1
|
Mondéjar-Parreño G, Moreno-Manuel AI, Ruiz-Robles JM, Jalife J. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome. Cell Discov 2025; 11:3. [PMID: 39788950 PMCID: PMC11717978 DOI: 10.1038/s41421-024-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of "interactome mapping" and illustrate by example the multiple protein-protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Meier S, Grundland A, Dobrev D, Volders PG, Heijman J. In silico analysis of the dynamic regulation of cardiac electrophysiology by K v 11.1 ion-channel trafficking. J Physiol 2023; 601:2711-2731. [PMID: 36752166 PMCID: PMC10313819 DOI: 10.1113/jp283976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Cardiac electrophysiology is regulated by continuous trafficking and internalization of ion channels occurring over minutes to hours. Kv 11.1 (also known as hERG) underlies the rapidly activating delayed-rectifier K+ current (IKr ), which plays a major role in cardiac ventricular repolarization. Experimental characterization of the distinct temporal effects of genetic and acquired modulators on channel trafficking and gating is challenging. Computer models are instrumental in elucidating these effects, but no currently available model incorporates ion-channel trafficking. Here, we present a novel computational model that reproduces the experimentally observed production, forward trafficking, internalization, recycling and degradation of Kv 11.1 channels, as well as their modulation by temperature, pentamidine, dofetilide and extracellular K+ . The acute effects of these modulators on channel gating were also incorporated and integrated with the trafficking model in the O'Hara-Rudy human ventricular cardiomyocyte model. Supraphysiological dofetilide concentrations substantially increased Kv 11.1 membrane levels while also producing a significant channel block. However, clinically relevant concentrations did not affect trafficking. Similarly, severe hypokalaemia reduced Kv 11.1 membrane levels based on long-term culture data, but had limited effect based on short-term data. By contrast, clinically relevant elevations in temperature acutely increased IKr due to faster kinetics, while after 24 h, IKr was decreased due to reduced Kv 11.1 membrane levels. The opposite was true for lower temperatures. Taken together, our model reveals a complex temporal regulation of cardiac electrophysiology by temperature, hypokalaemia, and dofetilide through competing effects on channel gating and trafficking, and provides a framework for future studies assessing the role of impaired trafficking in cardiac arrhythmias. KEY POINTS: Kv 11.1 channels underlying the rapidly activating delayed-rectifier K+ current are important for ventricular repolarization and are continuously shuttled from the cytoplasm to the plasma membrane and back over minutes to hours. Kv 11.1 gating and trafficking are modulated by temperature, drugs and extracellular K+ concentration but experimental characterization of their combined effects is challenging. Computer models may facilitate these analyses, but no currently available model incorporates ion-channel trafficking. We introduce a new two-state ion-channel trafficking model able to reproduce a wide range of experimental data, along with the effects of modulators of Kv 11.1 channel functioning and trafficking. The model reveals complex dynamic regulation of ventricular repolarization by temperature, extracellular K+ concentration and dofetilide through opposing acute (millisecond) effects on Kv 11.1 gating and long-term (hours) modulation of Kv 11.1 trafficking. This in silico trafficking framework provides a tool to investigate the roles of acute and long-term processes on arrhythmia promotion and maintenance.
Collapse
Affiliation(s)
- Stefan Meier
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine, and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Adaïa Grundland
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine, and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Data Science and Knowledge Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Quebec, Canada
| | - Paul G.A. Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine, and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine, and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
3
|
Wu Y, Zhang Z, Kou Z. Pentamidine Inhibits Ovarian Cancer Cell Proliferation and Migration by Maintaining Stability of PTEN in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2857-2868. [PMID: 34234416 PMCID: PMC8257069 DOI: 10.2147/dddt.s311187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/12/2021] [Indexed: 11/23/2022]
Abstract
Purpose Pentamidine is an anti-protozoal cationic aromatic diamidine drug and has been reported to exhibit anticancer properties. We aimed to identify the effect of pentamidine on proliferation and migration of human ovarian cancer (OC) cell lines and the related mechanisms. Methods HO8910 and Caov3 ovarian cancer cells were treated with pentamidine. MTS and colony formation assays were used to detect the proliferation ability of cells. The migration of cells was detected using wound healing and transwell assays. The protein levels of PTEN, phosphorylated Akt, Akt, N-cadherin, E-cadherin and snail were detected by Western blotting. Immunoprecipitation and Western blotting were used to detect ubiquitination levels of PTEN. Results Our findings revealed that pentamidine inhibited both proliferation and migration of OC cells. Further investigation found that pentamidine increased the protein expression of PTEN and reduced phosphorylation levels of AKT in OC cells. Pentamidine treatment modulated PTEN stability through the ubiquitin/proteasome pathway. In addition, pentamidine inhibited the expression of N-cadherin and snail, and increased E-cadherin expression in a dose-dependent manner. Conclusion Pentamidine is involved in the maintenance of PTEN protein stability and suppresses proliferation and migration of OC cells.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pathogenic Biology, Shenyang Medical College, Shenyang City, Liaoning Province, 110004, People's Republic of China
| | - Zhong Zhang
- Department of Pathology, Shenyang Medical College, Shenyang City, Liaoning Province, 110004, People's Republic of China
| | - Zuqiang Kou
- Department of Logistics, Shenyang Ligong University, Shenyang City, Liaoning Province, 110004, People's Republic of China
| |
Collapse
|
4
|
Saponara S, Fusi F, Iovinelli D, Ahmed A, Trezza A, Spiga O, Sgaragli G, Valoti M. Flavonoids and hERG channels: Friends or foes? Eur J Pharmacol 2021; 899:174030. [PMID: 33727059 DOI: 10.1016/j.ejphar.2021.174030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 01/24/2023]
Abstract
The cardiac action potential is regulated by several ion channels. Drugs capable to block these channels, in particular the human ether-à-go-go-related gene (hERG) channel, also known as KV11.1 channel, may lead to a potentially lethal ventricular tachyarrhythmia called "Torsades de Pointes". Thus, evaluation of the hERG channel off-target activity of novel chemical entities is nowadays required to safeguard patients as well as to avoid attrition in drug development. Flavonoids, a large class of natural compounds abundantly present in food, beverages, herbal medicines, and dietary food supplements, generally escape this assessment, though consumed in consistent amounts. Continuously growing evidence indicates that these compounds may interact with the hERG channel and block it. The present review, by examining numerous studies, summarizes the state-of-the-art in this field, describing the most significant examples of direct and indirect inhibition of the hERG channel current operated by flavonoids. A description of the molecular interactions between a few of these natural molecules and the Rattus norvegicus channel protein, achieved by an in silico approach, is also presented.
Collapse
Affiliation(s)
- Simona Saponara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Fabio Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy.
| | - Daniele Iovinelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Amer Ahmed
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Alfonso Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Ottavia Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Giampietro Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy; Accademia Italiana della Vite e del Vino, via Logge degli Uffizi Corti 1, 50122, Florence, Italy
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| |
Collapse
|
5
|
Towards the Development of AgoKirs: New Pharmacological Activators to Study K ir2.x Channel and Target Cardiac Disease. Int J Mol Sci 2020; 21:ijms21165746. [PMID: 32796537 PMCID: PMC7461056 DOI: 10.3390/ijms21165746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inward rectifier potassium ion channels (IK1-channels) of the Kir2.x family are responsible for maintaining a stable negative resting membrane potential in excitable cells, but also play a role in processes of non-excitable tissues, such as bone development. IK1-channel loss-of-function, either congenital or acquired, has been associated with cardiac disease. Currently, basic research and specific treatment are hindered by the absence of specific and efficient Kir2.x channel activators. However, twelve different compounds, including approved drugs, show off-target IK1 activation. Therefore, these compounds contain valuable information towards the development of agonists of Kir channels, AgoKirs. We reviewed the mechanism of IK1 channel activation of these compounds, which can be classified as direct or indirect activators. Subsequently, we examined the most viable starting points for rationalized drug development and possible safety concerns with emphasis on cardiac and skeletal muscle adverse effects of AgoKirs. Finally, the potential value of AgoKirs is discussed in view of the current clinical applications of potentiators and activators in cystic fibrosis therapy.
Collapse
|
6
|
Qile M, Ji Y, Golden TD, Houtman MJC, Romunde F, Fransen D, van Ham WB, IJzerman AP, January CT, Heitman LH, Stary-Weinzinger A, Delisle BP, van der Heyden MAG. LUF7244 plus Dofetilide Rescues Aberrant K v11.1 Trafficking and Produces Functional I Kv11.1. Mol Pharmacol 2020; 97:355-364. [PMID: 32241959 DOI: 10.1124/mol.119.118190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/24/2020] [Indexed: 02/14/2025] Open
Abstract
Voltage-gated potassium 11.1 (Kv11.1) channels play a critical role in repolarization of cardiomyocytes during the cardiac action potential (AP). Drug-mediated Kv11.1 blockade results in AP prolongation, which poses an increased risk of sudden cardiac death. Many drugs, like pentamidine, interfere with normal Kv11.1 forward trafficking and thus reduce functional Kv11.1 channel densities. Although class III antiarrhythmics, e.g., dofetilide, rescue congenital and acquired forward trafficking defects, this is of little use because of their simultaneous acute channel blocking effect. We aimed to test the ability of a combination of dofetilide plus LUF7244, a Kv11.1 allosteric modulator/activator, to rescue Kv11.1 trafficking and produce functional Kv11.1 current. LUF7244 treatment by itself did not disturb or rescue wild type (WT) or G601S-Kv11.1 trafficking, as shown by Western blot and immunofluorescence microcopy analysis. Pentamidine-decreased maturation of WT Kv11.1 levels was rescued by 10 μM dofetilide or 10 μM dofetilide + 5 μM LUF7244. In trafficking defective G601S-Kv11.1 cells, dofetilide (10 μM) or dofetilide + LUF7244 (10 + 5 μM) also restored Kv11.1 trafficking, as demonstrated by Western blot and immunofluorescence microscopy. LUF7244 (10 μM) increased IKv 11.1 despite the presence of dofetilide (1 μM) in WT Kv11.1 cells. In G601S-expressing cells, long-term treatment (24-48 hour) with LUF7244 (10 μM) and dofetilide (1 μM) increased IKv11.1 compared with nontreated or acutely treated cells. We conclude that dofetilide plus LUF7244 rescues Kv11.1 trafficking and produces functional IKv11.1 Thus, combined administration of LUF7244 and an IKv11.1 trafficking corrector could serve as a new pharmacological therapy of both congenital and drug-induced Kv11.1 trafficking defects. SIGNIFICANCE STATEMENT: Decreased levels of functional Kv11.1 potassium channel at the plasma membrane of cardiomyocytes prolongs action potential repolarization, which associates with cardiac arrhythmia. Defective forward trafficking of Kv11.1 channel protein is an important factor in acquired and congenital long QT syndrome. LUF7244 as a negative allosteric modulator/activator in combination with dofetilide corrected both congenital and acquired Kv11.1 trafficking defects, resulting in functional Kv11.1 current.
Collapse
Affiliation(s)
- Muge Qile
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Yuan Ji
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Tyona D Golden
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Marien J C Houtman
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Fee Romunde
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Doreth Fransen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Willem B van Ham
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Ad P IJzerman
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Craig T January
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Laura H Heitman
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Anna Stary-Weinzinger
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Brian P Delisle
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| | - Marcel A G van der Heyden
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands (M.Q., Y.J., M.J.C.H., F.R., D.F., W.B.H., M.A.G.H.); Department of Physiology, University of Kentucky, Lexington, Kentucky (T.D.G., B.P.D.); Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (W.B.H., A.S.-W.); Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, The Netherlands (A.P.I., L.H.H.); and Department of Medicine, University of Wisconsin, Madison, Wisconsin (C.T.J.)
| |
Collapse
|
7
|
Żołek T, Qile M, Kaźmierczak P, Bloothooft M, van der Heyden MAG, Maciejewska D. Drug-likeness of linear pentamidine analogues and their impact on the hERG K+channel – correlation with structural features. RSC Adv 2019; 9:38355-38371. [PMID: 35540224 PMCID: PMC9082326 DOI: 10.1039/c9ra08404e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023] Open
Abstract
The pentamidines with S atoms or sulfanilide groups in the linker have favorable drug-likeness parameters and low toxicity.
Collapse
Affiliation(s)
- Teresa Żołek
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| | - Muge Qile
- Department of Medical Physiology
- Division Heart & Lungs
- University Medical Center Utrecht
- Utrecht
- The Netherlands
| | - Paweł Kaźmierczak
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| | - Meye Bloothooft
- Department of Medical Physiology
- Division Heart & Lungs
- University Medical Center Utrecht
- Utrecht
- The Netherlands
| | - Marcel A. G. van der Heyden
- Department of Medical Physiology
- Division Heart & Lungs
- University Medical Center Utrecht
- Utrecht
- The Netherlands
| | - Dorota Maciejewska
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| |
Collapse
|
8
|
Asahi Y, Nomura F, Abe Y, Doi M, Sakakura T, Takasuna K, Yasuda K. Electrophysiological evaluation of pentamidine and 17-AAG in human stem cell-derived cardiomyocytes for safety assessment. Eur J Pharmacol 2019; 842:221-230. [DOI: 10.1016/j.ejphar.2018.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
|
9
|
Zangerl-Plessl EM, van der Heyden MAG. Commentary: Golgin-97 Targets Ectopically Expressed Inward Rectifying Potassium Channel, Kir2.1, to the Trans-Golgi Network in COS-7 Cells. Front Physiol 2018; 9:1401. [PMID: 30344494 PMCID: PMC6182076 DOI: 10.3389/fphys.2018.01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Marcel A G van der Heyden
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
10
|
Vagos M, van Herck IGM, Sundnes J, Arevalo HJ, Edwards AG, Koivumäki JT. Computational Modeling of Electrophysiology and Pharmacotherapy of Atrial Fibrillation: Recent Advances and Future Challenges. Front Physiol 2018; 9:1221. [PMID: 30233399 PMCID: PMC6131668 DOI: 10.3389/fphys.2018.01221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
The pathophysiology of atrial fibrillation (AF) is broad, with components related to the unique and diverse cellular electrophysiology of atrial myocytes, structural complexity, and heterogeneity of atrial tissue, and pronounced disease-associated remodeling of both cells and tissue. A major challenge for rational design of AF therapy, particularly pharmacotherapy, is integrating these multiscale characteristics to identify approaches that are both efficacious and independent of ventricular contraindications. Computational modeling has long been touted as a basis for achieving such integration in a rapid, economical, and scalable manner. However, computational pipelines for AF-specific drug screening are in their infancy, and while the field is progressing quite rapidly, major challenges remain before computational approaches can fill the role of workhorse in rational design of AF pharmacotherapies. In this review, we briefly detail the unique aspects of AF pathophysiology that determine requirements for compounds targeting AF rhythm control, with emphasis on delimiting mechanisms that promote AF triggers from those providing substrate or supporting reentry. We then describe modeling approaches that have been used to assess the outcomes of drugs acting on established AF targets, as well as on novel promising targets including the ultra-rapidly activating delayed rectifier potassium current, the acetylcholine-activated potassium current and the small conductance calcium-activated potassium channel. Finally, we describe how heterogeneity and variability are being incorporated into AF-specific models, and how these approaches are yielding novel insights into the basic physiology of disease, as well as aiding identification of the important molecular players in the complex AF etiology.
Collapse
Affiliation(s)
- Márcia Vagos
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ilsbeth G. M. van Herck
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Joakim Sundnes
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Hermenegild J. Arevalo
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Andrew G. Edwards
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Jussi T. Koivumäki
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
11
|
Ji Y, Veldhuis MG, Zandvoort J, Romunde FL, Houtman MJC, Duran K, van Haaften G, Zangerl-Plessl EM, Takanari H, Stary-Weinzinger A, van der Heyden MAG. PA-6 inhibits inward rectifier currents carried by V93I and D172N gain-of-function K IR2.1 channels, but increases channel protein expression. J Biomed Sci 2017; 24:44. [PMID: 28711067 PMCID: PMC5513211 DOI: 10.1186/s12929-017-0352-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/11/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The inward rectifier potassium current IK1 contributes to a stable resting membrane potential and phase 3 repolarization of the cardiac action potential. KCNJ2 gain-of-function mutations V93I and D172N associate with increased IK1, short QT syndrome type 3 and congenital atrial fibrillation. Pentamidine-Analogue 6 (PA-6) is an efficient (IC50 = 14 nM with inside-out patch clamp methodology) and specific IK1 inhibitor that interacts with the cytoplasmic pore region of the KIR2.1 ion channel, encoded by KCNJ2. At 10 μM, PA-6 increases wild-type (WT) KIR2.1 expression in HEK293T cells upon chronic treatment. We hypothesized that PA-6 will interact with and inhibit V93I and D172N KIR2.1 channels, whereas impact on channel expression at the plasma membrane requires higher concentrations. METHODS Molecular modelling was performed with the human KIR2.1 closed state homology model using FlexX. WT and mutant KIR2.1 channels were expressed in HEK293 cells. Patch-clamp single cell electrophysiology measurements were performed in the whole cell and inside-out mode of the patch clamp method. KIR2.1 expression level and localization were determined by western blot analysis and immunofluorescence microscopy, respectively. RESULTS PA-6 docking in the V93I/D172N double mutant homology model of KIR2.1 demonstrated that mutations and drug-binding site are >30 Å apart. PA-6 inhibited WT and V93I outward currents with similar potency (IC50 = 35.5 and 43.6 nM at +50 mV for WT and V93I), whereas D172N currents were less sensitive (IC50 = 128.9 nM at +50 mV) using inside-out patch-clamp electrophysiology. In whole cell mode, 1 μM of PA-6 inhibited outward IK1 at -50 mV by 28 ± 36%, 18 ± 20% and 10 ± 6%, for WT, V93I and D172N channels respectively. Western blot analysis demonstrated that PA-6 (5 μM, 24 h) increased KIR2.1 expression levels of WT (6.3 ± 1.5 fold), and V93I (3.9 ± 0.9) and D172N (4.8 ± 2.0) mutants. Immunofluorescent microscopy demonstrated dose-dependent intracellular KIR2.1 accumulation following chronic PA-6 application (24 h, 1 and 5 μM). CONCLUSIONS 1) KCNJ2 gain-of-function mutations V93I and D172N in the KIR2.1 ion channel do not impair PA-6 mediated inhibition of IK1, 2) PA-6 elevates KIR2.1 protein expression and induces intracellular KIR2.1 accumulation, 3) PA-6 is a strong candidate for further preclinical evaluation in treatment of congenital SQT3 and AF.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marlieke G. Veldhuis
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Jantien Zandvoort
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Fee L. Romunde
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marien J. C. Houtman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Karen Duran
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs van Haaften
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Hiroki Takanari
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | | | - Marcel A. G. van der Heyden
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
12
|
Ji Y, Takanari H, Qile M, Nalos L, Houtman MJC, Romunde FL, Heukers R, van Bergen En Henegouwen PMP, Vos MA, van der Heyden MAG. Class III antiarrhythmic drugs amiodarone and dronedarone impair K IR 2.1 backward trafficking. J Cell Mol Med 2017; 21:2514-2523. [PMID: 28425222 PMCID: PMC5618701 DOI: 10.1111/jcmm.13172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/24/2017] [Indexed: 01/16/2023] Open
Abstract
Drug‐induced ion channel trafficking disturbance can cause cardiac arrhythmias. The subcellular level at which drugs interfere in trafficking pathways is largely unknown. KIR2.1 inward rectifier channels, largely responsible for the cardiac inward rectifier current (IK1), are degraded in lysosomes. Amiodarone and dronedarone are class III antiarrhythmics. Chronic use of amiodarone, and to a lesser extent dronedarone, causes serious adverse effects to several organs and tissue types, including the heart. Both drugs have been described to interfere in the late‐endosome/lysosome system. Here we defined the potential interference in KIR2.1 backward trafficking by amiodarone and dronedarone. Both drugs inhibited IK1 in isolated rabbit ventricular cardiomyocytes at supraclinical doses only. In HK‐KWGF cells, both drugs dose‐ and time‐dependently increased KIR2.1 expression (2.0 ± 0.2‐fold with amiodarone: 10 μM, 24 hrs; 2.3 ± 0.3‐fold with dronedarone: 5 μM, 24 hrs) and late‐endosomal/lysosomal KIR2.1 accumulation. Increased KIR2.1 expression level was also observed in the presence of Nav1.5 co‐expression. Augmented KIR2.1 protein levels and intracellular accumulation were also observed in COS‐7, END‐2, MES‐1 and EPI‐7 cells. Both drugs had no effect on Kv11.1 ion channel protein expression levels. Finally, amiodarone (73.3 ± 10.3% P < 0.05 at −120 mV, 5 μM) enhanced IKIR2.1 upon 24‐hrs treatment, whereas dronedarone tended to increase IKIR2.1 and it did not reach significance (43.8 ± 5.5%, P = 0.26 at −120 mV; 2 μM). We conclude that chronic amiodarone, and potentially also dronedarone, treatment can result in enhanced IK1 by inhibiting KIR2.1 degradation.
Collapse
Affiliation(s)
- Yuan Ji
- Division of Heart & Lungs, Department of Medical Physiology, UMCU, Utrecht, The Netherlands
| | - Hiroki Takanari
- Division of Heart & Lungs, Department of Medical Physiology, UMCU, Utrecht, The Netherlands
| | - Muge Qile
- Division of Heart & Lungs, Department of Medical Physiology, UMCU, Utrecht, The Netherlands
| | - Lukas Nalos
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Marien J C Houtman
- Division of Heart & Lungs, Department of Medical Physiology, UMCU, Utrecht, The Netherlands
| | - Fee L Romunde
- Division of Heart & Lungs, Department of Medical Physiology, UMCU, Utrecht, The Netherlands
| | - Raimond Heukers
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | | | - Marc A Vos
- Division of Heart & Lungs, Department of Medical Physiology, UMCU, Utrecht, The Netherlands
| | | |
Collapse
|
13
|
Obejero-Paz CA, Bruening-Wright A, Kramer J, Hawryluk P, Tatalovic M, Dittrich HC, Brown AM. Quantitative Profiling of the Effects of Vanoxerine on Human Cardiac Ion Channels and its Application to Cardiac Risk. Sci Rep 2015; 5:17623. [PMID: 26616666 PMCID: PMC4663487 DOI: 10.1038/srep17623] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/03/2015] [Indexed: 12/19/2022] Open
Abstract
Vanoxerine has been in clinical trials for Parkinsonism, depression and cocaine addiction but lacked efficacy. Although a potent blocker of hERG, it produced no serious adverse events. We attributed the unexpected result to offsetting Multiple Ion Channel Effects (MICE). Vanoxerine’s effects were strongly frequency-dependent and we repositioned it for treatment of atrial fibrillation and flutter. Vanoxerine terminated AF/AFL in an animal model and a dose-ranging clinical trial. Reversion to normal rhythm was associated with QT prolongation yet absent proarrhythmia markers for Torsade de Pointes (TdP). To understand the QT/TdP discordance, we used quantitative profiling and compared vanoxerine with dofetilide, a selective hERG-blocking torsadogen used for intractable AF, verapamil, a non-torsadogenic MICE comparator and bepridil, a torsadogenic MICE comparator. At clinically relevant concentrations, verapamil blocked hCav1.2 and hERG, as did vanoxerine and bepridil both of which also blocked hNav1.5. In acute experiments and simulations, dofetilide produced early after depolarizations (EADs) and arrhythmias, whereas verapamil, vanoxerine and bepridil produced no proarrhythmia markers. Of the MICE drugs only bepridil inhibited hERG trafficking following overnight exposure. The results are consistent with the emphasis on MICE of the CiPA assay. Additionally we propose that trafficking inhibition of hERG be added to CiPA.
Collapse
Affiliation(s)
- Carlos A Obejero-Paz
- ChanTest Corporation, a Charles River Company, Discovery Services, 14656 Neo Parkway, Cleveland, OH 44128, USA
| | - Andrew Bruening-Wright
- ChanTest Corporation, a Charles River Company, Discovery Services, 14656 Neo Parkway, Cleveland, OH 44128, USA
| | - James Kramer
- ChanTest Corporation, a Charles River Company, Discovery Services, 14656 Neo Parkway, Cleveland, OH 44128, USA
| | - Peter Hawryluk
- ChanTest Corporation, a Charles River Company, Discovery Services, 14656 Neo Parkway, Cleveland, OH 44128, USA
| | - Milos Tatalovic
- ChanTest Corporation, a Charles River Company, Discovery Services, 14656 Neo Parkway, Cleveland, OH 44128, USA
| | - Howard C Dittrich
- Laguna Pharmaceuticals, 4225 Executive Square, Suite 960, La Jolla, CA 92037, USA
| | - Arthur M Brown
- ChanTest Corporation, a Charles River Company, Discovery Services, 14656 Neo Parkway, Cleveland, OH 44128, USA.,Laguna Pharmaceuticals, 4225 Executive Square, Suite 960, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Bossu A, van der Heyden MAG, de Boer TP, Vos MA. A 2015 focus on preventing drug-induced arrhythmias. Expert Rev Cardiovasc Ther 2015; 14:245-53. [DOI: 10.1586/14779072.2016.1116940] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Computational investigations of hERG channel blockers: New insights and current predictive models. Adv Drug Deliv Rev 2015; 86:72-82. [PMID: 25770776 DOI: 10.1016/j.addr.2015.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023]
Abstract
Identification of potential human Ether-a-go-go Related-Gene (hERG) potassium channel blockers is an essential part of the drug development and drug safety process in pharmaceutical industries or academic drug discovery centers, as they may lead to drug-induced QT prolongation, arrhythmia and Torsade de Pointes. Recent reports also suggest starting to address such issues at the hit selection stage. In order to prioritize molecules during the early drug discovery phase and to reduce the risk of drug attrition due to cardiotoxicity during pre-clinical and clinical stages, computational approaches have been developed to predict the potential hERG blockage of new drug candidates. In this review, we will describe the current in silico methods developed and applied to predict and to understand the mechanism of actions of hERG blockers, including ligand-based and structure-based approaches. We then discuss ongoing research on other ion channels and hERG polymorphism susceptible to be involved in LQTS and how systemic approaches can help in the drug safety decision.
Collapse
|
16
|
Zhang KP, Yang BF, Li BX. Translational toxicology and rescue strategies of the hERG channel dysfunction: biochemical and molecular mechanistic aspects. Acta Pharmacol Sin 2014; 35:1473-84. [PMID: 25418379 PMCID: PMC4261120 DOI: 10.1038/aps.2014.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/20/2014] [Indexed: 01/08/2023]
Abstract
The human ether-à-go-go related gene (hERG) potassium channel is an obligatory anti-target for drug development on account of its essential role in cardiac repolarization and its close association with arrhythmia. Diverse drugs have been removed from the market owing to their inhibitory activity on the hERG channel and their contribution to acquired long QT syndrome (LQTS). Moreover, mutations that cause hERG channel dysfunction may induce congenital LQTS. Recently, an increasing number of biochemical and molecular mechanisms underlying hERG-associated LQTS have been reported. In fact, numerous potential biochemical and molecular rescue strategies are hidden within the biogenesis and regulating network. So far, rescue strategies of hERG channel dysfunction and LQTS mainly include activators, blockers, and molecules that interfere with specific links and other mechanisms. The aim of this review is to discuss the rescue strategies based on hERG channel toxicology from the biochemical and molecular perspectives.
Collapse
Affiliation(s)
- Kai-ping Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, China
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China (Key Laboratory of Cardiovascular Research, Ministry of Education), China
| | - Bao-feng Yang
- Department of Pharmacology, Harbin Medical University, Harbin, China
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China (Key Laboratory of Cardiovascular Research, Ministry of Education), China
| | - Bao-xin Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China (Key Laboratory of Cardiovascular Research, Ministry of Education), China
| |
Collapse
|
17
|
Nogawa H, Kawai T. hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia. Eur J Pharmacol 2014; 741:336-9. [DOI: 10.1016/j.ejphar.2014.06.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/16/2014] [Accepted: 06/23/2014] [Indexed: 02/01/2023]
|