1
|
Carruthers ER, Grimsey NL. Cannabinoid CB 2 receptor orthologues; in vitro function and perspectives for preclinical to clinical translation. Br J Pharmacol 2024; 181:2247-2269. [PMID: 37349984 DOI: 10.1111/bph.16172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Cannabinoid CB2 receptor agonists are in development as therapeutic agents, including for immune modulation and pain relief. Despite promising results in rodent preclinical studies, efficacy in human clinical trials has been marginal to date. Fundamental differences in ligand engagement and signalling responses between the human CB2 receptor and preclinical model species orthologues may contribute to mismatches in functional outcomes. This is a tangible possibility for the CB2 receptor in that there is a relatively large degree of primary amino acid sequence divergence between human and rodent. Here, we summarise CB2 receptor gene and protein structure, assess comparative molecular pharmacology between CB2 receptor orthologues, and review the current status of preclinical to clinical translation for drugs targeted at the CB2 receptor, focusing on comparisons between human, mouse and rat receptors. We hope that raising wider awareness of, and proposing strategies to address, this additional challenge in drug development will assist in ongoing efforts toward successful therapeutic translation of drugs targeted at the CB2 receptor. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Emma R Carruthers
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
2
|
Hwang YN, Kwon IS, Park JH, Na HH, Kwon TH, Park JS, Kim KC. Cell death induction and intracellular vesicle formation in human colorectal cancer cells treated with Δ 9-Tetrahydrocannabinol. Genes Genomics 2023; 45:1463-1474. [PMID: 37837516 PMCID: PMC10682224 DOI: 10.1007/s13258-023-01466-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Δ9-Tetrahydrocannabinol (Δ9-THC) is a principal psychoactive extract of Cannabis sativa and has been traditionally used as palliative medicine for neuropathic pain. Cannabidiol (CBD), an extract of hemp species, has recently attracted increased attention as a cancer treatment, but Δ9-THC is also requiring explored pharmacological application. OBJECTIVE This study evaluated the pharmacological effects of Δ9-THC in two human colorectal cancer cell lines. We investigated whether Δ9-THC treatment induces cell death in human colorectal cancer cells. METHODS We performed an MTT assay to determine the pharmacological concentration of Δ9-THC. Annxein V and Western blot analysis confirmed that Δ9-THC induced apoptosis in colorectal cancer cells. Metabolic activity was evaluated using MitoTracker staining and ATP determination. We investigated vesicle formation by Δ9-THC treatment using GW9662, known as a PPARγ inhibitor. RESULTS The MTT assay showed that treatment with 40 μM Δ9-THC and above inhibited the proliferation of colorectal cancer cells. Multiple intracytoplasmic vesicles were detected upon microscopic observation, and fluorescence-activated cell sorting analysis showed cell death via G1 arrest. Δ9-THC treatment increased the expression of cell death marker proteins, including p53, cleaved PARP-1, RIP1, and RIP3, suggesting that Δ9-THC induced the death of colorectal cancer cells. Δ9-THC treatment also reduced ATP production via changes in Bax and Bcl-2. Δ9-THC regulated intracytoplasmic vesicle formation by modulating the expression of PPARγ and clathrin, adding that antiproliferative activity of Δ9-THC was also affected. CONCLUSION In conclusion, Δ9-THC regulated two functional mechanisms, intracellular vesicle formation and cell death. These findings can help to determine how cannabinoids can be used most effectively to improve the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Yu-Na Hwang
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - In-Seo Kwon
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Ju-Hee Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
- Kangwon Center for System Imaging, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Tae-Hyung Kwon
- Chuncheon Bioindustry Foundation, Chuncheon, Kangwon, 24232, Republic of Korea
| | - Jin-Sung Park
- Korean Pharmacopuncture Institute, Seoul, 07525, Republic of Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea.
- Kangwon Center for System Imaging, Chuncheon, Kangwon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Scott-Dennis M, Rafani FA, Yi Y, Perera T, Harwood CR, Guba W, Rufer AC, Grether U, Veprintsev DB, Sykes DA. Development of a membrane-based Gi-CASE biosensor assay for profiling compounds at cannabinoid receptors. Front Pharmacol 2023; 14:1158091. [PMID: 37637423 PMCID: PMC10450933 DOI: 10.3389/fphar.2023.1158091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/05/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: The cannabinoid receptor (CBR) subtypes 1 (CB1R) and 2 (CB2R) are key components of the endocannabinoid system (ECS), playing a central role in the control of peripheral pain, inflammation and the immune response, with further roles in the endocrine regulation of food intake and energy balance. So far, few medicines targeting these receptors have reached the clinic, suggesting that a better understanding of the receptor signalling properties of existing tool compounds and clinical candidates may open the door to the development of more effective and safer treatments. Both CB1R and CB2R are Gαi protein-coupled receptors but detecting Gαi protein signalling activity reliably and reproducibly is challenging. This is due to the inherent variability in live cell-based assays and restrictions around the use of radioactive [35S]-GTPγS, a favoured technology for developing higher-throughput membrane-based Gαi protein activity assays. Methods: Here, we describe the development of a membrane-based Gαi signalling system, produced from membrane preparations of HEK293TR cells, stably overexpressing CB1R or CB2R, and components of the Gαi-CASE biosensor. This BRET-based system allows direct detection of Gαi signalling in both cells and membranes by monitoring bioluminescence resonance energy transfer (BRET) between the α and the βγ subunits. Cells and membranes were subject to increasing concentrations of reference cannabinoid compounds, with 10 μM furimazine added to generate RET signals, which were detected on a PHERAstar FSX plate reader, then processed using MARS software and analysed in GraphPad PRISM 9.2. Results: In membranes expressing the Gi-CASE biosensor, the cannabinoid ligands profiled were found to show agonist and inverse agonist activity. Agonist activity elicited a decrease in the BRET signal, indicative of receptor activation and G protein dissociation. Inverse agonist activity caused an increase in BRET signal, indicative of receptor inactivation, and the accumulation of inactive G protein. Our membrane-based Gi-CASE NanoBRET system successfully characterised the potency (pEC50) and efficacy (Emax) of CBR agonists and inverse agonists in a 384-well screening format. Values obtained were in-line with whole-cell Gi-CASE assays and consistent with literature values obtained in the GTPγS screening format. Discussion: This novel, membrane-based Gαi protein activation assay is applicable to other Gαi-coupled GPCRs, including orphan receptors, allowing real-time higher-throughput measurements of receptor activation.
Collapse
Affiliation(s)
- Morgan Scott-Dennis
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Fikri A. Rafani
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Yicheng Yi
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Themiya Perera
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Clare R. Harwood
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Wolfgang Guba
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Arne C. Rufer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Dmitry B. Veprintsev
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
- Z7 Biotech Limited, London, United Kingdom
| | - David A. Sykes
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
- Z7 Biotech Limited, London, United Kingdom
| |
Collapse
|
4
|
Tucci P, Brown I, Bewick GS, Pertwee RG, Marini P. The Plant Derived 3-3'-Diindolylmethane (DIM) Behaves as CB 2 Receptor Agonist in Prostate Cancer Cellular Models. Int J Mol Sci 2023; 24:ijms24043620. [PMID: 36835033 PMCID: PMC9962283 DOI: 10.3390/ijms24043620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
3-3'-Diindolylmethane (DIM) is a biologically active dimer derived from the endogenous conversion of indole-3-carbinol (I3C), a naturally occurring glucosinolate found in many cruciferous vegetables (i.e., Brassicaceae). DIM was the first pure androgen receptor antagonist isolated from the Brassicaceae family and has been recently investigated for its potential pharmacological use in prostate cancer prevention and treatment. Interestingly, there is evidence that DIM can also interact with cannabinoid receptors. In this context, by considering the well-known involvement of the endocannabinoid system in prostate cancer, we have pharmacologically characterized the properties of DIM on both CB1 and CB2 cannabinoid receptors in two human prostate cancer cell lines: PC3 (androgen-independent/androgen receptor negative) and LNCaP (androgen-dependent). In the PC3 cell line, DIM was able to activate CB2 receptors and potentially associated apoptotic pathways. On the other hand, although DIM was also able to activate CB2 receptors in the LNCaP cell line, no apoptotic effects were observed. Our evidence confirms that DIM is a CB2 receptor ligand and, moreover, it has a potential anti-proliferative effect on androgen-independent/androgen receptor-negative prostate cancer cells.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| | - Iain Brown
- Division of Applied Medicine, School of Medicine and Dentistry, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Guy S. Bewick
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Roger G. Pertwee
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Pietro Marini
- Institute of Education in Healthcare and Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
5
|
Marini P, Cascio MG, Pertwee RG. Cyclic AMP Assay Using Human Cannabinoid CB 2 Receptor-Transfected Cells. Methods Mol Biol 2023; 2576:171-179. [PMID: 36152185 DOI: 10.1007/978-1-0716-2728-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cyclic AMP assay is a functional assay that is commonly used to determine the pharmacological behavior (agonists, antagonists, and inverse agonists) of G-protein coupled receptor ligands. Here, we describe the cyclic AMP assay that is carried out with commercially available nonradioligand ready-to-use kits and CHO (Chinese Hamster Ovarian) cells stably transfected with the human cannabinoid CB2 receptor.
Collapse
Affiliation(s)
- Pietro Marini
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Maria Grazia Cascio
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Roger G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
| |
Collapse
|
6
|
CB2 receptors modulate seizure-induced expression of pro-inflammatory cytokines in the hippocampus but not neocortex. Mol Neurobiol 2021; 58:4028-4037. [PMID: 33907944 DOI: 10.1007/s12035-021-02395-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
We compared neuroinflammatory responses induced by nonconvulsive and convulsive seizures and analyzed the role that may be played by cannabinoid CB2 receptors in the neuroinflammatory response induced by generalized tonic-clonic seizures (GTCS). Using quantitative PCR, we analyzed expression of interleukin-1b, CCL2, interleukin-6, tumor necrosis factor (TNF), transforming growth factor beta 1 (TGFb1), fractalkine, and cannabinoid receptor type 2 in the neocortex, dorsal and ventral hippocampus, cortical leptomeninges, dura mater, and spleen in 3 and 6 h after induction of GTCS by a high dose of pentylenetetrazole (PTZ, 70 mg/kg) and absence-like activity by a low dose of PTZ (30 mg/kg). The low dose of PTZ had no effect on the gene expression 3 and 6 h after PTZ injection. In 3 and 6 h after high PTZ dose, the expression of CCL2 and TNF increased in the neocortex. Both ventral and dorsal parts of the hippocampus responded to seizures by elevation of CCL2 expression 3 h after PTZ. Cortical leptomeninges but not dura mater also had elevated CCL2 level and decreased TGFb1 expression 3 h after GTCS. Activation of CB2 receptors by HU308 suppressed an inflammatory response only in the dorsal hippocampus but not neocortex. Suppression of CB2 receptors by AM630 potentiated expression of inflammatory cytokines also in the hippocampus but not in the neocortex. Thus, we showed that GTCS, but not the absence-like activity, provoke inflammatory response in the neocortex, dorsal and ventral hippocampus, and cortical leptomeninges. Modulation of CB2 receptors changes seizure-induced neuroinflammation only in the hippocampus but not neocortex.
Collapse
|
7
|
McMullan M, Kelly B, Mihigo HB, Keogh AP, Rodriguez F, Brocos-Mosquera I, García-Bea A, Miranda-Azpiazu P, Callado LF, Rozas I. Di-aryl guanidinium derivatives: Towards improved α2-Adrenergic affinity and antagonist activity. Eur J Med Chem 2020; 209:112947. [PMID: 33139112 DOI: 10.1016/j.ejmech.2020.112947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 11/27/2022]
Abstract
Compounds with excellent receptor engagement displaying α2-AR antagonist activity are useful not only for therapeutic purposes (e.g. antidepressants), but also to help in the crystallization of this particular GPCR. Therefore, based on our broad experience in the topic, we have prepared eighteen di-aryl (phenyl and/or pyridin-2-yl) mono- or di-substituted guanidines and 2-aminoimidazolines. The in vitro α2-AR binding affinity experiments in human brain tissue showed the advantage of a 2-aminoimidazolinium cation, a di-arylmethylene core, a conformationally locked pyridin-2-yl-guanidine and a di-substituted guanidinium to achieve good α2-AR engagement. After different in vitro [35S]GTPγS binding experiments in human prefrontal cortex tissue, it was possible to identify that compounds 7a, 7b and 7c were α2-AR partial agonist, whereas 8h was a potent α2-AR antagonist. Docking and MD studies with a model of α2A-AR and two crystal structures suggest that antagonism is achieved by compounds carrying a di-substituted guanidine which substituent occupy a pocket adjacent to TM5 without engaging S2005.42 or S2045.46, and a mono-substituted cationic group, which favorably interacts with E942.65.
Collapse
Affiliation(s)
- Michela McMullan
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Brendan Kelly
- Department of Computer Science, Molecular and Cellular Physiology, Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Structural Biology, Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Helene B Mihigo
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Aaron P Keogh
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Fernando Rodriguez
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Aintzane García-Bea
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
| | | | - Luis F Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Isabel Rozas
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
8
|
Gentili M, Ronchetti S, Ricci E, Di Paola R, Gugliandolo E, Cuzzocrea S, Bereshchenko O, Migliorati G, Riccardi C. Selective CB2 inverse agonist JTE907 drives T cell differentiation towards a Treg cell phenotype and ameliorates inflammation in a mouse model of inflammatory bowel disease. Pharmacol Res 2018; 141:21-31. [PMID: 30552973 DOI: 10.1016/j.phrs.2018.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
Cannabinoids are known to possess anti-inflammatory and immunomodulatory properties, but the mechanisms involved are not fully understood. CB2 is the cannabinoid receptor that is expressed primarily on hematopoietic cells and mediates the immunoregulatory functions of cannabinoids. In order to study the effect of JTE907, a selective/inverse agonist of CB2 with anti-inflammatory properties, on the differentiation of T cell subtypes, we used an in vitro system of Th lineage-specific differentiation of naïve CD4+ T lymphocytes isolated from the mouse spleen. The results indicate that JTE907 was able to induce the differentiation of Th0 cells into the Treg cell phenotype, which was characterized by the expression of FoxP3, TGF-β and IL-10. P38 phosphorylation and STAT5A activation were found to mediate the signaling pathway triggered by JTE907 via the CB2 receptor in Th0 lymphocytes. In mice with DNBS-induced colitis, JTE907 treatment was able to induce an increase in the number of CD4+CD25+FoxP3+ cells in the lamina propria after 24 h of disease onset and reduce disease severity after 48 h. Further, longer JTE907 treatment resulted in less severe colitis even when administered orally, resulting in less body weight loss, reduction of the disease score, prevention of NF-κB activation, and reduction of the expression of adhesion molecules. Collectively, the results of this study indicate that specific signals delivered through the CB2 receptor can drive the immune response towards the Treg cell phenotype. Thus, ligands such as JTE907 may have use as potential therapeutic agents in autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Marco Gentili
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | - Simona Ronchetti
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy.
| | - Erika Ricci
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Oxana Bereshchenko
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | | | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| |
Collapse
|
9
|
Chicca A, Arena C, Bertini S, Gado F, Ciaglia E, Abate M, Digiacomo M, Lapillo M, Poli G, Bifulco M, Macchia M, Tuccinardi T, Gertsch J, Manera C. Polypharmacological profile of 1,2-dihydro-2-oxo-pyridine-3-carboxamides in the endocannabinoid system. Eur J Med Chem 2018; 154:155-171. [PMID: 29793210 DOI: 10.1016/j.ejmech.2018.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 02/07/2023]
Abstract
The endocannabinoid system (ECS) represents one of the major neuromodulatory systems involved in different physiological and pathological processes. Multi-target compounds exert their activities by acting via multiple mechanisms of action and represent a promising pharmacological modulation of the ECS. In this work we report 4-substituted and 4,5-disubstituted 1,2-dihydro-2-oxo-pyridine-3-carboxamide derivatives with a broad spectrum of affinity and functional activity towards both cannabinoid receptors and additional effects on the main components of the ECS. In particular compound B3 showed high affinity for CB1R (Ki = 23.1 nM, partial agonist) and CB2R (Ki = 6.9 nM, inverse agonist) and also significant inhibitory activity (IC50 = 70 nM) on FAAH with moderate inhibition of ABHD12 (IC50 = 2.5 μΜ). Compounds B4, B5 and B6 that act as full agonists at CB1R and as partial agonists (B5 and B6) or antagonist (B4) at CB2R, exhibited an additional multi-target property by inhibiting anandamide uptake with sub-micromolar IC50 values (0.28-0.62 μΜ). The best derivatives showed cytotoxic activity on U937 lymphoblastoid cells. Finally, molecular docking analysis carried out on the three-dimensional structures of CB1R and CB2R and of FAAH allowed to rationalize the structure-activity relationships of this series of compounds.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012, Bern, Switzerland
| | - Chiara Arena
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Francesca Gado
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Giulio Poli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53019, Siena, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012, Bern, Switzerland
| | | |
Collapse
|
10
|
Tuo W, Bollier M, Leleu-Chavain N, Lemaire L, Barczyk A, Dezitter X, Klupsch F, Szczepanski F, Spencer J, Chavatte P, Millet R. Development of novel oxazolo[5,4-d]pyrimidines as competitive CB2 neutral antagonists based on scaffold hopping. Eur J Med Chem 2018; 146:68-78. [DOI: 10.1016/j.ejmech.2018.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
|
11
|
Marini P, Cascio MG, Pertwee RG. The Cyclic AMP Assay Using Human Cannabinoid CB2 Receptor-Transfected Cells. Methods Mol Biol 2017; 1412:85-93. [PMID: 27245894 DOI: 10.1007/978-1-4939-3539-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cyclic AMP assay is a functional assay that is commonly used to determine the pharmacological behavior (agonists, antagonists, inverse agonists) of G-protein-coupled receptor (GPCR) ligands. Here, we describe the cyclic AMP assay that is carried out with commercially available non-radioligand ready-to-use kits and Chinese hamster ovarian (CHO) cells stably transfected with the human cannabinoid CB2 receptor.
Collapse
Affiliation(s)
- Pietro Marini
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, AB252ZD, Foresterhill, Scotland, UK
| | - Maria Grazia Cascio
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, AB252ZD, Foresterhill, Scotland, UK.
| | - Roger G Pertwee
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, AB252ZD, Foresterhill, Scotland, UK
| |
Collapse
|
12
|
Leinwand KL, Jones AA, Huang RH, Jedlicka P, Kao DJ, de Zoeten EF, Ghosh S, Moaddel R, Wehkamp J, Ostaff MJ, Bader J, Aherne CM, Collins CB. Cannabinoid Receptor-2 Ameliorates Inflammation in Murine Model of Crohn's Disease. J Crohns Colitis 2017; 11:1369-1380. [PMID: 28981653 PMCID: PMC5881726 DOI: 10.1093/ecco-jcc/jjx096] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Cannabinoid receptor stimulation may have positive symptomatic effects on inflammatory bowel disease [IBD] patients through analgesic and anti-inflammatory effects. The cannabinoid 2 receptor [CB2R] is expressed primarily on immune cells, including CD4+ T cells, and is induced by active inflammation in both humans and mice. We therefore investigated the effect of targeting CB2R in a preclinical IBD model. METHODS Employing a chronic ileitis model [TNFΔARE/+ mice], we assessed expression of the CB2R receptor in ileal tissue and on CD4+ T cells and evaluated the effect of stimulation with CB2R-selective ligand GP-1a both in vitro and in vivo. Additionally, we compared cannabinoid receptor expression in the ilea and colons of healthy human controls with that of Crohn's disease patients. RESULTS Ileal expression of CB2R and the endocannabinoid anandamide [AEA] was increased in actively inflamed TNF∆ARE/+ mice compared with controls. CB2R mRNA was preferentially induced on regulatory T cells [Tregs] compared with T effector cells, approximately 2.4-fold in wild-type [WT] and 11-fold in TNF∆ARE/+ mice. Furthermore, GP-1a enhanced Treg suppressive function with a concomitant increase in IL-10 secretion. GP-1a attenuated murine ileitis, as demonstrated by improved histological scoring and decreased inflammatory cytokine expression. Lastly, CB2R is downregulated in both chronically inflamed TNF∆ARE/+ mice and in IBD patients. CONCLUSIONS In summary, the endocannabinoid system is induced in murine ileitis but is downregulated in chronic murine and human intestinal inflammation, and CB2R activation attenuates murine ileitis, establishing an anti-inflammatory role of the endocannabinoid system.
Collapse
Affiliation(s)
- Kristina L Leinwand
- Children’s Hospital Colorado, Digestive Health Institute, Aurora, CO, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashleigh A Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rick H Huang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paul Jedlicka
- Children’s Hospital Colorado, Department of Pathology, Aurora, CO, USA,Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel J Kao
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Edwin F de Zoeten
- Children’s Hospital Colorado, Digestive Health Institute, Aurora, CO, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Soumita Ghosh
- National Institutes of Health, National Institute on Aging, Bethesda, MD, USA
| | - Ruin Moaddel
- National Institutes of Health, National Institute on Aging, Bethesda, MD, USA
| | - Jan Wehkamp
- Department of Internal Medicine I, Medical University of Tübingen, Tübingen, Germany
| | - Maureen J Ostaff
- Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jutta Bader
- Department of Internal Medicine I, Medical University of Tübingen, Tübingen, Germany
| | - Carol M Aherne
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Colm B Collins
- Children’s Hospital Colorado, Digestive Health Institute, Aurora, CO, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA,Corresponding author: Colm B. Collins, PhD, 12700 E 19th Ave B146 Rm10440, Aurora, CO 80045, USA. Tel.: [303]724-7242; fax: [303] 724-7241;
| |
Collapse
|
13
|
Salort G, Álvaro-Bartolomé M, García-Sevilla JA. Regulation of cannabinoid CB 2 receptor constitutive activity in vivo: repeated treatments with inverse agonists reverse the acute activation of JNK and associated apoptotic signaling in mouse brain. Psychopharmacology (Berl) 2017; 234:925-941. [PMID: 28127623 DOI: 10.1007/s00213-017-4537-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/07/2017] [Indexed: 01/29/2023]
Abstract
RATIONALE CB2 receptors express constitutive activity and inverse agonists regulate receptor basal activity, which might be involved in death mechanisms. This study assessed the effects of a selective CB2 agonist (JWH133) and different CB2 inverse agonists (AM630, JTE907, raloxifene) on death pathways in brain. OBJECTIVES The acute (JWH13) and the acute/chronic effects (AM630, JTE907, raloxifene) of CB2 ligands regulating pro-apoptotic c-Jun NH2-terminal kinase (p-JNK/JNK ratio) and associated signaling of extrinsic (Fas receptor, Fas-Associated death domain protein, FADD) and intrinsic (Bax, cytochrome c) death pathways (nuclear poly (ADP-ribose) polymerase PARP) were investigated in mouse brain. METHODS Mice were treated with CB2 drugs and target protein contents were assessed by western blot analysis. RESULTS JWH133 reduced cortical JNK (-27-45%) whereas AM630 acutely increased JNK in cortex (+61-148%), cerebellum (+34-40%), and striatum (+33-42%). JTE907 and raloxifene also increased cortical JNK (+31%-57%). Acute AM630, but not JWH133, increased cortical FADD, Bax, cytochrome c, and PARP cleavage. Repeated treatments with the three CB2 inverse agonists were associated with a reversal of the acute effects resulting in decreases in cortical JNK (AM630: -36%; JTE907: -25%; raloxifene: -11%). Chronic treatments also induced a reversal with down-regulation (AM630) or only tolerance (JTE907 and raloxifene) on other apoptotic markers (FADD, Bax, cytochrome c, PARP). CONCLUSIONS AM630 and JTE907 are CB2 protean ligands. Thus, chronic inverse agonists abolished CB2 constitutive activity and then the ligands behaved as agonists reducing (like JWH133) JNK activity. Acute and chronic treatments with CB2 inverse agonists regulate in opposite directions brain death markers.
Collapse
Affiliation(s)
- Glòria Salort
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS/IdisPa), Universitat de les Illes Balears, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - María Álvaro-Bartolomé
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS/IdisPa), Universitat de les Illes Balears, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - Jesús A García-Sevilla
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS/IdisPa), Universitat de les Illes Balears, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain. .,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| |
Collapse
|
14
|
Sansook S, Tuo W, Lemaire L, Tourteau A, Barczyk A, Dezitter X, Klupsch F, Leleu-Chavain N, Tizzard GJ, Coles SJ, Millet R, Spencer J. Synthesis of Bioorganometallic Nanomolar-Potent CB2 Agonists Containing a Ferrocene Unit. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Supojjanee Sansook
- Department
of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, U.K
| | - Wei Tuo
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Lucas Lemaire
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Aurélien Tourteau
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Amélie Barczyk
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Xavier Dezitter
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Frédérique Klupsch
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Natascha Leleu-Chavain
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Graham J. Tizzard
- UK
National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - Simon J. Coles
- UK
National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - Régis Millet
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - John Spencer
- Department
of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, U.K
| |
Collapse
|
15
|
Blaha I, Recio P, Martínez MP, López-Oliva ME, Ribeiro ASF, Agis-Torres Á, Martínez AC, Benedito S, García-Sacristán A, Fernandes VS, Hernández M. Impaired Excitatory Neurotransmission in the Urinary Bladder from the Obese Zucker Rat: Role of Cannabinoid Receptors. PLoS One 2016; 11:e0157424. [PMID: 27285468 PMCID: PMC4902197 DOI: 10.1371/journal.pone.0157424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Metabolic syndrome (MS) is a known risk factor for lower urinary tract symptoms. This study investigates whether functional and expression changes of cannabinoid CB1 and CB2 receptors are involved in the bladder dysfunction in an obese rat model with insulin resistance. Bladder samples from obese Zucker rat (OZR) and their respective controls lean Zucker rat (LZR) were processed for immunohistochemistry and western blot for studying the cannabinoid receptors expression. Detrusor smooth muscle (DSM) strips from LZR and OZR were also mounted in myographs for isometric force recordings. Neuronal and smooth muscle CB1 and CB2 receptor expression and the nerve fiber density was diminished in the OZR bladder. Electrical field stimulation (EFS) and acetylcholine (ACh) induced frequency- and concentration-dependent contractions of LZR and OZR DSM. ACh contractile responses were similar in LZR and OZR. EFS-elicited contractions, however, were reduced in OZR bladder. Cannabinoid receptor agonists and antagonists failed to modify the DSM basal tension in LZR and OZR In LZR bladder, EFS responses were inhibited by ACEA and SER-601, CB1 and CB2 receptor agonists, respectively, these effects being reversed by ACEA plus the CB1 antagonist, AM-251 or SER-601 plus the CB2 antagonist, AM-630. In OZR bladder, the inhibitory action of ACEA on nerve-evoked contractions was diminished, whereas that SER-601 did not change EFS responses. These results suggest that a diminished function and expression of neuronal cannabinoid CB1 and CB2 receptors, as well as a lower nerve fiber density is involved in the impaired excitatory neurotransmission of the urinary bladder from the OZR.
Collapse
MESH Headings
- Animals
- Male
- Muscle Contraction
- Muscle, Smooth/innervation
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Nerve Fibers/pathology
- Obesity/pathology
- Obesity/physiopathology
- Rats
- Rats, Zucker
- Receptor, Cannabinoid, CB1/analysis
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/analysis
- Receptor, Cannabinoid, CB2/metabolism
- Synaptic Transmission
- Urinary Bladder/innervation
- Urinary Bladder/pathology
- Urinary Bladder/physiopathology
Collapse
Affiliation(s)
- Igor Blaha
- Departamento de Urología, Hospital General Universitario Gregorio Marañón, 28007-Madrid
| | - Paz Recio
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid
| | - María Pilar Martínez
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid
| | - María Elvira López-Oliva
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid
| | - Ana S. F. Ribeiro
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid
| | - Ángel Agis-Torres
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid
| | - Ana Cristina Martínez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid
| | - Vítor S. Fernandes
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid
- * E-mail:
| |
Collapse
|
16
|
Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor. Sci Rep 2015; 5:10682. [PMID: 26033291 PMCID: PMC4451551 DOI: 10.1038/srep10682] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2-/- macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field.
Collapse
|
17
|
Chicca A, Gachet MS, Petrucci V, Schuehly W, Charles RP, Gertsch J. 4'-O-methylhonokiol increases levels of 2-arachidonoyl glycerol in mouse brain via selective inhibition of its COX-2-mediated oxygenation. J Neuroinflammation 2015; 12:89. [PMID: 25962384 PMCID: PMC4490613 DOI: 10.1186/s12974-015-0307-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/24/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE 4'-O-methylhonokiol (MH) is a natural product showing anti-inflammatory, anti-osteoclastogenic, and neuroprotective effects. MH was reported to modulate cannabinoid CB2 receptors as an inverse agonist for cAMP production and an agonist for intracellular [Ca2+]. It was recently shown that MH inhibits cAMP formation via CB2 receptors. In this study, the exact modulation of MH on CB2 receptor activity was elucidated and its endocannabinoid substrate-specific inhibition (SSI) of cyclooxygenase-2 (COX-2) and CNS bioavailability are described for the first time. METHODS CB2 receptor modulation ([35S]GTPγS, cAMP, and β-arrestin) by MH was measured in hCB2-transfected CHO-K1 cells and native conditions (HL60 cells and mouse spleen). The COX-2 SSI was investigated in RAW264.7 cells and in Swiss albino mice by targeted metabolomics using LC-MS/MS. RESULTS MH is a CB2 receptor agonist and a potent COX-2 SSI. It induced partial agonism in both the [35S]GTPγS binding and β-arrestin recruitment assays while being a full agonist in the cAMP pathway. MH selectively inhibited PGE2 glycerol ester formation (over PGE2) in RAW264.7 cells and significantly increased the levels of 2-AG in mouse brain in a dose-dependent manner (3 to 20 mg kg(-1)) without affecting other metabolites. After 7 h from intraperitoneal (i.p.) injection, MH was quantified in significant amounts in the brain (corresponding to 200 to 300 nM). CONCLUSIONS LC-MS/MS quantification shows that MH is bioavailable to the brain and under condition of inflammation exerts significant indirect effects on 2-AG levels. The biphenyl scaffold might serve as valuable source of dual CB2 receptor modulators and COX-2 SSIs as demonstrated by additional MH analogs that show similar effects. The combination of CB2 agonism and COX-2 SSI offers a yet unexplored polypharmacology with expected synergistic effects in neuroinflammatory diseases, thus providing a rationale for the diverse neuroprotective effects reported for MH in animal models.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012, Bern, Switzerland.
| | - Maria Salomé Gachet
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012, Bern, Switzerland.
| | - Vanessa Petrucci
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012, Bern, Switzerland.
| | - Wolfgang Schuehly
- Institute of Zoology, Karl-Franzens-University Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012, Bern, Switzerland.
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012, Bern, Switzerland.
| |
Collapse
|
18
|
Makwana R, Venkatasamy R, Spina D, Page C. The Effect of Phytocannabinoids on Airway Hyper-Responsiveness, Airway Inflammation, and Cough. J Pharmacol Exp Ther 2015; 353:169-80. [DOI: 10.1124/jpet.114.221283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Marchalant Y, Brownjohn PW, Bonnet A, Kleffmann T, Ashton JC. Validating Antibodies to the Cannabinoid CB2 Receptor: Antibody Sensitivity Is Not Evidence of Antibody Specificity. J Histochem Cytochem 2014; 62:395-404. [PMID: 24670796 PMCID: PMC4174627 DOI: 10.1369/0022155414530995] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antibody-based methods for the detection and quantification of membrane integral proteins, in particular, the G protein-coupled receptors (GPCRs), have been plagued with issues of primary antibody specificity. In this report, we investigate one of the most commonly utilized commercial antibodies for the cannabinoid CB2 receptor, a GPCR, using immunoblotting in combination with mass spectrometry. In this way, we were able to develop powerful negative and novel positive controls. By doing this, we are able to demonstrate that it is possible for an antibody to be sensitive for a protein of interest—in this case CB2—but still cross-react with other proteins and therefore lack specificity. Specifically, we were able to use western blotting combined with mass spectrometry to unequivocally identify CB2 protein in over-expressing cell lines. This shows that a common practice of validating antibodies with positive controls only is insufficient to ensure antibody reliability. In addition, our work is the first to develop a label-free method of protein detection using mass spectrometry that, with further refinement, could provide unequivocal identification of CB2 receptor protein in native tissues.
Collapse
Affiliation(s)
- Yannick Marchalant
- Aix-Marseille University, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France (YM,AB)Department of Pharmacology and Toxicology (PWB,JCA)Centre for Protein Research, Biochemistry Department, University of Otago, Dunedin, New Zealand (TK)
| | - Philip W Brownjohn
- Aix-Marseille University, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France (YM,AB)Department of Pharmacology and Toxicology (PWB,JCA)Centre for Protein Research, Biochemistry Department, University of Otago, Dunedin, New Zealand (TK)
| | - Amandine Bonnet
- Aix-Marseille University, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France (YM,AB)Department of Pharmacology and Toxicology (PWB,JCA)Centre for Protein Research, Biochemistry Department, University of Otago, Dunedin, New Zealand (TK)
| | - Torsten Kleffmann
- Aix-Marseille University, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France (YM,AB)Department of Pharmacology and Toxicology (PWB,JCA)Centre for Protein Research, Biochemistry Department, University of Otago, Dunedin, New Zealand (TK)
| | - John C Ashton
- Aix-Marseille University, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France (YM,AB)Department of Pharmacology and Toxicology (PWB,JCA)Centre for Protein Research, Biochemistry Department, University of Otago, Dunedin, New Zealand (TK)
| |
Collapse
|