268 BIA Biopolymères Interactions Assemblages, 44316 Nantes, France
| | - Xavier Falourd
- INRAE, UR1268 BIA Biopolymères Interactions Assemblages, 44316 Nantes, France; INRAE, BIBS facility, PROBE infrastructure, 44316 Nantes, France
| | - Lucie Le-Bot
- INRAE, UR1268 BIA Biopolymères Interactions Assemblages, 44316 Nantes, France
| | - Loren Morgillo
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, Lorient, France
| | - Sanaa Gaballah
- Institut Français d'Archéologie Orientale du Caire, Le Caire, Egypt
| | - Roberta Cortopassi
- Musée du Louvre, Département des Antiquités Egyptiennes, 75058 Paris, cedex 1, France
| | - Anita Quiles
- Institut Français d'Archéologie Orientale du Caire, Le Caire, Egypt
| | - Darshil U Shah
- Centre for Natural Material Innovation, Department of Architecture, University of Cambridge, Cambridge CB2 1PX, United Kingdom
| | - Frédéric Jamme
- Synchrotron SOLEIL, DISCO beamline, Gif-sur-Yvette, France
| | - Johnny Beaugrand
- INRAE, UR1268 BIA Biopolymères Interactions Assemblages, 44316 Nantes, France
| | - Alain Bourmaud
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, Lorient, France
| |
Collapse
|
3
|
Tweel JED, Ecclestone BR, Boktor M, Dinakaran D, Mackey JR, Reza PH. Automated Whole Slide Imaging for Label-Free Histology Using Photon Absorption Remote Sensing Microscopy. IEEE Trans Biomed Eng 2024; 71:1901-1912. [PMID: 38231822 DOI: 10.1109/tbme.2024.3355296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Pathologists rely on histochemical stains to impart contrast in thin translucent tissue samples, revealing tissue features necessary for identifying pathological conditions. However, the chemical labeling process is destructive and often irreversible or challenging to undo, imposing practical limits on the number of stains that can be applied to the same tissue section. Here we present an automated label-free whole slide scanner using a PARS microscope designed for imaging thin, transmissible samples. METHODS Peak SNR and in-focus acquisitions are achieved across entire tissue sections using the scattering signal from the PARS detection beam to measure the optimal focal plane. Whole slide images (WSI) are seamlessly stitched together using a custom contrast leveling algorithm. Identical tissue sections are subsequently H&E stained and brightfield imaged. The one-to-one WSIs from both modalities are visually and quantitatively compared. RESULTS PARS WSIs are presented at standard 40x magnification in malignant human breast and skin samples. We show correspondence of subcellular diagnostic details in both PARS and H&E WSIs and demonstrate virtual H&E staining of an entire PARS WSI. The one-to-one WSI from both modalities show quantitative similarity in nuclear features and structural information. CONCLUSION PARS WSIs are compatible with existing digital pathology tools, and samples remain suitable for histochemical, immunohistochemical, and other staining techniques. SIGNIFICANCE This work is a critical advance for integrating label-free optical methods into standard histopathology workflows.
Collapse
|
4
|
Wu T, Liao J, Xiang F, Yu J, Huo Y, Gao Y, Li H, Zheng W. Probing cell metabolism using the two-photon excitation autofluorescence lifetime of tryptophan. OPTICS LETTERS 2024; 49:1105-1108. [PMID: 38426949 DOI: 10.1364/ol.511947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Compared to intensity detection, fluorescence lifetime has the advantage of being unaffected by variations in excitation intensity, fluorophore concentration, or attenuation due to biological absorption and scattering. In this Letter, to the best of our knowledge, we present the use of the two-photon excitation autofluorescence lifetime imaging of tryptophan (TRP) to probe cell metabolism for the first time. Tests of pure chemical samples showed that the fluorescence lifetime of TRP was highly sensitive to changes in molecular conformation and the environment. In in vitro cell experiments, we successfully utilized the fluorescence lifetime of TRP to distinguish tumor cells from healthy cells, track the therapeutic effect of the tumor immunotherapy drug 1-MT for HeLa cells, and monitor cells in response to carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-induced cell apoptosis. These results reveal that the two-photon excitation autofluorescence lifetime of TRP could be a sensitive natural probe of cell metabolism in living cells.
Collapse
|
5
|
Case N, Johnston N, Nadeau J. Fluorescence Microscopy with Deep UV, Near UV, and Visible Excitation for In Situ Detection of Microorganisms. ASTROBIOLOGY 2024; 24:300-317. [PMID: 38507693 PMCID: PMC10979697 DOI: 10.1089/ast.2023.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/02/2024] [Indexed: 03/22/2024]
Abstract
We report a simple, inexpensive design of a fluorescence microscope with light-emitting diode (LED) excitation for detection of labeled and unlabeled microorganisms in mineral substrates. The use of deep UV (DUV) excitation with visible emission requires no specialized optics or slides and can be implemented easily and inexpensively using an oblique illumination geometry. DUV excitation (<280 nm) is preferable to near UV (365 nm) for avoidance of mineral autofluorescence. When excited with DUV, unpigmented bacteria show two emission peaks: one in the near UV ∼320 nm, corresponding to proteins, and another peak in the blue to green range, corresponding to flavins and/or reduced nicotinamide adenine dinucleotide (NADH). Many commonly used dyes also show secondary excitation peaks in the DUV, with identical emission spectra and quantum yields as their primary peak. However, DUV fails to excite key biosignature molecules, especially chlorophyll in cyanobacteria. Visible excitation (violet to blue) also results in less mineral autofluorescence than near UV, and most autofluorescence in the minerals seen here is green, so that red dyes and red autofluorescence of chlorophyll and porphyrins are readily distinguished. The pairing of DUV and near UV or visible excitation, with emission across the visible, represents the most thorough approach to detection of labeled and unlabeled bacteria in soil and rock.
Collapse
Affiliation(s)
- Noel Case
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Nikki Johnston
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Jay Nadeau
- Department of Physics, Portland State University, Portland, Oregon, USA
| |
Collapse
|
6
|
Abraham TM, Casteleiro Costa P, Filan C, Guang Z, Zhang Z, Neill S, Olson JJ, Levenson R, Robles FE. Label- and slide-free tissue histology using 3D epi-mode quantitative phase imaging and virtual hematoxylin and eosin staining. OPTICA 2023; 10:1605-1618. [PMID: 39640229 PMCID: PMC11620277 DOI: 10.1364/optica.502859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2024]
Abstract
Histological staining of tissue biopsies, especially hematoxylin and eosin (H&E) staining, serves as the benchmark for disease diagnosis and comprehensive clinical assessment of tissue. However, the typical formalin-fixation, paraffin-embedding (FFPE) process is laborious and time consuming, often limiting its usage in time-sensitive applications such as surgical margin assessment. To address these challenges, we combine an emerging 3D quantitative phase imaging technology, termed quantitative oblique back illumination microscopy (qOBM), with an unsupervised generative adversarial network pipeline to map qOBM phase images of unaltered thick tissues (i.e., label- and slide-free) to virtually stained H&E-like (vH&E) images. We demonstrate that the approach achieves high-fidelity conversions to H&E with subcellular detail using fresh tissue specimens from mouse liver, rat gliosarcoma, and human gliomas. We also show that the framework directly enables additional capabilities such as H&E-like contrast for volumetric imaging. The quality and fidelity of the vH&E images are validated using both a neural network classifier trained on real H&E images and tested on virtual H&E images, and a user study with neuropathologists. Given its simple and low-cost embodiment and ability to provide real-time feedback in vivo, this deep-learning-enabled qOBM approach could enable new workflows for histopathology with the potential to significantly save time, labor, and costs in cancer screening, detection, treatment guidance, and more.
Collapse
Affiliation(s)
- Tanishq Mathew Abraham
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - Paloma Casteleiro Costa
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Caroline Filan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zhe Guang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zhaobin Zhang
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30332, USA
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30332, USA
| | - Stewart Neill
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30332, USA
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30332, USA
| | - Jeffrey J. Olson
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30332, USA
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30332, USA
| | - Richard Levenson
- Department of Pathology and Laboratory Medicine, UC Davis Health, Sacramento, California 95817, USA
| | - Francisco E. Robles
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
7
|
Liu CH, Fu LW, Chen HH, Huang SL. Toward cell nuclei precision between OCT and H&E images translation using signal-to-noise ratio cycle-consistency. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107824. [PMID: 37832427 DOI: 10.1016/j.cmpb.2023.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Medical image-to-image translation is often difficult and of limited effectiveness due to the differences in image acquisition mechanisms and the diverse structure of biological tissues. This work presents an unpaired image translation model between in-vivo optical coherence tomography (OCT) and ex-vivo Hematoxylin and eosin (H&E) stained images without the need for image stacking, registration, post-processing, and annotation. The model can generate high-quality and highly accurate virtual medical images, and is robust and bidirectional. Our framework introduces random noise to (1) blur redundant features, (2) defend against self-adversarial attacks, (3) stabilize inverse conversion, and (4) mitigate the impact of OCT speckles. We also demonstrate that our model can be pre-trained and then fine-tuned using images from different OCT systems in just a few epochs. Qualitative and quantitative comparisons with traditional image-to-image translation models show the robustness of our proposed signal-to-noise ratio (SNR) cycle-consistency method.
Collapse
Affiliation(s)
- Chih-Hao Liu
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Li-Wei Fu
- Graduate Institute of Communication Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Homer H Chen
- Graduate Institute of Communication Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; Department of Electrical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; Graduate Institute of Networking and Multimedia, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Sheng-Lung Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; Department of Electrical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; All Vista Healthcare Center, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
8
|
Voisin H, Bonnin E, Marquis M, Alvarado C, Lafon S, Lopez-Leon T, Jamme F, Capron I. Interactions between proteins and cellulose in a liquid crystalline media: Design of a droplet based experimental platform. Int J Biol Macromol 2023; 245:125488. [PMID: 37353113 DOI: 10.1016/j.ijbiomac.2023.125488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
Model systems are needed to provide controlled environment for the understanding of complex phenomena. Interaction between polysaccharides and proteins in dense medium are involved in numerous complex systems such as biomass conversion or plant use for food processing or biobased materials. In this work, cellulose nanocrystals (CNCs) were used to study proteins in a dense and organized cellulosic environment. This environment was designed within microdroplets using a microfluidic setup, and applied to two proteins, bovine serum albumin (BSA) and a GH7 endoglucanase, relevant to food and plant science, respectively. The CNC at 56.5 g/L organized in liquid crystalline structure and the distribution of the proteins was probed using synchrotron deep-UV radiation. The proteins were homogeneously distributed throughout the volume, but BSA significantly disturbed the droplet global organization, preferring partition in hydrophilic external micelles. In contrast, GH7 partitioned with the CNCs showing stronger non-polar interaction but without disruption of the system organization. Such results pave the road for the development of more complex polysaccharides - proteins in-vitro models.
Collapse
Affiliation(s)
| | | | | | | | - Suzanne Lafon
- Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005 Paris, France
| | - Teresa Lopez-Leon
- Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005 Paris, France
| | - Frederic Jamme
- DISCO Beamline, SOLEIL Synchrotron, 91192 Gif-sur-Yvette, France
| | | |
Collapse
|
9
|
Dubreil L, Damane N, Fleurisson R, Charrier M, Pichon J, Leroux I, Schleder C, Ledevin M, Larcher T, Jamme F, Puentes J, Rouger K. Specific and label-free endogenous signature of dystrophic muscle by Synchrotron deep ultraviolet radiation. Sci Rep 2023; 13:10808. [PMID: 37402811 PMCID: PMC10319894 DOI: 10.1038/s41598-023-37762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
Dystrophic muscle is characterized by necrosis/regeneration cycles, inflammation, and fibro-adipogenic development. Conventional histological stainings provide essential topographical data of this remodeling but may be limited to discriminate closely related pathophysiological contexts. They fail to mention microarchitecture changes linked to the nature and spatial distribution of tissue compartment components. We investigated whether label-free tissue autofluorescence revealed by Synchrotron deep ultraviolet (DUV) radiation could serve as an additional tool for monitoring dystrophic muscle remodeling. Using widefield microscopy with specific emission fluorescence filters and microspectroscopy defined by high spectral resolution, we analyzed samples from healthy dogs and two groups of dystrophic dogs: naïve (severely affected) and MuStem cell-transplanted (clinically stabilized) animals. Multivariate statistical analysis and machine learning approaches demonstrated that autofluorescence emitted at 420-480 nm by the Biceps femoris muscle effectively discriminates between healthy, dystrophic, and transplanted dog samples. Microspectroscopy showed that dystrophic dog muscle displays higher and lower autofluorescence due to collagen cross-linking and NADH respectively than that of healthy and transplanted dogs, defining biomarkers to evaluate the impact of cell transplantation. Our findings demonstrate that DUV radiation is a sensitive, label-free method to assess the histopathological status of dystrophic muscle using small amounts of tissue, with potential applications in regenerative medicine.
Collapse
Affiliation(s)
| | - Noreddine Damane
- Oniris, INRAE, PAnTher, 44300, Nantes, France
- IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238, Brest, France
| | | | | | | | | | | | | | | | - Frédéric Jamme
- Synchrotron SOLEIL, BP48, L'Orme Des Merisiers, 91120, Gif-Sur-Yvette, France
| | - John Puentes
- IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238, Brest, France
| | - Karl Rouger
- Oniris, INRAE, PAnTher, 44300, Nantes, France.
| |
Collapse
|
10
|
Abou El Karam S, Ferrand M, El Jabri M, Vautier A, Carlier M, Germond A, Astruc T. Influence of sodium chloride on muscle UV autofluorescence characteristics. Food Chem 2023; 410:135352. [PMID: 36623466 DOI: 10.1016/j.foodchem.2022.135352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Salted and tumbled pork teres major muscle samples, with varying sodium chloride content (1.1 % to 1.9 %), were examined by UV fluorescence spectroscopy. Results indicated that muscle fluorescence varies with salt level as a consequence of the protein denaturation state. The 1.5 % NaCl level was the threshold beyond which the fluorescence properties no longer changed markedly. Changes in muscle fluorescence do not appear to be linearly related to salt levels. Hence, we explored whether the change in fluorescence relies on other factors relating to the variability of carcass characteristics and on muscle physicochemical changes that are partly dependent on stress response and on postmortem metabolism evolution.
Collapse
Affiliation(s)
| | - Maxime Ferrand
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | | | - Antoine Vautier
- IFIP, 7 Avenue Général de Gaulle, 94700 Maison Alfort, France
| | - Martine Carlier
- IFIP, 7 Avenue Général de Gaulle, 94700 Maison Alfort, France
| | - Arnaud Germond
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Thierry Astruc
- INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
11
|
Kasaragod DK, Aizawa H. Deep ultraviolet fluorescence microscopy of three-dimensional structures in the mouse brain. Sci Rep 2023; 13:8553. [PMID: 37237102 DOI: 10.1038/s41598-023-35650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Three-dimensional (3D) imaging at cellular resolution improves our understanding of the brain architecture and is crucial for structural and functional integration as well as for the understanding of normal and pathological conditions in the brain. We developed a wide-field fluorescent microscope for 3D imaging of the brain structures using deep ultraviolet (DUV) light. This microscope allowed fluorescence imaging with optical sectioning due to the large absorption at the surface of the tissue and hence low tissue penetration of DUV light. Multiple channels of fluorophore signals were detected using single or a combination of dyes emitting fluorescence in the visible range of spectrum upon DUV excitation. Combination of this DUV microscope with microcontroller-based motorized stage enabled wide-field imaging of a coronal section of the cerebral hemisphere in mouse for deciphering cytoarchitecture of each substructure in detail. We extended this by integrating vibrating microtome which allowed serial block-face imaging of the brain structure such as the habenula in mouse. Acquired images were with resolution high enough for quantification of the cell numbers and density in the mouse habenula. Upon block-face imaging of the tissues covering entire extent of the cerebral hemisphere of the mouse brain, acquired data were registered and segmented for quantification of cell number in each brain regions. Results in the current analysis indicated that this novel microscope could be a convenient tool for large-scale 3D analysis of the brain in mice.
Collapse
Affiliation(s)
- Deepa Kamath Kasaragod
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
12
|
Pajović JD, Dojčilović RJ, Kaščáková S, Réfrégiers M, Božanić DK, Djoković V. Enhanced resonance energy transfer in gold nanoparticles bifunctionalized by tryptophan and riboflavin and its application in fluorescence bioimaging. Colloids Surf B Biointerfaces 2023; 227:113340. [PMID: 37201446 DOI: 10.1016/j.colsurfb.2023.113340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Gold nanoparticles were functionalized by amino acid tryptophan and vitamin riboflavin - a resonance energy transfer (RET) pair of biomolecules. The presence of the gold nanoparticles resulted in 65% increase in RET efficiency. Because of enhanced RET efficiency, the photobleaching dynamics of the fluorescent molecules at the surface of the nanoparticles is different from that of molecules in solution. The observed effect was used for detection of the functionalized nanoparticles within biological material rich with autofluorescent species. Synchrotron radiation deep-ultraviolet fluorescence microscopy is used to study the photobleaching dynamics of the fluorescence centers within human hepatocellular carcinoma Huh7.5.1 cells incubated with the nanoparticles. The fluorescent centers were classified according to their photobleaching dynamics, which enabled the discrimination of the cell areas where the accumulation of the nanoparticles takes place, even though the particles were smaller than the spatial resolution of the images.
Collapse
Affiliation(s)
- Jelena D Pajović
- DISCO Beamline, Synchrotron SOLEIL, BP 48, Gif sur Yvette 91192, France; University of Belgrade, Faculty of Physics, Studentski trg 12, Belgrade 11001, Serbia.
| | - Radovan J Dojčilović
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Center of Excellence for Photoconversion, PO Box 522, Belgrade 11001, Serbia; Department of Experimental and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, Barcelona 08003, Spain
| | - Slávka Kaščáková
- Inserm, Unité 1193, Villejuif F-94800, France; University Paris-Sud XI, UMR-S1193, Villejuif F-94800, France
| | - Matthieu Réfrégiers
- DISCO Beamline, Synchrotron SOLEIL, BP 48, Gif sur Yvette 91192, France; Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, Orléans 45071, France
| | - Dušan K Božanić
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Center of Excellence for Photoconversion, PO Box 522, Belgrade 11001, Serbia.
| | - Vladimir Djoković
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Center of Excellence for Photoconversion, PO Box 522, Belgrade 11001, Serbia.
| |
Collapse
|
13
|
El Karam SA, Ferrand M, Astruc T, Germond A. Evaluation and prediction of salt effects on pig muscle by deep UV and machine learning. Meat Sci 2023; 199:109136. [PMID: 36774742 DOI: 10.1016/j.meatsci.2023.109136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
The salting process for meat transformation is a crucial step in conventional industry. Recent developments in label-free spectrometry techniques combined with machine learning hold great promise for high-precision salt processing. In this study, we applied UV fluorescence to characterize salting treatments in pig's Teres major muscle and predict NaCl concentrations. t-SNE analyses based on spectral measurements revealed clear differences between NaCl-free and salted treatments. However, salt treatments were not clearly identified. We then highlighted and exploited a variability seen in the emission spectra at the wavelengths 300, 318, and 360 nm, which reflected structural or compositional changes. Using this information, predictive models could accurately identify the five salted treatments with a high specificity and sensitivity or predict salt concentrations. This study paves the way toward the possibility for industrials to precisely adjust NaCl concentrations with precision during processing.
Collapse
Affiliation(s)
| | - Maxime Ferrand
- INRAE, UR QUAPA, F-63122 Saint-Genès-Champanelle, France
| | - Thierry Astruc
- INRAE, UR QUAPA, F-63122 Saint-Genès-Champanelle, France
| | - Arno Germond
- INRAE, UR QUAPA, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
14
|
Ströhl F, Wolfson DL, Opstad IS, Hansen DH, Mao H, Ahluwalia BS. Label-free superior contrast with c-band ultra-violet extinction microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:56. [PMID: 36864022 PMCID: PMC9981877 DOI: 10.1038/s41377-023-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In 1934, Frits Zernike demonstrated that it is possible to exploit the sample's refractive index to obtain superior contrast images of biological cells. The refractive index contrast of a cell surrounded by media yields a change in the phase and intensity of the transmitted light wave. This change can be due to either scattering or absorption caused by the sample. Most cells are transparent at visible wavelengths, which means the imaginary component of their complex refractive index, also known as extinction coefficient k, is close to zero. Here, we explore the use of c-band ultra-violet (UVC) light for high-contrast high-resolution label-free microscopy, as k is naturally substantially higher in the UVC than at visible wavelengths. Using differential phase contrast illumination and associated processing, we achieve a 7- to 300-fold improvement in contrast compared to visible-wavelength and UVA differential interference contrast microscopy or holotomography, and quantify the extinction coefficient distribution within liver sinusoidal endothelial cells. With a resolution down to 215 nm, we are, for the first time in a far-field label-free method, able to image individual fenestrations within their sieve plates which normally requires electron or fluorescence superresolution microscopy. UVC illumination also matches the excitation peak of intrinsically fluorescent proteins and amino acids and thus allows us to utilize autofluorescence as an independent imaging modality on the same setup.
Collapse
Affiliation(s)
- Florian Ströhl
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Deanna L Wolfson
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ida S Opstad
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Daniel H Hansen
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hong Mao
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Balpreet S Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
The Glycerol-Induced Perfusion-Kinetics of the Cat Ovaries in the Follicular and Luteal Phases of the Cycle. Diagnostics (Basel) 2023; 13:diagnostics13030490. [PMID: 36766594 PMCID: PMC9914571 DOI: 10.3390/diagnostics13030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The method of immersion optical clearing reduces light scattering in tissues, which improves the use of optical technologies in the practice of clinicians. In this work, we studied the optical and molecular diffusion properties of cat ovarian tissues in the follicular (F-ph) and luteal (L-ph) phases under the influence of glycerol using reflectance spectroscopy in a broad wavelength range from 200 to 800 nm. It was found that the reflectance and transmittance of the ovaries are significantly lower in the range from 200 to 600 nm than for longer wavelengths from 600 to 800 nm, and the efficiency of optical clearing is much lower for the ovaries in the luteal phase compared to the follicular phase. For shorter wavelengths, the following tissue transparency windows were observed: centered at 350 nm and wide (46 ± 5) nm, centered at 500 nm and wide (25 ± 7) nm for the F-ph state and with a center of 500 nm and a width of (21 ± 6) nm for the L-ph state. Using the free diffusion model, Fick's law of molecular diffusion and the Bouguer-Beer-Lambert radiation attenuation law, the glycerol/tissue water diffusion coefficient was estimated as D = (1.9 ± 0.2)10-6 cm2/s for ovaries at F-ph state and D = (2.4 ± 0.2)10-6 cm2/s-in L-ph state, and the time of complete dehydration of ovarian samples, 0.8 mm thick, as 22.3 min in F-ph state and 17.7 min in L-ph state. The ability to determine the phase in which the ovaries are stated, follicular or luteal, is also important in cryopreservation, new reproductive technologies and ovarian implantation.
Collapse
|
16
|
Melelli A, Jamme F, Beaugrand J, Bourmaud A. Evolution of the ultrastructure and polysaccharide composition of flax fibres over time: When history meets science. Carbohydr Polym 2022; 291:119584. [DOI: 10.1016/j.carbpol.2022.119584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
17
|
Colboc H, Moguelet P, Letavernier E, Frochot V, Bernaudin JF, Weil R, Rouzière S, Senet P, Bachmeyer C, Laporte N, Lucas I, Descamps V, Amode R, Brunet-Possenti F, Kluger N, Deschamps L, Dubois A, Reguer S, Somogyi A, Medjoubi K, Refregiers M, Daudon M, Bazin D. Pathologies related to abnormal deposits in dermatology: a physico-chemical approach. CR CHIM 2022. [DOI: 10.5802/crchim.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Bazin D, Lucas IT, Rouzière S, Elkaim E, Mocuta C, Réguer S, Reid DG, Mathurin J, Dazzi A, Deniset-Besseau A, Petay M, Frochot V, Haymann JP, Letavernier E, Verpont MC, Foy E, Bouderlique E, Colboc H, Daudon M. Profile of an “at cutting edge” pathology laboratory for pathological human deposits: from nanometer to in vivo scale analysis on large scale facilities. CR CHIM 2022. [DOI: 10.5802/crchim.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Autofluorescence Imaging of Living Yeast Cells with Deep-Ultraviolet Surface Plasmon Resonance. PHOTONICS 2022. [DOI: 10.3390/photonics9060424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Autofluorescence in living cells on aluminum thin film was excited with deep-ultraviolet surface plasmon resonance (deep-UV SPR). Deep-UV SPR under aqueous medium was excited with Kretschmann configuration by using a sapphire prism. Deep-UV SPR is one of the promising techniques for high-sensitive autofluorescence imaging of living cells without staining. Label-free observation is significant for the structural analysis of living cells. We demonstrated the high-sensitive autofluorescence imaging of living yeast cells with deep-UV SPR. We applied a high refractive index prism, such as sapphire, which is suitable for the observation of specimens in aqueous medium, to excite deep-UV SPR. Although typical autofluorescence from living cells is buried in background noise, deep-UV SPR enhances the autofluorescence signal. The deep-UV SPR excitation of an aluminum thin film through a sapphire prism was investigated theoretically and experimentally. It showed that the fluorescence intensities are increased 2.8-fold. Deep-UV SPR enhanced the autofluorescence of cell structures, and yeast cells were found to be very sensitive. As a result, for water-immersed specimens, the sapphire-prism-based Kretschmann configuration excited SPR in deep-UV. Findings from this study suggest that deep-UV SPR can be considered an effective technique for attaining high-sensitivity observation of biological samples.
Collapse
|
20
|
Blaha ME, Hasan S, Dusny C, Belder D. Fluorescence lifetime activated droplet sorting (FLADS) for label-free sorting of Synechocystis sp. PCC6803. LAB ON A CHIP 2022; 22:1604-1614. [PMID: 35332894 DOI: 10.1039/d2lc00032f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study presents the label-free sorting of cyanobacterial cells in droplets with single-cell sensitivity based on their fluorescence lifetime. We separated living and dead cyanobacteria (Synechocystis sp. PCC6803) using fluorescence lifetime signals of the photopigment autofluorescence to indicate their photosynthetic activity. We developed a setup and a chip design to achieve live/dead sorting accuracies of more than 97% at a droplet frequency of 100 Hz with a PDMS-based chip system and standard optics using fluorescence lifetime as the sorting criterion. The obtained sorting accuracies could be experimentally confirmed by cell plating and observing the droplet sorting process via a high-speed camera. The herein presented results demonstrate the capabilities of the developed system for studying the effects of stressors on cyanobacterial physiology and the subsequent deterministic sorting of different stress-response phenotypes. This technology eliminates the need for tedious staining of cyanobacterial cells, which makes it particularly attractive for its application in the field of phototrophic microbial bio(techno)logic and in the context of cell secretion studies.
Collapse
Affiliation(s)
| | - Sadat Hasan
- Institute for Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Christian Dusny
- Department Solar Materials, Helmoltz-Centre for Environmental Research - UFZ Leipzig, Permoserstr. 15, 04318 Leipzig, Germany
| | - Detlev Belder
- Institute for Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| |
Collapse
|
21
|
McFarlane M, Hall NJ, McConnell G. Enhanced fluorescence from semiconductor quantum dot-labelled cells excited at 280 nm. Methods Appl Fluoresc 2022; 10. [PMID: 35203075 DOI: 10.1088/2050-6120/ac5878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/24/2022] [Indexed: 11/12/2022]
Abstract
Semiconductor quantum dots (QDs) have significant advantages over more traditional fluorophores used in fluorescence microscopy including reduced photobleaching, long-term photostability and high quantum yields, but due to limitations in light sources and optics, are often excited far from their optimum excitation wavelengths in the deep-UV. Here, we present a quantitative comparison of the excitation of semiconductor QDs at a wavelength of 280 nm, compared to the longer wavelength of 365 nm, within a cellular environment. We report increased fluorescence intensity and enhanced image quality when using 280 nm excitation compared to 365 nm excitation for cell imaging across multiple datasets, with a highest average fluorescence intensity increase of 3.59-fold. We also find no significant photobleaching of QDs associated with 280 nm excitation and find that on average, ~80% of cells can tolerate exposure to high-intensity 280 nm irradiation over a 6-hour period.
Collapse
Affiliation(s)
- Mollie McFarlane
- Department of Physics , University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow, G4 0NG, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Nicholas James Hall
- Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow, G4 0NG, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Gail McConnell
- Department of Physics & Applied Physics, Strathclyde University, John Anderson Building, 107 Rottenrow, Glasgow, G4 0NG, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
22
|
Zhang Y, Kang L, Yu W, Tsang VT, Wong TT. Three-dimensional label-free histological imaging of whole organs by microtomy-assisted autofluorescence tomography. iScience 2022; 25:103721. [PMID: 35106470 PMCID: PMC8786675 DOI: 10.1016/j.isci.2021.103721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022] Open
Abstract
Three-dimensional (3D) histology is vitally important to characterize disease-induced tissue heterogeneity at the individual cell level. However, it remains challenging for both high-throughput 3D imaging and volumetric reconstruction. Here we propose a label-free, cost-effective, and ready-to-use 3D histological imaging technique, termed microtomy-assisted autofluorescence tomography with ultraviolet excitation (MATE). With the combination of block-face imaging and serial microtome sectioning, MATE can achieve rapid and label-free imaging of paraffin-embedded whole organs at an acquisition speed of 1 cm3 per 4 h with a voxel resolution of 1.2 × 1.2 × 10 μm3. We demonstrate that MATE enables simultaneous visualization of cell nuclei, fiber tracts, and blood vessels in mouse/human brains without tissue staining or clearing. Moreover, diagnostic features, including nuclear size and packing density, can be quantitatively extracted with high accuracy. MATE is augmented to the current slide-based 2D histology, holding great promise to facilitate histopathological interpretation at the organelle level.
Collapse
Affiliation(s)
- Yan Zhang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Lei Kang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Wentao Yu
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Victor T.C. Tsang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Terence T.W. Wong
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
23
|
Estève E, Buob D, Jamme F, Jouanneau C, Kascakova S, Haymann JP, Letavernier E, Galmiche L, Ronco P, Daudon M, Bazin D, Réfrégiers M. Detection and localization of calcium oxalate in kidney using synchrotron deep ultraviolet fluorescence microscopy. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:214-223. [PMID: 34985438 PMCID: PMC8733991 DOI: 10.1107/s1600577521011371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/28/2021] [Indexed: 05/14/2023]
Abstract
Renal oxalosis is a rare cause of renal failure whose diagnosis can be challenging. Synchrotron deep ultraviolet (UV) fluorescence was assayed to improve oxalosis detection on kidney biopsies spatial resolution and sensitivity compared with the Fourier transform infrared microspectroscopy gold standard. The fluorescence spectrum of synthetic mono-, di- and tri-hydrated calcium oxalate was investigated using a microspectrometer coupled to the synchrotron UV beamline DISCO, Synchrotron SOLEIL, France. The obtained spectra were used to detect oxalocalcic crystals in a case control study of 42 human kidney biopsies including 19 renal oxalosis due to primary (PHO, n = 11) and secondary hyperoxaluria (SHO, n = 8), seven samples from PHO patients who received combined kidney and liver transplants, and 16 controls. For all oxalocalcic hydrates samples, a fluorescence signal is detected at 420 nm. These spectra were used to identify standard oxalocalcic crystals in patients with PHO or SHO. They also revealed micrometric crystallites as well as non-aggregated oxalate accumulation in tubular cells. A nine-points histological score was established for the diagnosis of renal oxalosis with 100% specificity (76-100) and a 73% sensitivity (43-90). Oxalate tubular accumulation and higher histological score were correlated to lower estimated glomerular filtration rate and higher urinary oxalate over creatinine ratio.
Collapse
Affiliation(s)
- Emmanuel Estève
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - David Buob
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Frédéric Jamme
- Synchrotron SOLEIL, DISCO Beamline, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Chantal Jouanneau
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Slavka Kascakova
- Synchrotron SOLEIL, DISCO Beamline, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Jean Philippe Haymann
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Emmanuel Letavernier
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Louise Galmiche
- Pathology Department, Necker-Enfants Malades Hospital, Public Assistance-Hospitals of Paris, Université Paris, 75015 Paris, France
| | - Pierre Ronco
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Michel Daudon
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Dominique Bazin
- Laboratoire de Physique des Solides, CNRS UMR8502, Université Paris Saclay, Orsay, France
| | - Matthieu Réfrégiers
- Synchrotron SOLEIL, DISCO Beamline, L'Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| |
Collapse
|
24
|
Two-photon fluorescence lifetime for label-free microfluidic droplet sorting. Anal Bioanal Chem 2021; 414:721-730. [PMID: 34792636 PMCID: PMC8748334 DOI: 10.1007/s00216-021-03745-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Microfluidic droplet sorting systems facilitate automated selective micromanipulation of compartmentalized micro- and nano-entities in a fluidic stream. Current state-of-the-art droplet sorting systems mainly rely on fluorescence detection in the visible range with the drawback that pre-labeling steps are required. This limits the application range significantly, and there is a high demand for alternative, label-free methods. Therefore, we introduce time-resolved two-photon excitation (TPE) fluorescence detection with excitation at 532 nm as a detection technique in droplet microfluidics. This enables label-free in-droplet detection of small aromatic compounds that only absorb in a deep-UV spectral region. Applying time-correlated single-photon counting, compounds with similar emission spectra can be distinguished due to their fluorescence lifetimes. This information is then used to trigger downstream dielectrophoretic droplet sorting. In this proof-of-concept study, we developed a polydimethylsiloxane-fused silica (FS) hybrid chip that simultaneously provides a very high optical transparency in the deep-UV range and suitable surface properties for droplet microfluidics. The herein developed system incorporating a 532-nm picosecond laser, time-correlated single-photon counting (TCSPC), and a chip-integrated dielectrophoretic pulsed actuator was exemplarily applied to sort droplets containing serotonin or propranolol. Furthermore, yeast cells were screened using the presented platform to show its applicability to study cells based on their protein autofluorescence via TPE fluorescence lifetime at 532 nm.
Collapse
|
25
|
Khaliduzzaman A, Omwange KA, Al Riza DF, Konagaya K, Kamruzzaman M, Alom MS, Gao T, Saito Y, Kondo N. Antioxidant assessment of agricultural produce using fluorescence techniques: a review. Crit Rev Food Sci Nutr 2021:1-12. [PMID: 34702101 DOI: 10.1080/10408398.2021.1992747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The study of bioactive compounds like food antioxidants is getting huge attention and curiosity by researchers and other relevant stakeholders (e.g., food and pharmaceutical industries) due to their health benefits. However, the currently available protocols to estimate the antioxidant activity of foods are time-consuming, destructive, require complex procedures for sample preparation, need technical persons, and not possible for real-time application, which are very important for large-scale or industrial applications. On the other hand, fluorescence spectroscopy and imaging techniques are relatively new, fast, mostly nondestructive, and possible to apply real-time to detect the antioxidants of foods. However, there is no review article on fluorescence techniques for estimating antioxidants in agricultural produces. Therefore, the present review comprehensively summarizes the overview of fluorescence phenomena, techniques (i.e., spectroscopy and computer vision), and their potential to monitor antioxidants in fruits and vegetables. Finally, opportunities and challenges of fluorescence techniques are described toward developing next-generation protocols for antioxidants measurement. Fluorescence techniques (both spectroscopy and imaging) are simpler and faster than available traditional methods of antioxidants measurement. Moreover, the fluorescence imaging technique has the potential to apply in real-time antioxidant identification in agricultural produce such as fruits and vegetables. Therefore, this technique might be used as a next-generation protocol for qualitative and quantitative antioxidants measurement after improvements like new material technologies for sensor (detector) and light sources for higher sensitivity and reduce the cost of implementing real-world applications.
Collapse
Affiliation(s)
- Alin Khaliduzzaman
- Laboratory of Bio-sensing Engineering, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Department of Food Engineering and Technology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ken Abamba Omwange
- Laboratory of Bio-sensing Engineering, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Dimas Firmanda Al Riza
- Department of Agricultural Engineering, Faculty of Agricultural Technology, University of Brawijaya, Malang, Indonesia
| | - Keiji Konagaya
- Faculty of Corroborative Regional Innovation, Ehime University, Matsuyama, Ehime, Japan
| | - Mohammed Kamruzzaman
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Tianqi Gao
- Laboratory of Bio-sensing Engineering, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshito Saito
- Laboratory of Bio-sensing Engineering, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoshi Kondo
- Laboratory of Bio-sensing Engineering, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Zhang G, Ning B, Hui H, Yu T, Yang X, Zhang H, Tian J, He W. Image-to-Images Translation for Multiple Virtual Histological Staining of Unlabeled Human Carotid Atherosclerotic Tissue. Mol Imaging Biol 2021; 24:31-41. [PMID: 34622424 DOI: 10.1007/s11307-021-01641-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/19/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Histological analysis of human carotid atherosclerotic plaques is critical in understanding atherosclerosis biology and developing effective plaque prevention and treatment for ischemic stroke. However, the histological staining process is laborious, tedious, variable, and destructive to the highly valuable atheroma tissue obtained from patients. PROCEDURES We proposed a deep learning-based method to simultaneously transfer bright-field microscopic images of unlabeled tissue sections into equivalent multiple sections of the same samples that are virtually stained. Using a pix2pix model, we trained a generative adversarial neural network to achieve image-to-images translation of multiple stains, including hematoxylin and eosin (H&E), picrosirius red (PSR), and Verhoeff van Gieson (EVG) stains. RESULTS The quantification of evaluation metrics indicated that the proposed approach achieved the best performance in comparison with other state-of-the-art methods. Further blind evaluation by board-certified pathologists demonstrated that the multiple virtual stains have high consistency with standard histological stains. The proposed approach also indicated that the generated histopathological features of atherosclerotic plaques, such as the necrotic core, neovascularization, cholesterol crystals, collagen, and elastic fibers, are optimally matched with those of standard histological stains. CONCLUSIONS The proposed approach allows for the virtual staining of unlabeled human carotid plaque tissue images with multiple types of stains. In addition, it identifies the histopathological features of atherosclerotic plaques in the same tissue sample, which could facilitate the development of personalized prevention and other interventional treatments for carotid atherosclerosis.
Collapse
Affiliation(s)
- Guanghao Zhang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100190, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bin Ning
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xin Yang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongxia Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100083, China. .,Zhuhai Precision Medical Center, Zhuhai People's Hospital, Affiliated With Jinan University, Zhuhai, 519000, China.
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
27
|
Time-Resolved Imaging of Mitochondrial Flavin Fluorescence and Its Applications for Evaluating the Oxidative State in Living Cardiac Cells. Methods Mol Biol 2021. [PMID: 34118053 DOI: 10.1007/978-1-0716-1262-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Time-resolved fluorescence spectrometry is a highly valuable technological tool to detect and characterize mitochondrial metabolic oxidative changes by means of endogenous fluorescence. Here, we describe detection and measurement of endogenous mitochondrial flavin fluorescence directly in living cardiac cells using fluorescence lifetime imaging microscopy (FLIM) after excitation with 473 nm picoseconds (ps) laser. Time-correlated single photon counting (TCSPC) method is employed.
Collapse
|
28
|
Chevalier C, Leymarie O, Sedano L, Da Costa B, Richard CA, Maisonnasse P, Réfregiers M, Jamme F, Le Goffic R. PB1-F2 amyloid-like fibers correlate with proinflammatory signaling and respiratory distress in influenza-infected mice. J Biol Chem 2021; 297:100885. [PMID: 34146545 PMCID: PMC8294585 DOI: 10.1016/j.jbc.2021.100885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
PB1-F2 is a virulence factor of influenza A virus known to increase viral pathogenicity in mammalian hosts. PB1-F2 is an intrinsically disordered protein displaying a propensity to form amyloid-like fibers. However, the correlation between PB1-F2 structures and the resulting inflammatory response is unknown. Here, we used synchrotron-coupled Fourier transform-IR and deep UV microscopies to determine the presence of PB1-F2 fibers in influenza A virus–infected mice. In order to study the correlation between PB1-F2 structure and the inflammatory response, transgenic mice expressing luciferase under the control of an NF-κB promotor, allowing in vivo monitoring of inflammation, were intranasally instilled with monomeric, fibrillated, or truncated forms of recombinant PB1-F2. Our intravital NF-κB imaging, supported by cytokine quantification, clearly shows the proinflammatory effect of PB1-F2 fibers compared with N-terminal region of PB1-F2 unable to fibrillate. It is noteworthy that instillation of monomeric PB1-F2 of H5N1 virus induced a stronger inflammatory response when compared with prefibrillated PB1-F2 of H1N1 virus, suggesting mechanisms of virulence depending on PB1-F2 sequence. Finally, using whole-body plethysmography to measure volume changes in the lungs, we quantified the effects of the different forms of PB1-F2 on respiratory parameters. Thus, we conclude that PB1-F2–induced inflammation and respiratory distress are tightly correlated with sequence polymorphism and oligomerization status of the protein.
Collapse
Affiliation(s)
| | - Olivier Leymarie
- Université Paris-Saclay, UVSQ, INRAE, VIM, Jouy-en-Josas, France
| | - Laura Sedano
- Université Paris-Saclay, UVSQ, INRAE, VIM, Jouy-en-Josas, France
| | - Bruno Da Costa
- Université Paris-Saclay, UVSQ, INRAE, VIM, Jouy-en-Josas, France
| | | | | | - Matthieu Réfregiers
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Frédéric Jamme
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Ronan Le Goffic
- Université Paris-Saclay, UVSQ, INRAE, VIM, Jouy-en-Josas, France.
| |
Collapse
|
29
|
Chateigner-Boutin AL, Alvarado C, Devaux MF, Durand S, Foucat L, Geairon A, Grélard F, Jamme F, Rogniaux H, Saulnier L, Guillon F. The endosperm cavity of wheat grains contains a highly hydrated gel of arabinoxylan. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110845. [PMID: 33775355 DOI: 10.1016/j.plantsci.2021.110845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Cereal grains provide a substantial part of the calories for humans and animals. The main quality determinants of grains are polysaccharides (mainly starch but also dietary fibers such as arabinoxylans, mixed-linkage glucans) and proteins synthesized and accumulated during grain development in a specialized storage tissue: the endosperm. In this study, the composition of a structure localized at the interface of the vascular tissues of the maternal plant and the seed endosperm was investigated. This structure is contained in the endosperm cavity where water and nutrients are transferred to support grain filling. While studying the wheat grain development, the cavity content was found to autofluoresce under UV light excitation. Combining multispectral analysis, Fourier-Transform infrared spectroscopy, immunolabeling and laser-dissection coupled with wet chemistry, we identified in the cavity arabinoxylans and hydroxycinnamic acids. The cavity content forms a "gel" in the developing grain, which persists in dry mature grain and during subsequent imbibition. Microscopic magnetic resonance imaging revealed that the gel is highly hydrated. Our results suggest that arabinoxylans are synthesized by the nucellar epidermis, released in the cavity where they form a highly hydrated gel which might contribute to regulate grain hydration.
Collapse
Affiliation(s)
| | | | | | | | - Loïc Foucat
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | | | - Florent Grélard
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | - Frédéric Jamme
- DISCO Beamline, SOLEIL Synchrotron, 91192, Gif-sur-Yvette, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | | | | |
Collapse
|
30
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
31
|
Mehidine H, Refregiers M, Jamme F, Varlet P, Juchaux M, Devaux B, Abi Haidar D. Molecular changes tracking through multiscale fluorescence microscopy differentiate Meningioma grades and non-tumoral brain tissues. Sci Rep 2021; 11:3816. [PMID: 33589651 PMCID: PMC7884789 DOI: 10.1038/s41598-020-78678-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022] Open
Abstract
Meningioma is the most common primary intracranial extra-axial tumor. Total surgical removal is the standard therapeutic method to treat this type of brain tumors. However, the risk of recurrence depends on the tumor grade and the extent of the resection including the infiltrated dura mater and, if necessary, the infiltrated bone. Therefore, proper resection of all invasive tumor borders without touching eloquent areas is of primordial in order to decrease the risk of recurrence. Nowadays, none of the intraoperative used tools is able to provide a precise real-time histopathological information on the tumor surrounding areas to help the surgeon to achieve a gross total removal. To respond to this problem, our team is developing a multimodal two-photon fluorescence endomicroscope, compatible with the surgeon tool, to better delimitate tumor boundaries, relying on the endogenous fluorescence of brain tissues. In this context, we are building a tissue database in order to specify each brain tissue, whether healthy or tumoral, with its specific optical signature. In this study, we present a multimodal and multiscale optical measurements on non-tumoral control brain tissue obtained in epilepsy surgery patients and several meningioma grades. We investigated tissue auto-fluorescence to track the molecular changes associated with the tumor grade from deep ultra-violet (DUV) to near infrared (NIR) excitation. Micro-spectroscopy, fluorescence lifetime imaging, two-photon fluorescence imaging and Second Harmonic Generation (SHG) imaging were performed. Several optically derived parameters such as collagen crosslinks fluorescence in DUV, SHG emission in NIR and long lifetime intensity fraction of Nicotinamide Adenine Dinucleotide and Flavins were correlated to discriminate cancerous tissue from control one. While collagen response managed to discriminate meningioma grades from control samples with a 100% sensitivity and 90% specificity through a 3D discriminative algorithm.
Collapse
Affiliation(s)
- Hussein Mehidine
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France
- Université de Paris, IJCLab, 91405, Orsay, France
| | | | - Frédéric Jamme
- DISCO Beamline, Synchrotron SOLEIL, 91192, Gif-sur-Yvette, France
| | - Pascale Varlet
- GHU Psychiatrie et Neurosciences, site Sainte-Anne, service de neuropathologie, 75014, Paris, France
- IMA BRAIN, INSERM U894, Centre de Psychiatrie Et de Neurosciences, 75014, Paris, France
- Université de Paris, 75006, Paris, France
| | - Marjorie Juchaux
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France
| | - Bertrand Devaux
- GHU Psychiatrie et Neurosciences, site Sainte-Anne, service de neuropathologie, 75014, Paris, France
- Université de Paris, 75006, Paris, France
| | - Darine Abi Haidar
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France.
- Université de Paris, IJCLab, 91405, Orsay, France.
| |
Collapse
|
32
|
Guo Q, Ye A, Singh H, Rousseau D. Destructuring and restructuring of foods during gastric digestion. Compr Rev Food Sci Food Saf 2020; 19:1658-1679. [PMID: 33337100 DOI: 10.1111/1541-4337.12558] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
All foods harbor unique length scale-dependent structural features that can influence the release, transport, and utilization of macro- or micronutrients in the human gastrointestinal tract. In this regard, food destructuring and restructuring processes during gastric passage significantly influence downstream nutrient assimilation and feelings of satiety. This review begins with a synopsis of the effects of oral processing on food structure. Then, stomach-centric factors that contribute to the efficacy of gastric digestion are discussed, and exemplified by comparing the intragastric de- and restructuring of a number of common foods. The mechanisms of how intragastric structuring influences gastric emptying and its relationship to human satiety are then discussed. Finally, recently developed, non-destructive instrumental approaches used to quantitively and qualitatively characterize food behavior during gastric destructuring and restructuring are described.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruits and Vegetables Processing, China Agricultural University, Beijing, 100083, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu, 225700, China
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Dérick Rousseau
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| |
Collapse
|
33
|
Deep Learning for Virtual Histological Staining of Bright-Field Microscopic Images of Unlabeled Carotid Artery Tissue. Mol Imaging Biol 2020; 22:1301-1309. [PMID: 32514884 PMCID: PMC7497459 DOI: 10.1007/s11307-020-01508-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
PURPOSE Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis. PROCEDURES In this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model. RESULTS The results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches. CONCLUSIONS This virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities.
Collapse
|
34
|
Abstract
Plants contain abundant autofluorescent molecules that can be used for biochemical, physiological, or imaging studies. The two most studied molecules are chlorophyll (orange/red fluorescence) and lignin (blue/green fluorescence). Chlorophyll fluorescence is used to measure the physiological state of plants using handheld devices that can measure photosynthesis, linear electron flux, and CO2 assimilation by directly scanning leaves, or by using reconnaissance imaging from a drone, an aircraft or a satellite. Lignin fluorescence can be used in imaging studies of wood for phenotyping of genetic variants in order to evaluate reaction wood formation, assess chemical modification of wood, and study fundamental cell wall properties using Förster Resonant Energy Transfer (FRET) and other methods. Many other fluorescent molecules have been characterized both within the protoplast and as components of cell walls. Such molecules have fluorescence emissions across the visible spectrum and can potentially be differentiated by spectral imaging or by evaluating their response to change in pH (ferulates) or chemicals such as Naturstoff reagent (flavonoids). Induced autofluorescence using glutaraldehyde fixation has been used to enable imaging of proteins/organelles in the cell protoplast and to allow fluorescence imaging of fungal mycelium.
Collapse
|
35
|
Jamme F, Cinquin B, Gohon Y, Pereiro E, Réfrégiers M, Froissard M. Synchrotron multimodal imaging in a whole cell reveals lipid droplet core organization. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:772-778. [PMID: 32381780 PMCID: PMC7206545 DOI: 10.1107/s1600577520003847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
A lipid droplet (LD) core of a cell consists mainly of neutral lipids, triacylglycerols and/or steryl esters (SEs). The structuration of these lipids inside the core is still under debate. Lipid segregation inside LDs has been observed but is sometimes suggested to be an artefact of LD isolation and chemical fixation. LD imaging in their native state and in unaltered cellular environments appears essential to overcome these possible technical pitfalls. Here, imaging techniques for ultrastructural study of native LDs in cellulo are provided and it is shown that LDs are organized structures. Cryo soft X-ray tomography and deep-ultraviolet (DUV) transmittance imaging are showing a partitioning of SEs at the periphery of the LD core. Furthermore, DUV transmittance and tryptophan/tyrosine auto-fluorescence imaging on living cells are combined to obtain complementary information on cell chemical contents. This multimodal approach paves the way for a new label-free organelle imaging technique in living cells.
Collapse
Affiliation(s)
- Frédéric Jamme
- DISCO Beamline, Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Bertrand Cinquin
- DISCO Beamline, Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Yann Gohon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| | - Eva Pereiro
- MISTRAL Beamline, ALBA Synchrotron, Cerdanyola del Vallès, Barcelona 08290, Spain
| | | | - Marine Froissard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| |
Collapse
|
36
|
Enzymes to unravel bioproducts architecture. Biotechnol Adv 2020; 41:107546. [PMID: 32275940 DOI: 10.1016/j.biotechadv.2020.107546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/20/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022]
Abstract
Enzymes are essential and ubiquitous biocatalysts involved in various metabolic pathways and used in many industrial processes. Here, we reframe enzymes not just as biocatalysts transforming bioproducts but also as sensitive probes for exploring the structure and composition of complex bioproducts, like meat tissue, dairy products and plant materials, in both food and non-food bioprocesses. This review details the global strategy and presents the most recent investigations to prepare and use enzymes as relevant probes, with a focus on glycoside-hydrolases involved in plant deconstruction and proteases and lipases involved in food digestion. First, to expand the enzyme repertoire to fit bioproduct complexity, novel enzymes are mined from biodiversity and can be artificially engineered. Enzymes are further characterized by exploring sequence/structure/dynamics/function relationships together with the environmental factors influencing enzyme interactions with their substrates. Then, the most advanced experimental and theoretical approaches developed for exploring bioproducts at various scales (from nanometer to millimeter) using active and inactive enzymes as probes are illustrated. Overall, combining multimodal and multiscale approaches brings a better understanding of native-form or transformed bioproduct architecture and composition, and paves the way to mainstream the use of enzymes as probes.
Collapse
|
37
|
Sakalauskaite J, Plasseraud L, Thomas J, Albéric M, Thoury M, Perrin J, Jamme F, Broussard C, Demarchi B, Marin F. The shell matrix of the european thorny oyster, Spondylus gaederopus: microstructural and molecular characterization. J Struct Biol 2020; 211:107497. [PMID: 32220629 DOI: 10.1016/j.jsb.2020.107497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 11/18/2022]
Abstract
Molluscs, the largest marine phylum, display extraordinary shell diversity and sophisticated biomineral architectures. However, mineral-associated biomolecules involved in biomineralization are still poorly characterised. We report the first comprehensive structural and biomolecular study of Spondylus gaederopus, a pectinoid bivalve with a peculiar shell texture. Used since prehistoric times, this is the best-known shell of Europe's cultural heritage. We find that Spondylus microstructure is very poor in mineral-bound organics, which are mostly intercrystalline and concentrated at the interface between structural layers. Using high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) we characterized several shell protein fractions, isolated following different bleaching treatments. Several peptides were identified as well as six shell proteins, which display features and domains typically found in biomineralized tissues, including the prevalence of intrinsically disordered regions. It is very likely that these sequences only partially represent the full proteome of Spondylus, considering the lack of genomics data for this genus and the fact that most of the reconstructed peptides do not match with any known shell proteins, representing consequently lineage-specific sequences. This work sheds light onto the shell matrix involved in the biomineralization in spondylids. Our proteomics data suggest that Spondylus has evolved a shell-forming toolkit, distinct from that of other better studied pectinoids - fine-tuned to produce shell structures with high mechanical properties, while limited in organic content. This study therefore represents an important milestone for future studies on biomineralized skeletons and provides the first reference dataset for forthcoming molecular studies of Spondylus archaeological artifacts.
Collapse
Affiliation(s)
- Jorune Sakalauskaite
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France.
| | - Laurent Plasseraud
- Institute of Molecular Chemistry, ICMUB UMR CNRS 6302, University of Burgundy-Franche-Comté (UBFC), 9 Avenue Alain Savary, 21000 Dijon, France
| | - Jérôme Thomas
- Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France
| | - Marie Albéric
- Laboratoire Chimie de la Matière Condensée de Paris, UMR, CNRS 7574, Sorbonne Université, Place Jussieu 4, 75252 Paris, France
| | - Mathieu Thoury
- IPANEMA, CNRS, ministère de la Culture, UVSQ, USR3461, Université Paris-Saclay, F-91192 Gif-sur-Yvette, France
| | - Jonathan Perrin
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Frédéric Jamme
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Cédric Broussard
- 3P5 Proteomic Platform, University of Paris, Cochin Institute, INSERM, U1016, CNRS, UMR8104, F-75014 Paris, France
| | - Beatrice Demarchi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Frédéric Marin
- Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France.
| |
Collapse
|
38
|
Mobility of pectin methylesterase in pectin/cellulose gels is enhanced by the presence of cellulose and by its catalytic capacity. Sci Rep 2019; 9:12551. [PMID: 31467440 PMCID: PMC6715659 DOI: 10.1038/s41598-019-49108-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
The pectin methylesterase action is usually studied in a homogeneous aqueous medium in the presence of a large excess of soluble substrate and water. However in the cell wall, the water content is much lower, the substrate is cross-linked with itself or with other polymers, and the enzyme has to diffuse through the solid matrix before catalysing the linkage breakdown. As plant primary cell walls can be considered as cellulose-reinforced hydrogels, this study investigated the diffusion of a fungal pectin methylesterase in pectin/cellulose gels used as cell wall-mimicking matrix to understand the impact of this matrix and its (micro) structure on the enzyme’s diffusion within it. The enzyme mobility was followed by synchrotron microscopy thanks to its auto-fluorescence after deep-UV excitation. Time-lapse imaging and quantification of intensity signal by image analysis revealed that the diffusion of the enzyme was impacted by at least two criteria: (i) only the active enzyme was able to diffuse, showing that the mobility was related to the catalytic ability, and (ii) the diffusion was improved by the presence of cellulose in the gel.
Collapse
|
39
|
Optical Signatures Derived From Deep UV to NIR Excitation Discriminates Healthy Samples From Low and High Grades Glioma. Sci Rep 2019; 9:8786. [PMID: 31217542 PMCID: PMC6584506 DOI: 10.1038/s41598-019-45181-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Among all the tumors of the central nervous system (CNS), glioma are the most deadly and the most malignant. Surgical resection is the standard therapeutic method to treat this type of brain cancer. But the diffusive character of these tumors create many problems for surgeons during the operation. In fact, these tumors migrate outside the tumor solid zone and invade the surrounding healthy tissues. These infiltrative tissues have the same visual appearance as healthy tissues, making it very difficult for surgeons to distinguish the healthy ones from the diffused ones. The surgeon, therefore, cannot properly remove the tumor margins increasing the recurrence risk of the tumor. To resolve this problem, our team has developed a multimodal two-photon fibered endomicroscope, compatible with the surgeon trocar, to better delimitate tumor boundaries by relying on the endogenous fluorescence of brain tissues. In this context, and in order to characterize the optical signature of glioma tumors, this study offers multimodal and multi-scaled optical measurements from healthy tissues to high grade glioma. We can interrogate tissue from deep ultra-violet to near infrared excitation by working with spectroscopy, fluorescence lifetime imaging, two-photon fluorescene imaging and Second Harmonic Generation (SHG) imaging. Optically derived ratios such as the Tryptophan/Collagen ratio, the optical redox ratio and the long lifetime intensity fraction, discriminated diseased tissue from its normal counterparts when fitted by Gaussian ellipsoids and choosing a threshold for each. Additionally two-photon fluorescence and SHG images were shown to display similar histological features as Hematoxylin-Eosin stained images.
Collapse
|
40
|
Vidot K, Devaux MF, Alvarado C, Guyot S, Jamme F, Gaillard C, Siret R, Lahaye M. Phenolic distribution in apple epidermal and outer cortex tissue by multispectral deep-UV autofluorescence cryo-imaging. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:51-59. [PMID: 31128715 DOI: 10.1016/j.plantsci.2019.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 05/13/2023]
Abstract
Phenolic compounds in fruit are involved in responses to biotic and abiotic stresses and are responsible for organoleptic properties. To establish the distribution of these secondary metabolites at the tissue and sub-cellular scales, mapping of fluorescence in apple epidermis and outer cortex tissue in cryogenic condition was performed after deep-UV excitation at 275 nm. Douce Moën and Guillevic cider apple varieties were sampled and frozen after harvest, after 30 days at 4 °C and after 20 days at room temperature. Image analysis of fluorescence emission images acquired between 300 and 650 nm allowed the assignment of fluorescence signals to phenolic compound families based on reference molecules. Emission attributed to monomeric and/or condensed flavanol was localized in whole tissue with major fluorescence in the cuticle region. Hydroxycinnamic acids were found predominantly in the outer cortex and appeared in the cell wall. Fluorescent pigments were mostly found in the epidermis. The distribution of flavanols in the sub-cuticle and phenolic acids in the outer cortex distinguished apple varieties. Storage conditions had no impact on phenolic distribution. The proposed fluorescent imaging and analysis approach enables studies on phenolic distribution in relation to fruit development, biotic/abiotic stress resistance and quality.
Collapse
Affiliation(s)
- Kevin Vidot
- UR 1268 Biopolymères Interactions Assemblages, équipe Paroi Végétale et Polysaccharides Pariétaux (PVPP), INRA, 44300, Nantes, France; USC 1422 GRAPPE, INRA, Ecole Supérieure d'Agricultures, SFR 4207 QUASAV, 49100, Angers, France.
| | - Marie-Françoise Devaux
- UR 1268 Biopolymères Interactions Assemblages, équipe Paroi Végétale et Polysaccharides Pariétaux (PVPP), INRA, 44300, Nantes, France.
| | - Camille Alvarado
- UR 1268 Biopolymères Interactions Assemblages, équipe Paroi Végétale et Polysaccharides Pariétaux (PVPP), INRA, 44300, Nantes, France.
| | - Sylvain Guyot
- UR 1268 Biopolymères Interactions Assemblages, équipe Polyphénols, Réactivité, Procédés (PRP), INRA, 35653, Le Rheu, France.
| | - Frederic Jamme
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France.
| | - Cédric Gaillard
- UR 1268 Biopolymères Interactions Assemblages, équipe Paroi Végétale et Polysaccharides Pariétaux (PVPP), INRA, 44300, Nantes, France.
| | - René Siret
- USC 1422 GRAPPE, INRA, Ecole Supérieure d'Agricultures, SFR 4207 QUASAV, 49100, Angers, France.
| | - Marc Lahaye
- UR 1268 Biopolymères Interactions Assemblages, équipe Paroi Végétale et Polysaccharides Pariétaux (PVPP), INRA, 44300, Nantes, France.
| |
Collapse
|
41
|
Fauch L, Palander A, Dekker H, Schulten EA, Koistinen A, Kullaa A, Keinänen M. Narrowband-autofluorescence imaging for bone analysis. BIOMEDICAL OPTICS EXPRESS 2019; 10:2367-2382. [PMID: 31149377 PMCID: PMC6524578 DOI: 10.1364/boe.10.002367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
We present a new autofluorescence-imaging method for bone analysis. This method, based on the autofluorescence of bone, provides color images in microscopic scale. The color images are created from three monochrome images acquired with optimal excitation- and emission-wavelengths combinations. The choice of these combinations were determined from the study of two-dimensional distributions of bone-features-bispectral autofluorescence in the visible- and ultraviolet-spectral range. We demonstrate that main-bone features visualized with MG-staining method can also be visualized in the autofluorescence-color image. Furthermore, the autofluorescence-color image presents features hardly distinguished in a histological-bone section.
Collapse
Affiliation(s)
- Laure Fauch
- SIB Labs, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Co-first authors with equal contribution
- Co-first authors with equal contribution
| | - Anni Palander
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Co-first authors with equal contribution
| | - Hannah Dekker
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Vrije Universiteit VU University Medical Center/Academic Centre for Dentistry Amsterdam (ACTA), P.O. Box 7057, Amsterdam, The Netherlands
| | - Engelbert Ajm Schulten
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Vrije Universiteit VU University Medical Center/Academic Centre for Dentistry Amsterdam (ACTA), P.O. Box 7057, Amsterdam, The Netherlands
| | - Arto Koistinen
- SIB Labs, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Arja Kullaa
- SIB Labs, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Research Group of Oral Health Sciences, Faculty of Medicine, P.O. Box 8000, 90014 Oulu, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80100 Joensuu, Finland
| |
Collapse
|
42
|
Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat Biomed Eng 2019; 3:466-477. [PMID: 31142829 DOI: 10.1038/s41551-019-0362-y] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/28/2019] [Indexed: 01/16/2023]
Abstract
The histological analysis of tissue samples, widely used for disease diagnosis, involves lengthy and laborious tissue preparation. Here, we show that a convolutional neural network trained using a generative adversarial-network model can transform wide-field autofluorescence images of unlabelled tissue sections into images that are equivalent to the bright-field images of histologically stained versions of the same samples. A blind comparison, by board-certified pathologists, of this virtual staining method and standard histological staining using microscopic images of human tissue sections of the salivary gland, thyroid, kidney, liver and lung, and involving different types of stain, showed no major discordances. The virtual-staining method bypasses the typically labour-intensive and costly histological staining procedures, and could be used as a blueprint for the virtual staining of tissue images acquired with other label-free imaging modalities.
Collapse
|
43
|
Hasan S, Geissler D, Wink K, Hagen A, Heiland JJ, Belder D. Fluorescence lifetime-activated droplet sorting in microfluidic chip systems. LAB ON A CHIP 2019; 19:403-409. [PMID: 30604804 DOI: 10.1039/c8lc01278d] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a highly efficient microfluidic fluorescence lifetime-activated droplet sorting (FLADS) approach as a novel technology for droplet manipulation in lab-on-a-chip devices. In a proof-of-concept study, we successfully applied the approach to sort droplets containing two different fluorescent compounds on the basis of their corresponding fluorescence lifetime. Towards this end, a technical set-up was developed enabling on-the-fly fluorescence lifetime determination of passing droplets. The herein developed LabVIEW program enabled fast triggering of a downstream dielectrophoretic force sorting functionality depending on average fluorescence lifetimes of individual droplets. The approach worked reliably at individual substrate concentrations from 1 nM to 1 mM. This not only allowed reliable sorting of droplets containing species with different fluorescence lifetimes but also enabled differentiation of mixtures in individual droplets.
Collapse
Affiliation(s)
- Sadat Hasan
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Mlewski EC, Pisapia C, Gomez F, Lecourt L, Soto Rueda E, Benzerara K, Ménez B, Borensztajn S, Jamme F, Réfrégiers M, Gérard E. Characterization of Pustular Mats and Related Rivularia-Rich Laminations in Oncoids From the Laguna Negra Lake (Argentina). Front Microbiol 2018; 9:996. [PMID: 29872427 PMCID: PMC5972317 DOI: 10.3389/fmicb.2018.00996] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Stromatolites are organo-sedimentary structures that represent some of the oldest records of the early biosphere on Earth. Cyanobacteria are considered as a main component of the microbial mats that are supposed to produce stromatolite-like structures. Understanding the role of cyanobacteria and associated microorganisms on the mineralization processes is critical to better understand what can be preserved in the laminated structure of stromatolites. Laguna Negra (Catamarca, Argentina), a high-altitude hypersaline lake where stromatolites are currently formed, is considered as an analog environment of early Earth. This study aimed at characterizing carbonate precipitation within microbial mats and associated oncoids in Laguna Negra. In particular, we focused on carbonated black pustular mats. By combining Confocal Laser Scanning Microscopy, Scanning Electron Microscopy, Laser Microdissection and Whole Genome Amplification, Cloning and Sanger sequencing, and Focused Ion Beam milling for Transmission Electron Microscopy, we showed that carbonate precipitation did not directly initiate on the sheaths of cyanobacterial Rivularia, which dominate in the mat. It occurred via organo-mineralization processes within a large EPS matrix excreted by the diverse microbial consortium associated with Rivularia where diatoms and anoxygenic phototrophic bacteria were particularly abundant. By structuring a large microbial consortium, Rivularia should then favor the formation of organic-rich laminations of carbonates that can be preserved in stromatolites. By using Fourier Transform Infrared spectroscopy and Synchrotron-based deep UV fluorescence imaging, we compared laminations rich in structures resembling Rivularia to putatively chemically-precipitated laminations in oncoids associated with the mats. We showed that they presented a different mineralogy jointly with a higher content in organic remnants, hence providing some criteria of biogenicity to be searched for in the fossil record.
Collapse
Affiliation(s)
- Estela C Mlewski
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Cordoba, Argentina
| | - Céline Pisapia
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, Université Paris Diderot, Paris, France.,Synchrotron SOLEIL, DISCO Beamline, Saint Aubin, France
| | - Fernando Gomez
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Cordoba, Argentina
| | - Lena Lecourt
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, Université Paris Diderot, Paris, France
| | - Eliana Soto Rueda
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Cordoba, Argentina
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR Centre National de la Recherche Scientifique 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, IRD UMR 206, Paris, France
| | - Bénédicte Ménez
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, Université Paris Diderot, Paris, France
| | - Stephan Borensztajn
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, Université Paris Diderot, Paris, France
| | | | | | - Emmanuelle Gérard
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, Université Paris Diderot, Paris, France
| |
Collapse
|
45
|
Spectrofluorimetric quantification of antibiotic drug concentration in bacterial cells for the characterization of translocation across bacterial membranes. Nat Protoc 2018; 13:1348-1361. [DOI: 10.1038/nprot.2018.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Radziwill-Bienkowska JM, Talbot P, Kamphuis JBJ, Robert V, Cartier C, Fourquaux I, Lentzen E, Audinot JN, Jamme F, Réfrégiers M, Bardowski JK, Langella P, Kowalczyk M, Houdeau E, Thomas M, Mercier-Bonin M. Toxicity of Food-Grade TiO 2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging. Front Microbiol 2018; 9:794. [PMID: 29740421 PMCID: PMC5928251 DOI: 10.3389/fmicb.2018.00794] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Titanium dioxide (TiO2) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli, Lactobacillus rhamnosus, Lactococcus lactis (subsp. lactis and cremoris), Streptococcus thermophilus, and Lactobacillus sakei. Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO2. However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO2 showed some internalization of TiO2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some physiological alterations in the most sensitive species, with a putative impact on gut microbiota composition and functioning, especially after chronic exposure.
Collapse
Affiliation(s)
| | - Pauline Talbot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jasper B J Kamphuis
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Véronique Robert
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christel Cartier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Isabelle Fourquaux
- Faculté de Médecine Rangueil, Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Toulouse, France
| | - Esther Lentzen
- Luxembourg Institute of Science and Technology (LIST), Material Research and Technology Department (MRT), Belvaux, Luxembourg
| | - Jean-Nicolas Audinot
- Luxembourg Institute of Science and Technology (LIST), Material Research and Technology Department (MRT), Belvaux, Luxembourg
| | | | | | - Jacek K Bardowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Magdalena Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Eric Houdeau
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Muriel Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
47
|
Heiner Z, Zeise I, Elbaum R, Kneipp J. Insight into plant cell wall chemistry and structure by combination of multiphoton microscopy with Raman imaging. JOURNAL OF BIOPHOTONICS 2018; 11:e201700164. [PMID: 29024576 DOI: 10.1002/jbio.201700164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/08/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Spontaneous Raman scattering microspectroscopy, second harmonic generation (SHG) and 2-photon excited fluorescence (2PF) were used in combination to characterize the morphology together with the chemical composition of the cell wall in native plant tissues. As the data obtained with unstained sections of Sorghum bicolor root and leaf tissues illustrate, nonresonant as well as pre-resonant Raman microscopy in combination with hyperspectral analysis reveals details about the distribution and composition of the major cell wall constituents. Multivariate analysis of the Raman data allows separation of different tissue regions, specifically the endodermis, xylem and lumen. The orientation of cellulose microfibrils is obtained from polarization-resolved SHG signals. Furthermore, 2-photon autofluorescence images can be used to image lignification. The combined compositional, morphological and orientational information in the proposed coupling of SHG, Raman imaging and 2PF presents an extension of existing vibrational microspectroscopic imaging and multiphoton microscopic approaches not only for plant tissues.
Collapse
Affiliation(s)
- Zsuzsanna Heiner
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
- SALSA School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ingrid Zeise
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rivka Elbaum
- The Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
- SALSA School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
48
|
Deuscher Z, Bonny JM, Boué F, Cheynier V, Clerjon S, Devaux MF, Meneghel J, Guillon F, Jamme F, Le Feunteun S, Passot S, Réfrégiers M, Rogniaux H, Ropartz D, Thévenot J, Vallverdu-Queralt A, Canon F. Selected case studies presenting advanced methodologies to study food and chemical industry materials: From the structural characterization of raw materials to the multisensory integration of food. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Imaging and Spectroscopy of Natural Fluorophores in Pine Needles. PLANTS 2018; 7:plants7010010. [PMID: 29393922 PMCID: PMC5874599 DOI: 10.3390/plants7010010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/03/2023]
Abstract
Many plant tissues fluoresce due to the natural fluorophores present in cell walls or within the cell protoplast or lumen. While lignin and chlorophyll are well-known fluorophores, other components are less well characterized. Confocal fluorescence microscopy of fresh or fixed vibratome-cut sections of radiata pine needles revealed the presence of suberin, lignin, ferulate, and flavonoids associated with cell walls as well as several different extractive components and chlorophyll within tissues. Comparison of needles in different physiological states demonstrated the loss of chlorophyll in both chlorotic and necrotic needles. Necrotic needles showed a dramatic change in the fluorescence of extractives within mesophyll cells from ultraviolet (UV) excited weak blue fluorescence to blue excited strong green fluorescence associated with tissue browning. Comparisons were made among fluorophores in terms of optimal excitation, relative brightness compared to lignin, and the effect of pH of mounting medium. Fluorophores in cell walls and extractives in lumens were associated with blue or green emission, compared to the red emission of chlorophyll. Autofluorescence is, therefore, a useful method for comparing the histology of healthy and diseased needles without the need for multiple staining techniques, potentially aiding visual screening of host resistance and disease progression in needle tissue.
Collapse
|
50
|
Grossmann G, Krebs M, Maizel A, Stahl Y, Vermeer JEM, Ott T. Green light for quantitative live-cell imaging in plants. J Cell Sci 2018; 131:jcs.209270. [PMID: 29361538 DOI: 10.1242/jcs.209270] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plants exhibit an intriguing morphological and physiological plasticity that enables them to thrive in a wide range of environments. To understand the cell biological basis of this unparalleled competence, a number of methodologies have been adapted or developed over the last decades that allow minimal or non-invasive live-cell imaging in the context of tissues. Combined with the ease to generate transgenic reporter lines in specific genetic backgrounds or accessions, we are witnessing a blooming in plant cell biology. However, the imaging of plant cells entails a number of specific challenges, such as high levels of autofluorescence, light scattering that is caused by cell walls and their sensitivity to environmental conditions. Quantitative live-cell imaging in plants therefore requires adapting or developing imaging techniques, as well as mounting and incubation systems, such as micro-fluidics. Here, we discuss some of these obstacles, and review a number of selected state-of-the-art techniques, such as two-photon imaging, light sheet microscopy and variable angle epifluorescence microscopy that allow high performance and minimal invasive live-cell imaging in plants.
Collapse
Affiliation(s)
- Guido Grossmann
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.,Excellence Cluster CellNetworks, Heidelberg University, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Alexis Maizel
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Joop E M Vermeer
- Laboratory for Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Thomas Ott
- Faculty of Biology, Cell Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|