1
|
Boumali R, Urli L, Naim M, Soualmia F, Kinugawa K, Petropoulos I, El Amri C. Kallikrein-related peptidase's significance in Alzheimer's disease pathogenesis: A comprehensive survey. Biochimie 2024; 226:77-90. [PMID: 38608749 DOI: 10.1016/j.biochi.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Alzheimer's disease (AD) and related dementias constitute an important global health challenge. Detailed understanding of the multiple molecular mechanisms underlying their pathogenesis constitutes a clue for the management of the disease. Kallikrein-related peptidases (KLKs), a lead family of serine proteases, have emerged as potential biomarkers and therapeutic targets in the context of AD and associated cognitive decline. Hence, KLKs were proposed to display multifaceted impacts influencing various aspects of neurodegeneration, including amyloid-beta aggregation, tau pathology, neuroinflammation, and synaptic dysfunction. We propose here a comprehensive survey to summarize recent findings, providing an overview of the main kallikreins implicated in AD pathophysiology namely KLK8, KLK6 and KLK7. We explore the interplay between KLKs and key AD molecular pathways, shedding light on their significance as potential biomarkers for early disease detection. We also discuss their pertinence as therapeutic targets for disease-modifying interventions to develop innovative therapeutic strategies aimed at halting or ameliorating the progression of AD and associated dementias.
Collapse
Affiliation(s)
- Rilès Boumali
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Laureline Urli
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Meriem Naim
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Feryel Soualmia
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Kiyoka Kinugawa
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France; AP-HP, Paris, France; Charles-Foix Hospital, Functional Exploration Unit for Older Patients, 94200 Ivry-sur-Seine, France
| | - Isabelle Petropoulos
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France.
| | - Chahrazade El Amri
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France.
| |
Collapse
|
2
|
Gao X, Chen Y, Cheng P. Unlocking the potential of exercise: harnessing myokines to delay musculoskeletal aging and improve cognitive health. Front Physiol 2024; 15:1338875. [PMID: 39286235 PMCID: PMC11402696 DOI: 10.3389/fphys.2024.1338875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives This review aims to summarize the common physiological mechanisms associated with both mild cognitive impairment (MCI) and musculoskeletal aging while also examining the relevant literature on how exercise regulation influences the levels of shared myokines in these conditions. Methods The literature search was conducted via databases such as PubMed (including MEDLINE), EMBASE, and the Cochrane Library of Systematic Reviews. The searches were limited to full-text articles published in English, with the most recent search conducted on 16 July 2024. The inclusion criteria for this review focused on the role of exercise and myokines in delaying musculoskeletal aging and enhancing cognitive health. The Newcastle‒Ottawa Scale (NOS) was utilized to assess the quality of nonrandomized studies, and only those studies with moderate to high quality scores, as per these criteria, were included in the final analysis. Data analysis was performed through narrative synthesis. Results The primary outcome of this study was the evaluation of myokine expression, which included IL-6, IGF-1, BDNF, CTSB, irisin, and LIF. A total of 16 studies involving 633 older adults met the inclusion criteria. The current exercise modalities utilized in these studies primarily consisted of resistance training and moderate-to high-intensity cardiovascular exercise. The types of interventions included treadmill training, elastic band training, aquatic training, and Nordic walking training. The results indicated that both cardiovascular exercise and resistance exercise could delay musculoskeletal aging and enhance the cognitive functions of the brain. Additionally, different types and intensities of exercise exhibited varying effects on myokine expression. Conclusion Current evidence suggests that exercise mediates the secretion of specific myokines, including IL-6, IGF-1, BDNF, CTSB, irisin, and LIF, which establish self-regulatory circuits between the brain and muscle. This interaction enhances cognitive function in the brain and improves skeletal muscle function. Future research should focus on elucidating the exact mechanisms that govern the release of myokines, the correlation between the intensity of exercise and the secretion of these myokines, and the distinct processes by which myokines influence the interaction between muscle and the brain.
Collapse
Affiliation(s)
- Xing Gao
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Yiyan Chen
- Department of Physical Education, Suzhou Vocational University, Suzhou, China
| | - Peng Cheng
- Department of Basic Teaching, Suzhou City University, Suzhou, China
| |
Collapse
|
3
|
Chen Y, Al-Nusaif M, Li S, Tan X, Yang H, Cai H, Le W. Progress on early diagnosing Alzheimer's disease. Front Med 2024; 18:446-464. [PMID: 38769282 PMCID: PMC11391414 DOI: 10.1007/s11684-023-1047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects both cognition and non-cognition functions. The disease follows a continuum, starting with preclinical stages, progressing to mild cognitive and behavioral impairment, ultimately leading to dementia. Early detection of AD is crucial for better diagnosis and more effective treatment. However, the current AD diagnostic tests of biomarkers using cerebrospinal fluid and/or brain imaging are invasive or expensive, and mostly are still not able to detect early disease state. Consequently, there is an urgent need to develop new diagnostic techniques with higher sensitivity and specificity during the preclinical stages of AD. Various non-cognitive manifestations, including behavioral abnormalities, sleep disturbances, sensory dysfunctions, and physical changes, have been observed in the preclinical AD stage before occurrence of notable cognitive decline. Recent research advances have identified several biofluid biomarkers as early indicators of AD. This review focuses on these non-cognitive changes and newly discovered biomarkers in AD, specifically addressing the preclinical stages of the disease. Furthermore, it is of importance to explore the potential for developing a predictive system or network to forecast disease onset and progression at the early stage of AD.
Collapse
Affiliation(s)
- Yixin Chen
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Xiang Tan
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huijia Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
4
|
Krizanovic N, Jokisch M, Jöckel KH, Schmidt B, Stang A, Schramm S. Sex-Specific Differences in Serum Kallikrein-8 (KLK8): An Exploratory Study. J Alzheimers Dis 2024; 100:495-507. [PMID: 38995781 DOI: 10.3233/jad-240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Background There are indications for sex-specific differences regarding the association between kallikrein-8 (KLK8) and cognitive impairment in early stages of Alzheimer's disease for which KLK8 may be an early blood-based biomarker. These may be due to different levels of sex hormones. To correctly interpret KLK8 blood concentrations, sex-specific analyses are needed. Objective The aim of our exploratory study was to investigate sex-specific differences in blood-based KLK8 in participants of the population-based Heinz Nixdorf Recall study with different cognitive status and the association between KLK8 and sex hormones. Methods In 290 participants (45% women, 69.7±7.4 years (mean±SD)) we investigated sex-specific serum KLK8 differences between cognitively unimpaired (CU, 43%) and cognitively impaired (CI) participants and the association between KLK8 and dehydroepiandrosteronsulfate (DHEAS), estradiol and testosterone, using adjusted multiple linear regression. Results The mean±SD KLK8 was similar for CU men (808.1±729.6 pg/ml) and women (795.9±577.7 pg/ml); adjusted mean-difference [95%-CI]: -95.3 [-324.1;133.5] pg/ml. KLK8 was lower in CI women (783.5±498.7 pg/ml) than men (1048.4±829 pg/ml); -261 [-493.1; -29] pg/ml. In men but not women, there was a weak indication for a positive slope between estradiol (11.9 [-0.4;24.3] pg/ml) and DHEAS (1.4 [-0.5;3.3] pg/ml) with KLK8, while testosterone had no impact. Conclusions The results suggested a different role for KLK8 in the development of cognitive impairment in men and women, potentially influenced by sex hormones. To use blood KLK8 as an early biomarker, further research on hormonal regulation of KLK8 expression is needed as a part of the investigation of the KLK8 involvement in cognitive impairment and Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Nela Krizanovic
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martha Jokisch
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Stang
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Sara Schramm
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Xu DH, Du JK, Liu SY, Zhang H, Yang L, Zhu XY, Liu YJ. Upregulation of KLK8 contributes to CUMS-induced hippocampal neuronal apoptosis by cleaving NCAM1. Cell Death Dis 2023; 14:278. [PMID: 37076499 PMCID: PMC10115824 DOI: 10.1038/s41419-023-05800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Neuronal apoptosis has been well-recognized as a critical mediator in the pathogenesis of depressive disorders. Tissue kallikrein-related peptidase 8 (KLK8), a trypsin-like serine protease, has been implicated in the pathogenesis of several psychiatric disorders. The present study aimed to explore the potential function of KLK8 in hippocampal neuronal cell apoptosis associated with depressive disorders in rodent models of chronic unpredictable mild stress (CUMS)-induced depression. It was found that depression-like behavior in CUMS-induced mice was associated with hippocampal KLK8 upregulation. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency attenuated CUMS-induced depression-like behaviors and hippocampal neuronal apoptosis. In HT22 murine hippocampal neuronal cells and primary hippocampal neurons, adenovirus-mediated overexpression of KLK8 (Ad-KLK8) was sufficient to induce neuron apoptosis. Mechanistically, it was identified that the neural cell adhesion molecule 1 (NCAM1) may associate with KLK8 in hippocampal neurons as KLK8 proteolytically cleaved the NCAM1 extracellular domain. Immunofluorescent staining exhibited decreased NCAM1 in hippocampal sections obtained from mice or rats exposed to CUMS. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency largely prevented CUMS-induced loss of NCAM1 in the hippocampus. Both adenovirus-mediated overexpression of NCAM1 and NCAM1 mimetic peptide rescued KLK8-overexpressed neuron cells from apoptosis. Collectively, this study identified a new pro-apoptotic mechanism in the hippocampus during the pathogenesis of CUMS-induced depression via the upregulation of KLK8, and raised the possibility of KLK8 as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Dan-Hong Xu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
- Department of Physiology, Navy Medical University, Shanghai, 200433, China
| | - Jian-Kui Du
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, 41008, China
| | - Shi-Yu Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
| | - Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Lu Yang
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, 200433, China.
| | - Yu-Jian Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
6
|
Schramm S, Krizanovic N, Roggenbuck U, Jöckel KH, Herring A, Keyvani K, Jokisch M. Blood Kallikrein-8 and Non-Amnestic Mild Cognitive Impairment: An Exploratory Study. J Alzheimers Dis Rep 2023; 7:327-337. [DOI: 10.3233/adr-220073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Blood kallikrein-8 is supposed to be a biomarker for mild cognitive impairment (MCI) due to Alzheimer’s disease (AD), a precursor of AD dementia. Little is known about the association of kallikrein-8 and non-AD type dementias. Objective: To investigate whether blood kallikrein-8 is elevated in individuals with non-amnestic MCI (naMCI), which has a higher probability to progress to a non-AD type dementia, compared with cognitively unimpaired (CU) controls. Methods: We measured blood kallikrein-8 at ten-year follow-up (T2) in 75 cases and 75 controls matched for age and sex who were participants of the population-based Heinz Nixdorf Recall study (baseline: 2000–2003). Cognitive performance was assessed in a standardized manner at five (T1) and ten-year follow-up. Cases were CU or had subjective cognitive decline (SCD) at T1 and had naMCI at T2. Controls were CU at both follow-ups. The association between kallikrein-8 (per 500 pg/ml increase) and naMCI was estimated using conditional logistic regression: odds ratios (OR) and 95% confidence intervals (95% CI) were determined, adjusted for inter-assay variability and freezing duration. Results: Valid kallikrein-8 values were measured in 121 participants (45% cases, 54.5% women, 70.5±7.1 years). In cases, the mean kallikrein-8 was higher than in controls (922±797 pg/ml versus 884±782 pg/ml). Kallikrein-8 was not associated with having naMCI compared to being CU (adjusted; OR: 1.03 [95% CI: 0.80–1.32]). Conclusion: This is the first population-based study that shows that blood kallikrein-8 tends not to be elevated in individuals with naMCI compared with CU. This adds to the evidence of the possible AD specificity of kallikrein-8.
Collapse
Affiliation(s)
- Sara Schramm
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nela Krizanovic
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulla Roggenbuck
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Arne Herring
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martha Jokisch
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Cui SS, Jiang QW, Chen SD. Sex difference in biological change and mechanism of Alzheimer’s disease: from macro- to micro-landscape. Ageing Res Rev 2023; 87:101918. [PMID: 36967089 DOI: 10.1016/j.arr.2023.101918] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and numerous studies reported a higher prevalence and incidence of AD among women. Although women have longer lifetime, longevity does not wholly explain the higher frequency and lifetime risk in women. It is important to understand sex differences in AD pathophysiology and pathogenesis, which could provide foundation for future clinical AD research. Here, we reviewed the most recent and relevant literature on sex differences in biological change of AD from macroscopical neuroimaging to microscopical pathologic change (neuronal degeneration, synaptic dysfunction, amyloid-beta and tau accumulation). We also discussed sex differences in cellular mechanisms related to AD (neuroinflammation, mitochondria dysfunction, oxygen stress, apoptosis, autophagy, blood-brain-barrier dysfunction, gut microbiome alteration, bulk and single cell/nucleus omics) and possible causes underlying these differences including sex-chromosome, sex hormone and hypothalamic-pituitary- adrenal (HPA) axis effects.
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian-Wen Jiang
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
8
|
Shiosaka S. Kallikrein 8: A key sheddase to strengthen and stabilize neural plasticity. Neurosci Biobehav Rev 2022; 140:104774. [PMID: 35820483 DOI: 10.1016/j.neubiorev.2022.104774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Neural networks are modified and reorganized throughout life, even in the matured brain. Synapses in the networks form, change, or disappear dynamically in the plasticity state. The pre- and postsynaptic signaling, transmission, and structural dynamics have been studied considerably well. However, not many studies have shed light on the events in the synaptic cleft and intercellular space. Neural activity-dependent protein shedding is a phenomenon in which (1) presynaptic excitation evokes secretion or activation of sheddases, (2) sheddases are involved not only in cleavage of membrane- or matrix-bound proteins but also in mechanical modulation of cell-to-cell connectivity, and (3) freed activity domains of protein factors play a role in receptor-mediated or non-mediated biological actions. Kallikrein 8/neuropsin (KLK8) is a kallikrein family serine protease rich in the mammalian limbic brain. Accumulated evidence has suggested that KLK8 is an important modulator of neural plasticity and consequently, cognition. Insufficiency, as well as excess of KLK8 may have detrimental effects on limbic functions.
Collapse
Affiliation(s)
- Sadao Shiosaka
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Miyanosaka 3-16-21, Hirakata-shi, Osaka 573-0022, Japan.
| |
Collapse
|
9
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
10
|
Liebert A, Seyedsadjadi N, Pang V, Litscher G, Kiat H. Evaluation of Gender Differences in Response to Photobiomodulation Therapy, Including Laser Acupuncture: A Narrative Review and Implication to Precision Medicine. Photobiomodul Photomed Laser Surg 2022; 40:78-87. [PMID: 34964662 DOI: 10.1089/photob.2021.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: The influence of gender is significant in the manifestation and response to many diseases and in the treatment strategy. Photobiomodulation (PBM) therapy, including laser acupuncture, is an evidence-based treatment and disease prevention modality that has shown promising efficacy for a myriad of chronic and acute diseases. Anecdotal experience and limited clinical trials suggest gender differences exist in treatment outcomes to PBM therapy. There is preliminary evidence that gender may be as important as skin color in the individual response to PBM therapy. Purpose: To conduct a literature search of publications addressing the effects of gender differences in PBM therapy, including laser acupuncture, to provide a narrative review of the findings, and to explore potential mechanisms for the influence of gender. Methods: A narrative review of the literature on gender differences in PBM applications was conducted using key words relating to PBM therapy and gender. Results: A total of 13 articles were identified. Of these articles, 11 have direct experimental investigations into the response difference in gender for PBM, including laser acupuncture. A variety of cadaver, human, and experimental studies demonstrated results that gender effects were significant in PBM outcome responses, including differences in tendon structural and mechanical outcomes, and mitochondrial gene expression. One cadaver experiment showed that gender was more important than skin tone. The physiologic mechanisms directing gender differences are explored and postulated. Conclusions: The review suggests that to address the requirements of a proficient precision medicine-based strategy, it is important for PBM therapy to consider gender in its treatment plan and dosing prescription. Further research is warranted to determine the correct dose for optimal gender treatment, including gender-specific treatment plans to improve outcomes, taking into account wavelength, energy exposure, intensity, and parameters related to the deliverance of treatment to each anatomical location.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Research and Governance, Adventist Hospital Group, Wahroonga, Australia.,SYMBYX Pty Ltd., Artarmon, Australia
| | - Neda Seyedsadjadi
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | - Gerhard Litscher
- Traditional Chinese Medicine, Research Center Graz, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, and Research Unit for Complementary and Integrative Laser Medicine, Medical University of Graz, Graz, Austria
| | - Hosen Kiat
- Cardiac Health Institute, Sydney, Australia.,Faculty of Medicine, University of NSW, Kensington, Australia.,Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
11
|
The Beneficial Role of Natural Endocrine Disruptors: Phytoestrogens in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3961445. [PMID: 34527172 PMCID: PMC8437597 DOI: 10.1155/2021/3961445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with a growing incidence rate primarily among the elderly. It is a neurodegenerative, progressive disorder leading to significant cognitive loss. Despite numerous pieces of research, no cure for halting the disease has been discovered yet. Phytoestrogens are nonestradiol compounds classified as one of the endocrine-disrupting chemicals (EDCs), meaning that they can potentially disrupt hormonal balance and result in developmental and reproductive abnormalities. Importantly, phytoestrogens are structurally, chemically, and functionally akin to estrogens, which undoubtedly has the potential to be detrimental to the organism. What is intriguing, although classified as EDCs, phytoestrogens seem to have a beneficial influence on Alzheimer's disease symptoms and neuropathologies. They have been observed to act as antioxidants, improve visual-spatial memory, lower amyloid-beta production, and increase the growth, survival, and plasticity of brain cells. This review article is aimed at contributing to the collective understanding of the role of phytoestrogens in the prevention and treatment of Alzheimer's disease. Importantly, it underlines the fact that despite being EDCs, phytoestrogens and their use can be beneficial in the prevention of Alzheimer's disease.
Collapse
|
12
|
Zhou Y, Xu B, Yu H, Zhao W, Song X, Liu Y, Wang K, Peacher N, Zhao X, Zhang HT. Biochanin A Attenuates Ovariectomy-Induced Cognition Deficit via Antioxidant Effects in Female Rats. Front Pharmacol 2021; 12:603316. [PMID: 33815102 PMCID: PMC8010695 DOI: 10.3389/fphar.2021.603316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Impairment of memory and cognition is one of the major symptoms in women with postmenopausal disorders due to estrogen deficiency, which accounts for the much higher prevalence of Alzheimer’s disease in females. Biochanin A (BCA), a natural phytoestrogen, has been reported to protect neurons against ischemic brain injury. However, the neuroprotective effects of BCA in the postmenopausal-like model of ovariectomized (OVX) rats remain to be investigated. Methods: All the rats except for the sham group underwent the resection of bilateral ovaries. Seven days after the OVX surgery, rats were randomly divided into six groups: sham, OVX, OVX + BCA (5 mg/kg), OVX + BCA (20 mg/kg), OVX + BCA (60 mg/kg), and OVX + estradiol (E2; 0.35 mg/kg), which were administrated daily by gavage for 12 weeks. Learning and memory were examined using the Morris water-maze test before the end of the experiment. Morphological changes of the rat hippocampus were observed by HE staining and electron microscopy. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in the hippocampus were measured. The effect of BCA on cell viability was measured in the presence of hydrogen peroxide (H2O2) using CCK8. Flow cytometry was used to measure neuronal apoptosis and reactive oxygen species (ROS) induced by H2O2. Expression of Bcl-2, Bax, and Caspase-3 was determined by Western blotting using hippocampal tissues and primary cultures of hippocampal neurons. Results: Chronic treatment with BCA mimicked the ability of E2 to reverse the deficit of learning and memory in the Morris water-maze test in OVX rats. BCA normalized OVX-induced morphological changes as revealed by HE staining and electron microscopy. In addition, BCA significantly decreased the levels of MDA, the biomarker of oxidative damage, and increased the activity of the intracellular antioxidant enzymes SOD and GSH-Px in OVX rats. Further, in primary cultures of hippocampal neurons, BCA reversed H2O2-induced decreases in cell viability and accumulation of ROS. Finally, BCA reversed OVX- or H2O2-induced increases in Bax and Caspase-3 and decreases in Bcl-2 in the hippocampus and primary cultures of hippocampal neurons. Conclusion: These results suggest that BCA improves memory through its neuroprotective properties in the brain under the circumstance of estrogen deficiency and can be used for treatment of memory loss in postmenopausal women.
Collapse
Affiliation(s)
- Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Bingbing Xu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Haiyang Yu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Wei Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Xinxin Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yan Liu
- The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Kainan Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Nikoli Peacher
- Departments of Neuroscience and Behavioral Medicine and Psychiatry, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Xiaomin Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine and Psychiatry, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
13
|
Herring A, Kurapati NK, Krebs S, Grammon N, Scholz LM, Voss G, Miah MR, Budny V, Mairinger F, Haase K, Teuber-Hanselmann S, Dobersalske C, Schramm S, Jöckel KH, Münster Y, Keyvani K. Genetic knockdown of Klk8 has sex-specific multi-targeted therapeutic effects on Alzheimer's pathology in mice. Neuropathol Appl Neurobiol 2021; 47:611-624. [PMID: 33341972 DOI: 10.1111/nan.12687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023]
Abstract
AIMS Previous work in our lab has identified the protease kallikrein-8 (KLK8) as a potential upstream mover in the pathogenesis of Alzheimer's disease (AD). We showed pathologically elevated levels of KLK8 in the cerebrospinal fluid and blood of patients with mild cognitive impairment or dementia due to AD, and in brains of patients and transgenic CRND8 (TgCRND8) mice in incipient stages of the disease. Furthermore, short-term antibody-mediated KLK8 inhibition in moderate stage disease alleviated AD pathology in female mice. However, it remains to be shown whether long-term reversal of KLK8 overexpression can also counteract AD. Therefore, the effects of genetic Klk8-knockdown were determined in TgCRND8 mice. METHODS The effects of heterozygous ablation of murine Klk8 (mKlk8) gene on AD pathology of both sexes were examined by crossbreeding TgCRND8 [hAPP+/-] with mKlk8-knockdown [mKlk8+/-] mice resulting in animals with or without AD pathology which revealed pathologically elevated or normal KLK8 levels. RESULTS mKlk8-knockdown had negligible effects on wildtype animals but led to significant decline of amyloid beta (Aβ) and tau pathology as well as an improvement of structural neuroplasticity in a sex-specific manner in transgenics. These changes were mediated by a shift to non-amyloidogenic cleavage of the human amyloid precursor protein (APP), recovery of the neurovascular unit and maintaining microglial metabolic fitness. Mechanistically, Klk8-knockdown improved Aβ phagocytosis in primary glia and Aβ resistance in primary neurons. Most importantly, transgenic mice revealed less anxiety and a better memory performance. CONCLUSIONS These results reinforce the potential of KLK8 as a therapeutic target in AD.
Collapse
Affiliation(s)
- Arne Herring
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Nirup K Kurapati
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Sofia Krebs
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Nils Grammon
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Luisa M Scholz
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Gerrit Voss
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Muhammad R Miah
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Vanessa Budny
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Fabian Mairinger
- Institute of Pathology, University of Duisburg-Essen, Essen, Germany
| | - Katharina Haase
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | | | - Celia Dobersalske
- DKFZ-Division of Translational Neurooncology, West German Cancer Center, German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sara Schramm
- Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Yvonne Münster
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
14
|
Mella C, Figueroa CD, Otth C, Ehrenfeld P. Involvement of Kallikrein-Related Peptidases in Nervous System Disorders. Front Cell Neurosci 2020; 14:166. [PMID: 32655372 PMCID: PMC7324807 DOI: 10.3389/fncel.2020.00166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Kallikrein-related peptidases (KLKs) are a family of serine proteases that when dysregulated may contribute to neuroinflammation and neurodegeneration. In the present review article, we describe what is known about their physiological and pathological roles with an emphasis on KLK6 and KLK8, two KLKs that are highly expressed in the adult central nervous system (CNS). Altered expression and activity of KLK6 have been linked to brain physiology and the development of multiple sclerosis. On the other hand, altered levels of KLK6 in the brain and serum of people affected by Alzheimer's disease and Parkinson's disease have been documented, pointing out to its function in amyloid metabolism and development of synucleinopathies. People who have structural genetic variants of KLK8 can suffer mental illnesses such as intellectual and learning disabilities, seizures, and autism. Increased expression of KLK8 has also been implicated in schizophrenia, bipolar disorder, and depression. Also, we discuss the possible link that exists between KLKs activity and certain viral infections that can affect the nervous system. Although little is known about the exact mechanisms that mediate KLKs function and their participation in neuroinflammatory and neurodegenerative disorders will open a new field to develop novel therapies to modulate their levels and/or activity and their harmful effects on the CNS.
Collapse
Affiliation(s)
- Cinthia Mella
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de Chile, Valdivia, Chile
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D. Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carola Otth
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
15
|
Bukowski L, Chernomorchenko AMF, Starnawska A, Mors O, Staunstrup NH, Børglum AD, Qvist P. Neuropsin in mental health. J Physiol Sci 2020; 70:26. [PMID: 32414324 PMCID: PMC10717651 DOI: 10.1186/s12576-020-00753-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/06/2020] [Indexed: 02/02/2023]
Abstract
Neuropsin is a brain-expressed extracellular matrix serine protease that governs synaptic plasticity through activity-induced proteolytic cleavage of synaptic proteins. Its substrates comprise several molecules central to structural synaptic plasticity, and studies in rodents have documented its role in cognition and the behavioral and neurobiological response to stress. Intriguingly, differential usage of KLK8 (neuropsin gene) splice forms in the fetal and adult brain has only been reported in humans, suggesting that neuropsin may serve a specialized role in human neurodevelopment. Through systematic interrogation of large-scale genetic data, we review KLK8 regulation in the context of mental health and provide a summary of clinical and preclinical evidence supporting a role for neuropsin in the pathogenesis of mental illness.
Collapse
Affiliation(s)
- Lina Bukowski
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark
| | - Ana M F Chernomorchenko
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark
| | - Anna Starnawska
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Mors
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Nicklas H Staunstrup
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark.
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Anders D Børglum
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Per Qvist
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Sahab-Negah S, Hajali V, Moradi HR, Gorji A. The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer's Disease. Cell Mol Neurobiol 2020; 40:283-299. [PMID: 31502112 DOI: 10.1007/s10571-019-00733-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is described as cognitive and memory impairments with a sex-related epidemiological profile, affecting two times more women than men. There is emerging evidence that alternations in the hippocampal neurogenesis occur at the early stage of AD. Therapies that may effectively slow, stop, or regenerate the dying neurons in AD are being extensively investigated in the last few decades, but none has yet been found to be effective. The regulation of endogenous neurogenesis is one of the main therapeutic targets for AD. Mounting evidence indicates that the neurosteroid estradiol (17β-estradiol) plays a supporting role in neurogenesis, neuronal activity, and synaptic plasticity of AD. This effect may provide preventive and/or therapeutic approaches for AD. In this article, we discuss the molecular mechanism of potential estradiol modulatory action on endogenous neurogenesis, synaptic plasticity, and cognitive function in AD.
Collapse
Affiliation(s)
- Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Vahid Hajali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Moradi
- Histology and Embryology Group, Basic Science Department, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, Germany.
| |
Collapse
|
17
|
Inhibition of excessive kallikrein-8 improves neuroplasticity in Alzheimer's disease mouse model. Exp Neurol 2020; 324:113115. [DOI: 10.1016/j.expneurol.2019.113115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/02/2019] [Accepted: 11/12/2019] [Indexed: 01/24/2023]
|
18
|
Estrogen protects neuroblastoma cell from amyloid-β 42 (Aβ42)-induced apoptosis via TXNIP/TRX axis and AMPK signaling. Neurochem Int 2020; 135:104685. [PMID: 31931042 DOI: 10.1016/j.neuint.2020.104685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD), a massive challenge to global health, is featured with the extracellular plaques made up of amyloid-β 42 (Aβ42) and the intracellular neurofibrillary pathology composed of the microtubule-associated protein tau. Women seem to have a higher vulnerability to AD. In the present study, we identified Thioredoxin-interacting protein (TXNIP) as a specifically highly-expressed gene in the hippocampus in female AD patients by bioinformatics analysis. Consistently, in the hippocampus in female AD mice, apoptosis and TXNIP expression were enhanced while TRX expression was suppressed. In Aβ42-stimulated SH-SY5Y cells, the administration of estradiol significantly rescued Aβ42-suppressed cell viability and protein level of TRX while inhibited Aβ42-induced increases in ROS production, cell apoptosis, ΔΨm, and the protein levels of PERK, IREα, and TXNIP, further confirming the potential role of estrogen in AD progression and the involvement of TXNIP/TRX axis. Furthermore, the protective effects of estradiol against Aβ42-induced in vitro neurotoxicity on SH-SY5Y cells could be significantly reversed by AMPK inhibitor, Compound C, indicating that estradiol could improve Aβ42-induced AD via TXNIP/TRX and AMPK signaling. In summary, we demonstrated the cellular function of estradiol on Aβ42-induced in vitro neurotoxicity on SH-SY5Y cells and a novel mechanism of TXNIP/TRX axis involved in estradiol function via AMPK signaling.
Collapse
|
19
|
Teuber-Hanselmann S, Rekowski J, Vogelgsang J, von Arnim C, Reetz K, Stang A, Jöckel KH, Wiltfang J, Esselmann H, Otto M, Tumani H, Herring A, Keyvani K. CSF and blood Kallikrein-8: a promising early biomarker for Alzheimer's disease. J Neurol Neurosurg Psychiatry 2020; 91:40-48. [PMID: 31371645 PMCID: PMC6952834 DOI: 10.1136/jnnp-2019-321073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 11/05/2022]
Abstract
OBJECTIVE There is still an urgent need for supportive minimally invasive and cost-effective biomarkers for early diagnosis of Alzheimer's disease (AD). Previous work in our lab has identified Kallikrein-8 (KLK8) as a potential candidate since it shows an excessive increase in human brain in preclinical disease stages. The aim of this study was to evaluate the diagnostic performance of cerebrospinal fluid (CSF) and blood KLK8 for AD and mild cognitive impairment (MCI) due to AD. METHODS In this multi-centre trans-sectional study, clinical and laboratory data as well as CSF and/or blood serum samples of 237 participants, including 98 patients with mild AD, 21 with MCI due to AD and 118 controls were collected. CSF and/or serum KLK8 levels were analysed by ELISA. The diagnostic accuracy of KLK8 in CSF and blood was determined using receiver operating characteristic (ROC) analyses and compared with that of CSF core biomarkers Aβ42, P-tau and T-tau. RESULTS The diagnostic accuracy of CSF KLK8 was as good as that of core CSF biomarkers for AD (area under the curve (AUC)=0.89) and in case of MCI (AUC=0.97) even superior to CSF Aβ42. Blood KLK8 was a similarly strong discriminator for MCI (AUC=0.94) but slightly weaker for AD (AUC=0.83). CONCLUSIONS This is the first study to demonstrate the potential clinical utility of blood and CSF KLK8 as a biomarker for incipient AD. Future prospective validation studies are warranted.
Collapse
Affiliation(s)
- Sarah Teuber-Hanselmann
- Institute of Neuropathology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Jan Rekowski
- Institute of Medical Informatics, Biometry and Epidemiology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center, Gottingen, Germany
| | - Christine von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany.,Clinic for Neurogeriatrics and Neurological Rehabilitation, RKU-University and Rehabilitation Hospital Ulm, Ulm, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Andreas Stang
- Center of Clinical Epidemiology, c/o Institute of Medical Informatics, Biometry and Epidemiology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, Gottingen, Germany.,iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Herrmann Esselmann
- Department of Psychiatry and Psychotherapy, University Medical Center, Gottingen, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Arne Herring
- Institute of Neuropathology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
20
|
Konar A, Gupta R, Shukla RK, Maloney B, Khanna VK, Wadhwa R, Lahiri DK, Thakur MK. M1 muscarinic receptor is a key target of neuroprotection, neuroregeneration and memory recovery by i-Extract from Withania somnifera. Sci Rep 2019; 9:13990. [PMID: 31570736 PMCID: PMC6769020 DOI: 10.1038/s41598-019-48238-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Memory loss is one of the most tragic symptoms of Alzheimer's disease. Our laboratory has recently demonstrated that 'i-Extract' of Ashwagandha (Withania somnifera) restores memory loss in scopolamine (SC)-induced mice. The prime target of i-Extract is obscure. We hypothesize that i-Extract may primarily target muscarinic subtype acetylcholine receptors that regulate memory processes. The present study elucidates key target(s) of i-Extract via cellular, biochemical, and molecular techniques in a relevant amnesia mouse model and primary hippocampal neuronal cultures. Wild type Swiss albino mice were fed i-Extract, and hippocampal cells from naïve mice were treated with i-Extract, followed by muscarinic antagonist (dicyclomine) and agonist (pilocarpine) treatments. We measured dendritic formation and growth by immunocytochemistry, kallikrein 8 (KLK8) mRNA by reverse transcription polymerase chain reaction (RT-PCR), and levels of KLK8 and microtubule-associated protein 2, c isoform (MAP2c) proteins by western blotting. We performed muscarinic receptor radioligand binding. i-Extract stimulated an increase in dendrite growth markers, KLK8 and MAP2. Scopolamine-mediated reduction was significantly reversed by i-Extract in mouse cerebral cortex and hippocampus. Our study identified muscarinic receptor as a key target of i-Extract, providing mechanistic evidence for its clinical application in neurodegenerative cognitive disorders.
Collapse
Affiliation(s)
- Arpita Konar
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
| | - Richa Gupta
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
- Devision of ECD, Indian Council of Medical Research, New Delhi, 110029, India
| | - Rajendra K Shukla
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
- Department of Biochemistry, Autonomous State Medical College, Bahraich, Utter Pradesh, 271801, India
| | - Bryan Maloney
- Departments of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN-46202, USA
| | - Vinay K Khanna
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Renu Wadhwa
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8562, Japan.
| | - Debomoy K Lahiri
- Departments of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, IN-46202, USA.
- Departments of Medical and Molecular Genetics, Indiana Alzheimer Disesae Center, Indiana University School of Medicine, Indianapolis, IN-46202, USA.
| | - Mahendra K Thakur
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
21
|
Goldhardt O, Warnhoff I, Yakushev I, Begcevic I, Förstl H, Magdolen V, Soosaipillai A, Diamandis E, Alexopoulos P, Grimmer T. Kallikrein-related peptidases 6 and 10 are elevated in cerebrospinal fluid of patients with Alzheimer's disease and associated with CSF-TAU and FDG-PET. Transl Neurodegener 2019; 8:25. [PMID: 31467673 PMCID: PMC6712703 DOI: 10.1186/s40035-019-0168-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background Alterations in the expression of human kallikrein-related peptidases (KLKs) have been described in patients with Alzheimer’s disease (AD). We elucidated the suitability of KLK6, KLK8 and KLK10 to distinguish AD from NC and explored associations with established AD biomarkers. Methods KLK levels in cerebrospinal fluid (CSF), as determined by ELISA, were compared between 32 AD patients stratified to A/T/(N) system with evidence for amyloid pathology and of 23 normal controls with normal AD biomarkers. Associations between KLK levels and clinical severity, CSF and positron emission tomography (PET) based AD biomarkers were tested for. Results Levels of KLK6 and KLK10 were significantly increased in AD. KLK6 differed significantly between AD A+/T+/N+ and AD A+/T−/N+ or NC with an AUC of 0.922. CSF pTau and tTau levels were significantly associated with KLK6 in AD. Conclusions KLK6 deserves further investigations as a potential biomarker of Tau pathology in AD. Electronic supplementary material The online version of this article (10.1186/s40035-019-0168-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oliver Goldhardt
- 1Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675 Munich, Germany
| | - Inanna Warnhoff
- 1Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675 Munich, Germany
| | - Igor Yakushev
- 2Department of Nuclear Medicine, TUM-NIC, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675 Munich, Germany
| | - Ilijana Begcevic
- 5Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Hans Förstl
- 1Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675 Munich, Germany
| | - Viktor Magdolen
- 3Department of Obstetrics & Gynecology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675 Munich, Germany
| | - Antoninus Soosaipillai
- 4Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 60 Murray St., Toronto, Ontario M5T 3L9 Canada
| | - Eleftherios Diamandis
- 4Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 60 Murray St., Toronto, Ontario M5T 3L9 Canada.,5Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Panagiotis Alexopoulos
- 1Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675 Munich, Germany.,6Department of Psychiatry, University hospital of Rion, University of Patras, 26500 Rion Patras, Patras, Greece
| | - Timo Grimmer
- 1Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
22
|
Yamaguchi-Kabata Y, Morihara T, Ohara T, Ninomiya T, Takahashi A, Akatsu H, Hashizume Y, Hayashi N, Shigemizu D, Boroevich KA, Ikeda M, Kubo M, Takeda M, Tsunoda T. Integrated analysis of human genetic association study and mouse transcriptome suggests LBH and SHF genes as novel susceptible genes for amyloid-β accumulation in Alzheimer's disease. Hum Genet 2018; 137:521-533. [PMID: 30006735 PMCID: PMC6061045 DOI: 10.1007/s00439-018-1906-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/06/2018] [Indexed: 12/04/2022]
Abstract
Alzheimer's disease (AD) is a common neurological disease that causes dementia in humans. Although the reports of associated pathological genes have been increasing, the molecular mechanism leading to the accumulation of amyloid-β (Aβ) in human brain is still not well understood. To identify novel genes that cause accumulation of Aβ in AD patients, we conducted an integrative analysis by combining a human genetic association study and transcriptome analysis in mouse brain. First, we examined genome-wide gene expression levels in the hippocampus, comparing them to amyloid Aβ level in mice with mixed genetic backgrounds. Next, based on a GWAS statistics obtained by a previous study with human AD subjects, we obtained gene-based statistics from the SNP-based statistics. We combined p values from the two types of analysis across orthologous gene pairs in human and mouse into one p value for each gene to evaluate AD susceptibility. As a result, we found five genes with significant p values in this integrated analysis among the 373 genes analyzed. We also examined the gene expression level of these five genes in the hippocampus of independent human AD cases and control subjects. Two genes, LBH and SHF, showed lower expression levels in AD cases than control subjects. This is consistent with the gene expression levels of both the genes in mouse which were negatively correlated with Aβ accumulation. These results, obtained from the integrative approach, suggest that LBH and SHF are associated with the AD pathogenesis.
Collapse
Affiliation(s)
- Yumi Yamaguchi-Kabata
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Takashi Morihara
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, 565-8565, Japan
| | - Hiroyasu Akatsu
- Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, 467-8601, Japan
- Institute of Neuropathology, Fukushimura Hospital, Toyohashi-shi, Aichi, 441-8124, Japan
| | - Yoshio Hashizume
- Institute of Neuropathology, Fukushimura Hospital, Toyohashi-shi, Aichi, 441-8124, Japan
| | - Noriyuki Hayashi
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Daichi Shigemizu
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Division of Genomic Medicine, Medical Genome Center, National Center for Geriastrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Keith A Boroevich
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Masatoshi Takeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|