1
|
Salvage SC, Jeevaratnam K, Huang CL, Jackson AP. Cardiac sodium channel complexes and arrhythmia: structural and functional roles of the β1 and β3 subunits. J Physiol 2023; 601:923-940. [PMID: 36354758 PMCID: PMC10953345 DOI: 10.1113/jp283085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
In cardiac myocytes, the voltage-gated sodium channel NaV 1.5 opens in response to membrane depolarisation and initiates the action potential. The NaV 1.5 channel is typically associated with regulatory β-subunits that modify gating and trafficking behaviour. These β-subunits contain a single extracellular immunoglobulin (Ig) domain, a single transmembrane α-helix and an intracellular region. Here we focus on the role of the β1 and β3 subunits in regulating NaV 1.5. We catalogue β1 and β3 domain specific mutations that have been associated with inherited cardiac arrhythmia, including Brugada syndrome, long QT syndrome, atrial fibrillation and sudden death. We discuss how new structural insights into these proteins raises new questions about physiological function.
Collapse
Affiliation(s)
| | | | - Christopher L.‐H. Huang
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
2
|
Screening an In-House Isoquinoline Alkaloids Library for New Blockers of Voltage-Gated Na+ Channels Using Voltage Sensor Fluorescent Probes: Hits and Biases. Molecules 2022; 27:molecules27134133. [PMID: 35807390 PMCID: PMC9268414 DOI: 10.3390/molecules27134133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Voltage-gated Na+ (NaV) channels are significant therapeutic targets for the treatment of cardiac and neurological disorders, thus promoting the search for novel NaV channel ligands. With the objective of discovering new blockers of NaV channel ligands, we screened an In-House vegetal alkaloid library using fluorescence cell-based assays. We screened 62 isoquinoline alkaloids (IA) for their ability to decrease the FRET signal of voltage sensor probes (VSP), which were induced by the activation of NaV channels with batrachotoxin (BTX) in GH3b6 cells. This led to the selection of five IA: liriodenine, oxostephanine, thalmiculine, protopine, and bebeerine, inhibiting the BTX-induced VSP signal with micromolar IC50. These five alkaloids were then assayed using the Na+ fluorescent probe ANG-2 and the patch-clamp technique. Only oxostephanine and liriodenine were able to inhibit the BTX-induced ANG-2 signal in HEK293-hNaV1.3 cells. Indeed, liriodenine and oxostephanine decreased the effects of BTX on Na+ currents elicited by the hNaV1.3 channel, suggesting that conformation change induced by BTX binding could induce a bias in fluorescent assays. However, among the five IA selected in the VSP assay, only bebeerine exhibited strong inhibitory effects against Na+ currents elicited by the hNav1.2 and hNav1.6 channels, with IC50 values below 10 µM. So far, bebeerine is the first BBIQ to have been reported to block NaV channels, with promising therapeutical applications.
Collapse
|
3
|
Mulpuri Y, Yamamoto T, Nishimura I, Spigelman I. Role of voltage-gated sodium channels in axonal signal propagation of trigeminal ganglion neurons after infraorbital nerve entrapment. NEUROBIOLOGY OF PAIN 2022; 11:100084. [PMID: 35128176 PMCID: PMC8803652 DOI: 10.1016/j.ynpai.2022.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Infraorbital nerve entrapment (IoNE) induces mechanical allodynia and enhances signal propagation in primary afferent A- and C-fibers. IoNE increases sensitivity of A- and C-fibers to conduction block by tetrodotoxin (TTX) and selective voltage-gated sodium channel 1.8 (NaV1.8) inhibitor, A-803467. IoNE increases signal propagation in vibrissal pad Ad -, but not Aβ-fibers, and their sensitivity to conduction block by the selective NaV1.8 inhibitor. IoNE increases membrane excitability of dissociated small and medium sized trigeminal neurons. IoNE increases nerve, but not ganglion, levels of NaV1.3, NaV1.7, and NaV1.8 mRNAs, and NaV1.8 protein.
Chronic pain arising from peripheral nerve injuries represents a significant clinical challenge because even the most efficacious anticonvulsant drug treatments are limited by their side effects profile. We investigated pain behavior, changes in axonal signal conduction and excitability of trigeminal neurons, and expression of voltage-gated sodium channels (NaVs) in the infraorbital nerve and trigeminal ganglion (TG) after infraorbital nerve entrapment (IoNE). Compared to Sham, IoNE rats had increased A- and C-fiber compound action potentials (CAPs) and Aδ component of A-CAP area from fibers innervating the vibrissal pad. After IoNE, A- and C-fiber CAPs were more sensitive to blockade by tetrodotoxin (TTX), and those fibers that were TTX-resistant were more sensitive to blockade by the NaV1.8 selective blocker, A-803467. Although NaV1.7 blocker, ICA-121431 alone, did not affect Aδ-fiber signal propagation, cumulative application with A-803467 and 4,9-anhydro-TTX significantly reduced the Aδ-fiber CAP in IoNE rats. In patch clamp recordings from small- and medium-sized TG neurons, IoNE resulted in reduced action potential (AP) depolarizing current threshold, hyperpolarized AP voltage threshold, increased AP duration, and a more depolarized membrane potential. While the transcripts of most NaVs were reduced in the ipsilateral TG after IoNE, NaV1.3, NaV1.7, and NaV1.8 mRNAs, and NaV1.8 protein, were significantly increased in the nerve. Altogether, our data suggest that axonal redistribution of NaV1.8, and to a lesser extent NaV1.3, and NaV1.7 contributes to enhanced nociceptive signal propagation in peripheral nerve after IoNE.
Collapse
|
4
|
Neves RAF, Pardal MA, Nascimento SM, Oliveira PJ, Rodrigues ET. Screening-level evaluation of marine benthic dinoflagellates toxicity using mammalian cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110465. [PMID: 32199217 DOI: 10.1016/j.ecoenv.2020.110465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Complementary studies at different levels of the biological organization are fundamental to fully link environmental exposure to marine benthic dinoflagellate toxins and their effects. In order to contribute to this transdisciplinary evaluation, and for the first time, the present study aims to study the effects of Gambierdiscus excentricus, Ostreopsis cf. ovata, Prorocentrum hoffmannianum and Prorocentrum lima extracts on seven functionally different mammalian cell lines: HEK 293, HepG2, HNDF, H9c2(2-1), MC3T3-E1, Raw 264.7 and SH-SY5Y. All the cell lines presented cell mass decrease in a concentration-dependence of dinoflagellate extracts, exhibiting marked differences in cell toxicity. Gambierdiscus excentricus presented the highest effect, at very low concentrations with EC50,24h (i.e., the concentration that gives half-maximal response after a 24-h exposure) between 1.3 and 13 cells mL-1, followed by O. cf. ovata (EC50,24h between 3.3 and 40 cells mL-1), and Prorocentrum species (P. lima: EC50,24h between 191 and 1027 cells mL-1 and P. hoffmannianum: EC50,24h between 152 and 783 cells mL-1). Cellular specificities were also detected and rat cardiomyoblast H9c2(2-1) cells were in general the most sensitive to dinoflagellate toxic compounds, suggesting that this cell line is an animal-free potential model for dinoflagellate toxin testing. Finally, the sensitivity of cells expressing distinct phenotypes to each dinoflagellate extract exhibited low relation to human poisoning symptoms.
Collapse
Affiliation(s)
- Raquel A F Neves
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-314B, 22290-240, Rio de Janeiro, Brazil; CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Miguel A Pardal
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Silvia M Nascimento
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-314B, 22290-240, Rio de Janeiro, Brazil.
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Elsa T Rodrigues
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
5
|
Brewer KR, Kuenze G, Vanoye CG, George AL, Meiler J, Sanders CR. Structures Illuminate Cardiac Ion Channel Functions in Health and in Long QT Syndrome. Front Pharmacol 2020; 11:550. [PMID: 32431610 PMCID: PMC7212895 DOI: 10.3389/fphar.2020.00550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The cardiac action potential is critical to the production of a synchronized heartbeat. This electrical impulse is governed by the intricate activity of cardiac ion channels, among them the cardiac voltage-gated potassium (Kv) channels KCNQ1 and hERG as well as the voltage-gated sodium (Nav) channel encoded by SCN5A. Each channel performs a highly distinct function, despite sharing a common topology and structural components. These three channels are also the primary proteins mutated in congenital long QT syndrome (LQTS), a genetic condition that predisposes to cardiac arrhythmia and sudden cardiac death due to impaired repolarization of the action potential and has a particular proclivity for reentrant ventricular arrhythmias. Recent cryo-electron microscopy structures of human KCNQ1 and hERG, along with the rat homolog of SCN5A and other mammalian sodium channels, provide atomic-level insight into the structure and function of these proteins that advance our understanding of their distinct functions in the cardiac action potential, as well as the molecular basis of LQTS. In this review, the gating, regulation, LQTS mechanisms, and pharmacological properties of KCNQ1, hERG, and SCN5A are discussed in light of these recent structural findings.
Collapse
Affiliation(s)
- Kathryn R. Brewer
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Carlos G. Vanoye
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alfred L. George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Charles R. Sanders
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
6
|
Wang L, Han Z, Dai J, Cao K. Brugada Syndrome Caused by Sodium Channel Dysfunction Associated with a SCN1B Variant A197V. Arch Med Res 2020; 51:245-253. [PMID: 32192759 DOI: 10.1016/j.arcmed.2020.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/18/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We aimed to identify and characterize a SCN1B variant, A197V, associated with Brugada Syndrome (BrS). METHODS Whole-exome sequencing was employed to explore the potential causative genes in 8 unrelated clinically diagnosed BrS patients. A197V variant was only detected in exon 4 of SCN1B in a 46 year old patient, who was admitted due to syncope. Wild type (WT) and mutant (A197V) genes were co-expressed with SCN5A in human embryonic kidney cells (HEK293 cells) and studied using whole-cell patch clamp and immunodetection techniques. RESULTS Coexpression of 5A/WT + 1B/A197V resulted in a marked decrease in current density compared to 5A/WT + 1B/WT. The activation velocity was decelerated by A197V mutation. No significant changes were observed in recovery from inactivation parameters. Cell surface protein analyses confirmed that Nav1.5 channel membrane distribution was affected by A197V mutation. CONCLUSIONS The current study is the first to report the functional analysis of SCN1B/ A197V, serving as a substrate responsible for BrS.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Cardiology, Nanjing Brain Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhonglin Han
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jian Dai
- Department of Cardiology, Nanjing Brain Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kejiang Cao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
The role of the gap junction perinexus in cardiac conduction: Potential as a novel anti-arrhythmic drug target. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 144:41-50. [PMID: 30241906 DOI: 10.1016/j.pbiomolbio.2018.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/09/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease remains the single largest cause of natural death in the United States, with a significant cause of mortality associated with cardiac arrhythmias. Presently, options for treating and preventing myocardial electrical dysfunction, including sudden cardiac death, are limited. Recent studies have indicated that conduction of electrical activation in the heart may have an ephaptic component, wherein intercellular coupling occurs via electrochemical signaling across narrow extracellular clefts between cardiomyocytes. The perinexus is a 100-200 nm-wide stretch of closely apposed membrane directly adjacent to connexin 43 gap junctions. Electron and super-resolution microscopy studies, as well as biochemical analyses, have provided evidence that perinexal nanodomains may be candidate structures for facilitating ephaptic coupling. This work has included characterization of the perinexus as a region of close inter-membrane contact between cardiomyocytes (<30 nm) containing dense clusters of voltage-gated sodium channels. Here, we review what is known about perinexal structure and function and the potential that the perinexus may have novel and pivotal roles in disorders of cardiac conduction. Of particular interest is the prospect that cell adhesion mediated by the cardiac sodium channel β subunit (Scn1b) may be a novel anti-arrhythmic target.
Collapse
|
8
|
Yao H, Fan J, Cheng YJ, Chen XM, Ji CC, Liu LJ, Zheng ZH, Wu SH. SCN1Bβ mutations that affect their association with Kv4.3 underlie early repolarization syndrome. J Cell Mol Med 2018; 22:5639-5647. [PMID: 30160358 PMCID: PMC6201368 DOI: 10.1111/jcmm.13839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022] Open
Abstract
Background Abnormal cardiac ion channels current, including transient outward potassium current (Ito), is associated with early repolarization syndrome (ERS). Previous studies showed that mutations in SCN1Bβ both to increase the Ito current and to decrease the sodium current. Yet its role in ERS remains unknown. Objective To determine the role of mutations in the SCN1Bβ subunits in ERS. Methods We screened for mutations in the SCN1B genes from four families with ERS. Wild‐type and mutant SCN1Bβ genes were co‐expressed with wild‐type KCND3 in human embryonic kidney cells (HEK293). Whole‐cell patch‐clamp technique and co‐immunoprecipitation were used to study the electrophysiological properties and explore the underlying mechanisms. Results S248R and R250T mutations in SCN1Bβ were detected in 4 families’ probands. Neither S248R nor R250T mutation had significant influence on the sodium channel current density (INa) when co‐expressed with SCN5A/WT. Co‐expression of KCND3/WT and SCN1Bβ/S248R or SCN1Bβ/R250T increased the transient outward potassium current Ito by 27.44% and 199.89%, respectively (P < 0.05 and P < 0.01, respectively) when compared with SCN1Bβ/WT. Electrophysiological properties showed that S248R and R250T mutations decreased the steady‐state inactivation and recovery from inactivation of Ito channel. Co‐immunoprecipitation study demonstrated an increased association between SCN1Bβ mutations and Kv4.3 compared with SCN1Bβ/WT (P < 0.05 and P < 0.01, respectively). Conclusion The S248R and R250T mutations of SCN1Bβ gene caused gain‐of‐function of Ito by associated with Kv4.3, which maybe underlie the ERS phenotype of the probands.
Collapse
Affiliation(s)
- Hao Yao
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory on Assisted Circulation, NHC, Guangzhou, China
| | - Jun Fan
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory on Assisted Circulation, NHC, Guangzhou, China
| | - Yun-Jiu Cheng
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory on Assisted Circulation, NHC, Guangzhou, China
| | - Xu-Miao Chen
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory on Assisted Circulation, NHC, Guangzhou, China
| | - Cheng-Cheng Ji
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory on Assisted Circulation, NHC, Guangzhou, China
| | - Li-Juan Liu
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory on Assisted Circulation, NHC, Guangzhou, China
| | - Zi-Heng Zheng
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory on Assisted Circulation, NHC, Guangzhou, China
| | - Su-Hua Wu
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, and Key Laboratory on Assisted Circulation, NHC, Guangzhou, China
| |
Collapse
|
9
|
Baroni D, Picco C, Moran O. A mutation of SCN1B associated with GEFS+ causes functional and maturation defects of the voltage-dependent sodium channel. Hum Mutat 2018; 39:1402-1415. [PMID: 29992740 DOI: 10.1002/humu.23589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Voltage-dependent sodium channels are responsible of the rising phase of the action potential in excitable cells. These integral membrane proteins are composed of a pore-forming α-subunit, and one or more auxiliary β subunits. Mutation p.Asp25Asn (D25N; c.73G > A) of the β1 subunit, coded by the gene SCN1B, has been reported in a patient with generalized epilepsy with febrile seizure plus type 1 (GEFS+). In human embryonic kidney 293 (HEK) cells, the heterologous coexpression of D25N-β1 subunit with Nav1.2, Nav1.4, and Nav1.5 α subunits, representative of brain, skeletal muscle, and heart voltage gated sodium channels, determines a reduced sodium channel functional expression and a negative shift of the activation and inactivation steady state curves. The D25N mutation of the β1 subunit causes a maturation (glycosylation) defect of the protein, leading to a reduced targeting to the plasma membrane. Also the β1-dependent gating properties of the sodium channels are abolished by the mutation, suggesting that D25N is no more able to interact with the α subunit. Our work underscores the role played by the β1 subunit, highlighting how a defective interaction between the sodium channel constituents could lead to a disabling pathological condition, and opens the possibility to design a mutation-specific GEFS+ treatment based on protein maturation.
Collapse
|
10
|
Edokobi N, Isom LL. Voltage-Gated Sodium Channel β1/β1B Subunits Regulate Cardiac Physiology and Pathophysiology. Front Physiol 2018; 9:351. [PMID: 29740331 PMCID: PMC5924814 DOI: 10.3389/fphys.2018.00351] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs). Voltage-gated sodium channels (NaVs) are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. NaVs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β1/β1B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Nav-β1/β1B subunit dysfunction generates substrates for arrhythmias. This review will highlight the role of Nav-β1/β1B subunits in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Mutation E87Q of the β1-subunit impairs the maturation of the cardiac voltage-dependent sodium channel. Sci Rep 2017; 7:10683. [PMID: 28878239 PMCID: PMC5587543 DOI: 10.1038/s41598-017-10645-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022] Open
Abstract
Voltage-dependent sodium channels are responsible of the rising phase of the action potential in excitable cells. These membrane integral proteins are composed by a pore-forming α-subunit, and one or more auxiliary β subunits. Mutation E87Q of the β1 subunit is correlated with Brugada syndrome, a genetic disease characterised by ventricular fibrillation, right precordial ST segment elevation on ECG and sudden cardiac death. Heterologous expression of E87Q-β1 subunit in CHO cells determines a reduced sodium channel functional expression. The effect the E87Q mutation of the β1 subunit on sodium currents and α protein expression is correlated with a reduced availability of the mature form of the α subunit in the plasma membrane. This finding offers a new target for the treatment of the Brugada syndrome, based on protein maturation management. This work highlights the role played by the β1 subunit in the maturation and expression of the entire sodium channel complex and underlines how the defective interaction between the sodium channel constituents could lead to a disabling pathological condition.
Collapse
|
12
|
Onwuli DO, Yañez-Bisbe L, Pinsach-Abuin ML, Tarradas A, Brugada R, Greenman J, Pagans S, Beltran-Alvarez P. Do sodium channel proteolytic fragments regulate sodium channel expression? Channels (Austin) 2017; 11:476-481. [PMID: 28718687 DOI: 10.1080/19336950.2017.1355663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The cardiac voltage-gated sodium channel (gene: SCN5A, protein: NaV1.5) is responsible for the sodium current that initiates the cardiomyocyte action potential. Research into the mechanisms of SCN5A gene expression has gained momentum over the last few years. We have recently described the transcriptional regulation of SCN5A by GATA4 transcription factor. In this addendum to our study, we report our observations that 1) the linker between domains I and II (LDI-DII) of NaV1.5 contains a nuclear localization signal (residues 474-481) that is necessary to localize LDI-DII into the nucleus, and 2) nuclear LDI-DII activates the SCN5A promoter in gene reporter assays using cardiac-like H9c2 cells. Given that voltage-gated sodium channels are known targets of proteases such as calpain, we speculate that NaV1.5 degradation is signaled to the cell transcriptional machinery via nuclear localization of LDI-DII and subsequent stimulation of the SCN5A promoter.
Collapse
Affiliation(s)
- Donatus O Onwuli
- a Biomedical Sciences , School of Life Sciences, University of Hull , Kingston upon Hull , UK
| | - Laia Yañez-Bisbe
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain
| | - Mel Lina Pinsach-Abuin
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain.,c Medical Science Department , School of Medicine, University of Girona , Girona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Instituto de Salud Carlos III , Madrid , Spain
| | - Anna Tarradas
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain.,c Medical Science Department , School of Medicine, University of Girona , Girona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Instituto de Salud Carlos III , Madrid , Spain
| | - Ramon Brugada
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain.,c Medical Science Department , School of Medicine, University of Girona , Girona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Instituto de Salud Carlos III , Madrid , Spain.,e Cardiology Service , Hospital Josep Trueta , Girona , Spain
| | - John Greenman
- a Biomedical Sciences , School of Life Sciences, University of Hull , Kingston upon Hull , UK
| | - Sara Pagans
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain.,c Medical Science Department , School of Medicine, University of Girona , Girona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Instituto de Salud Carlos III , Madrid , Spain
| | - Pedro Beltran-Alvarez
- a Biomedical Sciences , School of Life Sciences, University of Hull , Kingston upon Hull , UK
| |
Collapse
|
13
|
Rogers M, Zidar N, Kikelj D, Kirby RW. Characterization of Endogenous Sodium Channels in the ND7-23 Neuroblastoma Cell Line: Implications for Use as a Heterologous Ion Channel Expression System Suitable for Automated Patch Clamp Screening. Assay Drug Dev Technol 2016; 14:109-30. [PMID: 26991361 PMCID: PMC4800267 DOI: 10.1089/adt.2016.704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The rodent neuroblastoma cell line, ND7-23, is used to express voltage-dependent sodium (Nav) and other neuronal ion channels resistant to heterologous expression in Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells. Their advantage is that they provide endogenous factors and signaling pathways to promote ion channel peptide folding, expression, and function at the cell surface and are also amenable to automated patch clamping. However, ND7-23 cells exhibit endogenous tetrodotoxin (TTX)-sensitive Nav currents, and molecular profiling has revealed the presence of Nav1.2, Nav1.3, Nav1.6, and Nav1.7 transcripts, but no study has determined which subtypes contribute to functional channels at the cell surface. We profiled the repertoire of functional Nav channels endogenously expressed in ND7-23 cells using the QPatch automated patch clamp platform and selective toxins and small molecules. The potency and subtype selectivity of the ligands (Icagen compound 68 from patent US-20060025415-A1-20060202, 4,9 anhydro TTX, and Protoxin-II) were established in human Nav1.3, Nav1.6, and Nav1.7 channel cell lines before application of selective concentrations to ND7-23 cells. Our data confirm previous studies that >97% of macroscopic Nav current in ND7-23 cells is carried by TTX-sensitive channels (300 nM TTX) and that Nav1.7 is the predominant channel contributing to this response (65% of peak inward current), followed by Nav1.6 (∼20%) and negligible Nav1.3 currents (∼2%). In addition, our data are the first to assess the Nav1.6 potency (50% inhibitory concentration [IC50] of 33 nM) and selectivity (50-fold over Nav1.7) of 4,9 anhydro TTX in human Nav channels expressed in mammalian cells, confirming previous studies of rodent Nav channels expressed in oocytes and HEK cells.
Collapse
Affiliation(s)
- Marc Rogers
- 1 Xention Limited , Cambridge, United Kingdom
| | - Nace Zidar
- 2 Faculty of Pharmacy, University of Ljubljana , Ljubljana, Slovenia
| | - Danijel Kikelj
- 2 Faculty of Pharmacy, University of Ljubljana , Ljubljana, Slovenia
| | | |
Collapse
|
14
|
Onwuli DO, Beltran-Alvarez P. An update on transcriptional and post-translational regulation of brain voltage-gated sodium channels. Amino Acids 2015; 48:641-651. [PMID: 26503606 PMCID: PMC4752963 DOI: 10.1007/s00726-015-2122-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/29/2022]
Abstract
Voltage-gated sodium channels are essential proteins in brain physiology, as they generate the sodium currents that initiate neuronal action potentials. Voltage-gated sodium channels expression, localisation and function are regulated by a range of transcriptional and post-translational mechanisms. Here, we review our understanding of regulation of brain voltage-gated sodium channels, in particular SCN1A (NaV1.1), SCN2A (NaV1.2), SCN3A (NaV1.3) and SCN8A (NaV1.6), by transcription factors, by alternative splicing, and by post-translational modifications. Our focus is strongly centred on recent research lines, and newly generated knowledge.
Collapse
Affiliation(s)
- Donatus O Onwuli
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building Cottingham Road, Hull, HU6 7RX, UK
| | - Pedro Beltran-Alvarez
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
15
|
Baroni D, Moran O. Differential gene expression profiles of two excitable rat cell lines after over-expression of WT- and C121W-β1 sodium channel subunits. Neuroscience 2015; 297:105-17. [PMID: 25827112 DOI: 10.1016/j.neuroscience.2015.03.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/11/2015] [Accepted: 03/22/2015] [Indexed: 12/19/2022]
Abstract
Voltage-dependent sodium channels are membrane proteins essential for cell excitability. They are composed by a pore-forming α-subunit, encoded in mammals by up to nine different genes, and four different ancillary β-subunits. The expression pattern of the α subunit isoforms confers the distinctive functional and pharmacological properties to different excitable tissues. β-Subunits are important modulators of channel function and expression. Mutation C121W of the β1-subunit causes an autosomal dominant epileptic syndrome without cardiac symptoms. In neuroectoderm GH3 and cardiac H9C2 cells, the over-expression of β1 subunit augments α subunit mRNA and protein levels as well as sodium current density. Interestingly, the introduction of the epileptogenic C121W-β1 subunit produces additional changes in the α-subunit expression pattern of H9C2 cells, leaving unaltered the sodium channel isoform composition of GH3 cells. The challenge of the present work was to identify those genes that were differentially expressed in response to WT- or C121W-β1 subunit over-expression in the two rat cell lines under analysis. Hence, we analyzed the total mRNA extracted from control-untransfected and from WT- and C121W-β1-transfected GH3 and H9C2 cells by DNA-microarray. We found that, in agreement with their different embryonal origin, the over-expression of WT- and C121W-β1 subunits modifies the expression of different gene sets in GH3 and H9C2 cells. Focusing on the effects of the C121W mutation, we found that it causes the modification of 214 genes, most of them were down-regulated (202) in GH3 cells; on the contrary, it determined the up-regulation of only five genes in H9C2 cells. Interestingly, most genes modified by the C121W β1 subunit are involved in pivotal processes of the cell such as cellular communication and protein expression. Our results confirm the important role of the sodium channel β1 subunit in the control of NaCh gene expression, and highlight once more the tissue-specific effect of the C121W mutation.
Collapse
Affiliation(s)
- D Baroni
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genova, Italy.
| | - O Moran
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genova, Italy
| |
Collapse
|
16
|
Baroni D, Moran O. On the multiple roles of the voltage gated sodium channel β1 subunit in genetic diseases. Front Pharmacol 2015; 6:108. [PMID: 26042039 PMCID: PMC4434899 DOI: 10.3389/fphar.2015.00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated sodium channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are composed of a pore-forming α-subunit and associated β-subunits. The β1-subunit was the first accessory subunit to be cloned. It can be important for controlling cell excitability and modulating multiple aspects of sodium channel physiology. Mutations of β1 are implicated in a wide variety of inherited pathologies, including epilepsy and cardiac conduction diseases. This review summarizes β1-subunit related channelopathies pointing out the current knowledge concerning their genetic background and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Genova Italy
| | - Oscar Moran
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Genova Italy
| |
Collapse
|