1
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Canella A, Nazzaro M, Rajendran S, Schmitt C, Haffey A, Nigita G, Thomas D, Lyberger JM, Behbehani GK, Amankulor NM, Mardis ER, Cripe TP, Rajappa P. Genetically modified IL2 bone-marrow-derived myeloid cells reprogram the glioma immunosuppressive tumor microenvironment. Cell Rep 2023; 42:112891. [PMID: 37516967 DOI: 10.1016/j.celrep.2023.112891] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Gliomas are one of the leading causes of cancer-related death in the adolescent and young adult (AYA) population. Two-thirds of AYA glioma patients are affected by low-grade gliomas (LGGs), but there are no specific treatments. Malignant progression is supported by the immunosuppressive stromal component of the tumor microenvironment (TME) exacerbated by M2 macrophages and a paucity of cytotoxic T cells. A single intravenous dose of engineered bone-marrow-derived myeloid cells that release interleukin-2 (GEMys-IL2) was used to treat mice with LGGs. Our results demonstrate that GEMys-IL2 crossed the blood-brain barrier, infiltrated the TME, and reprogrammed the immune cell composition and transcriptome. Moreover, GEMys-IL2 extended survival in an LGG immunocompetent mouse model. Here, we report the efficacy of an in vivo approach that demonstrates the potential for a cell-mediated innate immunotherapy designed to enhance the recruitment of activated effector T and natural killer cells within the glioma TME.
Collapse
Affiliation(s)
- Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Nazzaro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sakthi Rajendran
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Claire Schmitt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Abigail Haffey
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Diana Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Justin M Lyberger
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gregory K Behbehani
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Nduka M Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy P Cripe
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
3
|
Ban J, Li S, Zhan Q, Li X, Xing H, Chen N, Long L, Hou X, Zhao J, Yuan X. PMPC Modified PAMAM Dendrimer Enhances Brain Tumor-Targeted Drug Delivery. Macromol Biosci 2021; 21:e2000392. [PMID: 33506646 DOI: 10.1002/mabi.202000392] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/30/2020] [Indexed: 12/18/2022]
Abstract
The excellent biocompatibility drug delivery system for effective treatment of glioma is still greatly challenged by the existence of blood-brain barrier, blood-brain tumor barrier, and the tissue toxicity caused by chemotherapy drugs. In this study, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) is used for the first time for modifying third-generation poly(amidoamine) (PAMAM) to enhance their brain tumor-targeted drug delivery ability as well as simultaneously reducing the toxicity of PAMAM dendrimers and the tissue toxicity of the loaded doxorubicin (DOX). The cytotoxicity, the therapeutic ability in vitro, and the brain tumor-targeted ability of the PMPC modified PAMAM nanoparticles are further studied. Results indicate that PMPC, as a dual-functional modifier, can significantly reduce the cytotoxicity of PAMAM dendrimers, while efficiently target the brain tumor. In addition, the therapeutic effect of DOX-loaded PAMAM-PMPC in mice inoculated with U-87 is also studied in vivo. In comparison with DOX solution, DOX-loaded PAMAM-PMPC alleviates weight loss of tumor-inoculated mice and reduces the cardiotoxicity of DOX. The tumor growth inhibition, in vivo, is significantly increased up to (80.76 ± 1.66)%. In conclusion, this strategy of PMPC dual-functional targeted nanocarrier provides a new method for the delivery of chemotherapeutic drugs to treat glioma.
Collapse
Affiliation(s)
- Jiamin Ban
- Tianjin Nano-Biotechnology and Translational Medicine Lab School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Sidi Li
- Tianjin Nano-Biotechnology and Translational Medicine Lab School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qi Zhan
- Tianjin Nano-Biotechnology and Translational Medicine Lab School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xuepin Li
- Tianjin Nano-Biotechnology and Translational Medicine Lab School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Huike Xing
- Tianjin Nano-Biotechnology and Translational Medicine Lab School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ning Chen
- Tianjin Nano-Biotechnology and Translational Medicine Lab School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Lixia Long
- Tianjin Nano-Biotechnology and Translational Medicine Lab School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xin Hou
- Tianjin Nano-Biotechnology and Translational Medicine Lab School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jin Zhao
- Tianjin Nano-Biotechnology and Translational Medicine Lab School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xubo Yuan
- Tianjin Nano-Biotechnology and Translational Medicine Lab School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
4
|
Biau J, Chautard E, Berthault N, de Koning L, Court F, Pereira B, Verrelle P, Dutreix M. Combining the DNA Repair Inhibitor Dbait With Radiotherapy for the Treatment of High Grade Glioma: Efficacy and Protein Biomarkers of Resistance in Preclinical Models. Front Oncol 2019; 9:549. [PMID: 31275862 PMCID: PMC6593092 DOI: 10.3389/fonc.2019.00549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022] Open
Abstract
High grade glioma relapses occur often within the irradiated volume mostly due to a high resistance to radiation therapy (RT). Dbait (which stands for DNA strand break bait) molecules mimic DSBs and trap DNA repair proteins, thereby inhibiting repair of DNA damage induced by RT. Here we evaluate the potential of Dbait to sensitize high grade glioma to RT. First, we demonstrated the radiosensitizer properties of Dbait in 6/9 tested cell lines. Then, we performed animal studies using six cell derived xenograft and five patient derived xenograft models, to show the clinical potential and applicability of combined Dbait+RT treatment for human high grade glioma. Using a RPPA approach, we showed that Phospho-H2AX/H2AX and Phospho-NBS1/NBS1 were predictive of Dbait efficacy in xenograft models. Our results provide the preclinical proof of concept that combining RT with Dbait inhibition of DNA repair could be of benefit to patients with high grade glioma.
Collapse
Affiliation(s)
- Julian Biau
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France.,INSERM, U1240 IMoST, Université Clermont Auvergne, Clermont Ferrand, France.,Radiotherapy Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Emmanuel Chautard
- INSERM, U1240 IMoST, Université Clermont Auvergne, Clermont Ferrand, France.,Pathology Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nathalie Berthault
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France
| | - Leanne de Koning
- Laboratory of Proteomic Mass Spectrometry, Centre de Recherche, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Frank Court
- GReD Laboratory, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Department, DRCI, Clermont-Ferrand Hospital, Clermont-Ferrand, France
| | - Pierre Verrelle
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,Radiotherapy Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France.,U1196, INSERM, UMR9187, CNRS, Orsay, France.,Radiotherapy Department, Institut Curie Hospital, Paris, France
| | - Marie Dutreix
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France
| |
Collapse
|
5
|
Krishnamurthy S, Li J, Bodman A, Zhang C, Yang Y, An J. Hyperosmotic intraventricular drug delivery of DV1 in the management of intracranial metastatic breast cancer in a mouse model. J Clin Neurosci 2019; 62:207-211. [PMID: 30678836 PMCID: PMC10158632 DOI: 10.1016/j.jocn.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/21/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Advances in therapies for breast cancer with cerebral metastases has been slow, despite this being a common diagnosis, due to limited drug delivery by the blood brain barrier. Improvements in drug delivery for brain metastasis to target the metastases and bypass the blood brain barrier are necessary. In our study, we delivered an inhibitor of chemokine receptor 4 by convection enhanced delivery in a hyperosmotic solution to prevent brain metastasis in a mouse model of metastatic breast cancer. We found the inhibitor limited metastatic disease and more interestingly, the hyperosmotic solution targeted tumor tissue allowing for a higher accumulation of the therapy into tumor tissue. This finding has the potential to improve delivery of chemotherapeutic agents to brain metastases.
Collapse
|
6
|
Faithful animal modelling of human glioma by using primary initiating cells and its implications for radiosensitization therapy [ARRIVE 1]. Sci Rep 2018; 8:14191. [PMID: 30242200 PMCID: PMC6154973 DOI: 10.1038/s41598-018-32578-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
It has been reported that the ATM kinase inhibitor KU60019 preferentially radiosensitizes orthotopic high grade gliomas (HGG) driven by established U87 and U1242 cell lines bearing specific TP53 mutations. We wished to determine whether those results could be extended to tumors driven by primary glioma initiating cells (GIC) that closely mimic clinical tumors. Orthotopic HGG were developed in immunodeficient non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice by intracranial injection of primary GIC isolated from the adult glioblastoma COMI (acronym of patient’s name) and the pediatric anaplastic astrocytoma 239/12. Similar to the clinical tumors of origin, the orthotopic tumors COMI and 239/12 displayed different growth properties with a voluminous expansive lesion that exerted considerable mass effect on the adjacent structures and an infiltrating, gliomatosis-like growth pattern with limited compressive attitude, respectively. Significant elongations of median animal survival bearing the adult COMI tumor was observed after one KU60019 convection enhanced delivery followed by total 7.5 Gy of ionizing radiation delivered in fifteen 0.5 Gy fractions, as compared to animals treated with vehicle + ionizing radiation (105 vs 89 days; ratio: 0.847; 95% CI of ratio 0.4969 to 1.198; P:0.0417). Similarly, a trend to increased median survival was observed with the radiosensitized pediatric tumor 239/12 (186 vs 167 days; ratio: 0.8978; 95% CI of ratio: 0.5352 to 1.260; P: 0.0891). Our results indicate that radiosensitization by KU60019 is effective towards different orthotopic gliomas that faithfully mimic the clinical tumors and that multiple GIC-based animal models may be essential to develop novel therapeutic protocols for HGG transferable to the clinics.
Collapse
|
7
|
Barreto dos Santos N, Bonfanti AP, Rocha‐e‐Silva TAAD, da Silva PI, da Cruz‐Höfling MA, Verinaud L, Rapôso C. Venom of the
Phoneutria nigriventer
spider alters the cell cycle, viability, and migration of cancer cells. J Cell Physiol 2018; 234:1398-1415. [DOI: 10.1002/jcp.26935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/12/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Natália Barreto dos Santos
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| | - Amanda Pires Bonfanti
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| | | | | | - Maria Alice da Cruz‐Höfling
- Departamento de Bioquímica e Biologia Tecidual Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| | - Liana Verinaud
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| | - Catarina Rapôso
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| |
Collapse
|
8
|
Focal, remote-controlled, chronic chemical modulation of brain microstructures. Proc Natl Acad Sci U S A 2018; 115:7254-7259. [PMID: 29941557 DOI: 10.1073/pnas.1804372115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Direct delivery of fluid to brain parenchyma is critical in both research and clinical settings. This is usually accomplished through acutely inserted cannulas. This technique, however, results in backflow and significant dispersion away from the infusion site, offering little spatial or temporal control in delivering fluid. We present an implantable, MRI-compatible, remotely controlled drug delivery system for minimally invasive interfacing with brain microstructures in freely moving animals. We show that infusions through acutely inserted needles target a region more than twofold larger than that of identical infusions through chronically implanted probes due to reflux and backflow. We characterize the dynamics of in vivo infusions using positron emission tomography techniques. Volumes as small as 167 nL of copper-64 and fludeoxyglucose labeled agents are quantified. We further demonstrate the importance of precise drug volume dosing to neural structures to elicit behavioral effects reliably. Selective modulation of the substantia nigra, a critical node in basal ganglia circuitry, via muscimol infusion induces behavioral changes in a volume-dependent manner, even when the total dose remains constant. Chronic device viability is confirmed up to 1-y implantation in rats. This technology could potentially enable precise investigation of neurological disease pathology in preclinical models, and more efficacious treatment in human patients.
Collapse
|
9
|
The small molecule SI113 synergizes with mitotic spindle poisons in arresting the growth of human glioblastoma multiforme. Oncotarget 2017; 8:110743-110755. [PMID: 29340013 PMCID: PMC5762281 DOI: 10.18632/oncotarget.22500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/29/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest brain tumor. State-of-art GBM therapy often fails to ensure control of a disease characterized by high frequency of recurrences and progression. In search for novel therapeutic approaches, we assayed the effect of compounds from a cancer drug library on the ADF GBM cell line, establishing their elevated sensitivity to mitotic spindle poisons. Our previous work showed that the effectiveness of the spindle poison paclitaxel in inhibiting cancer cell growth was dependent on the expression of RANBP1, a regulatory target of the serine/threonine kinase SGK1. Recently, we developed the small molecule SI113 to inhibit SGK1 activity. Therefore, we explored the outcome of the association between SI113 and selected spindle poisons, finding that these drugs generated a synergistic cytotoxic effect in GBM cells, drastically reducing their viability and clonogenic capabilities in vitro, as well as inhibiting tumor growth in vivo. We also defined the molecular bases of such a synergistic effect. Because SI113 displays low systemic toxicity, yet strong activity in potentiating the effect of radiotherapy in GBM cells, we believe that this drug could be a strong candidate for clinical trials, with the aim to add it to the current GBM therapeutic approaches.
Collapse
|
10
|
Nordling-David MM, Yaffe R, Guez D, Meirow H, Last D, Grad E, Salomon S, Sharabi S, Levi-Kalisman Y, Golomb G, Mardor Y. Liposomal temozolomide drug delivery using convection enhanced delivery. J Control Release 2017; 261:138-146. [DOI: 10.1016/j.jconrel.2017.06.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
|