1
|
Morgan LM, Martin SL, Mullins ND, Hollywood MA, Thornbury KD, Sergeant GP. Modulation of carbachol-induced Ca2+ oscillations in airway smooth muscle cells by PGE2. Cell Calcium 2022; 103:102547. [DOI: 10.1016/j.ceca.2022.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/02/2022]
|
2
|
Eicosanoid blood vessel regulation in physiological and pathological states. Clin Sci (Lond) 2021; 134:2707-2727. [PMID: 33095237 DOI: 10.1042/cs20191209] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Arachidonic acid can be metabolized in blood vessels by three primary enzymatic pathways; cyclooxygenase (COX), lipoxygenase (LO), and cytochrome P450 (CYP). These eicosanoid metabolites can influence endothelial and vascular smooth muscle cell function. COX metabolites can cause endothelium-dependent dilation or constriction. Prostaglandin I2 (PGI2) and thromboxane (TXA2) act on their respective receptors exerting opposing actions with regard to vascular tone and platelet aggregation. LO metabolites also influence vascular tone. The 12-LO metabolite 12S-hydroxyeicosatrienoic acid (12S-HETE) is a vasoconstrictor whereas the 15-LO metabolite 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA) is an endothelial-dependent hyperpolarizing factor (EDHF). CYP enzymes produce two types of eicosanoid products: EDHF vasodilator epoxyeicosatrienoic acids (EETs) and the vasoconstrictor 20-HETE. The less-studied cross-metabolites generated from arachidonic acid metabolism by multiple pathways can also impact vascular function. Likewise, COX, LO, and CYP vascular eicosanoids interact with paracrine and hormonal factors such as the renin-angiotensin system and endothelin-1 (ET-1) to maintain vascular homeostasis. Imbalances in endothelial and vascular smooth muscle cell COX, LO, and CYP metabolites in metabolic and cardiovascular diseases result in vascular dysfunction. Restoring the vascular balance of eicosanoids by genetic or pharmacological means can improve vascular function in metabolic and cardiovascular diseases. Nevertheless, future research is necessary to achieve a more complete understanding of how COX, LO, CYP, and cross-metabolites regulate vascular function in physiological and pathological states.
Collapse
|
3
|
Hu Y, Chen M, Wang M, Li X. Flow-mediated vasodilation through mechanosensitive G protein-coupled receptors in endothelial cells. Trends Cardiovasc Med 2021; 32:61-70. [PMID: 33406458 DOI: 10.1016/j.tcm.2020.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
Abstract
Currently, endothelium-dependent vasodilatation involves three main mechanisms: production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS), synthesis of prostanoids by cyclooxygenase, and/or opening of calcium-sensitive potassium channels. Researchers have proposed multiple mechanosensors that may be involved in flow-mediated vasodilation (FMD), including G protein-coupled receptors (GPCRs), ion channels, and intercellular junction proteins, among others. However, GPCRs are considered the major mechanosensors that play a pivotal role in shear stress signal transduction. Among mechanosensitive GPCRs, G protein-coupled receptor 68, histamine H1 receptors, sphingosine-1-phosphate receptor 1, and bradykinin B2 receptors have been identified as endothelial sensors of flow shear stress regulating flow-mediated vasodilation. Thus, this review aims to expound on the mechanism whereby flow shear stress promotes vasodilation through the proposed mechanosensitive GPCRs in ECs.
Collapse
Affiliation(s)
- Yong Hu
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Street, Jinan, Shandong Province, 250031, China.
| | - Miao Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun, Jilin Province, 130021, China.
| | - Meili Wang
- Department of Obstetrics, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, NO.238, Jingshi East Road, Jinan, Shandong, 250012, China.
| | - Xiucun Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Street, Jinan, Shandong Province, 250031, China; Department of Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, NO.44, Wenhua West Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
PGE2 deficiency predisposes to anaphylaxis by causing mast cell hyperresponsiveness. J Allergy Clin Immunol 2020; 146:1387-1396.e13. [DOI: 10.1016/j.jaci.2020.03.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
|
5
|
Kashmiry A, Tate R, Rotondo G, Davidson J, Rotondo D. The prostaglandin EP4 receptor is a master regulator of the expression of PGE 2 receptors following inflammatory activation in human monocytic cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1297-1304. [PMID: 30053598 DOI: 10.1016/j.bbalip.2018.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
Prostaglandin E2 (PGE2) is responsible for inflammatory symptoms. However, PGE2 also suppresses pro-inflammatory cytokine production. There are at least 4 subtypes of PGE2 receptors, EP1-EP4, but it is unclear which of these specifically control cytokine production. The aim of this study was to determine which of the different receptors, EP1R-EP4R modulate production of tumor necrosis factor-α (TNF-α) in human monocytic cells. Human blood, or the human monocytic cell line THP-1 were stimulated with LPS. The actions of PGE2, alongside selective agonists of EP1-EP4 receptors, were assessed on LPS-induced TNF-α, IL-1β and IL-10 release. The expression profiles of EP2R and EP4R in monocytes and THP-1 cells were characterised by RT-qPCR. In addition, the production of cytokines was evaluated following knockdown of the receptors using siRNA and over-expression of the receptors by transfection with constructs. PGE2 and also EP2 and EP4 agonists (but not EP1 or EP3 agonists) suppressed TNF-α production in blood and THP-1 cells. LPS also up regulated expression of EP2R and EP4R but not EP1 or EP3. siRNA for either EP2R or EP4R reversed the suppressive actions of PGE2 on cytokine production and overexpression of EP2R and EP4R enhanced the suppressive actions of PGE2. This indicates that PGE2 suppression of TNF-α by human monocytic cells occurs via EP2R and EP4R expression. However EP4Rs also control their own expression and that of EP2 whereas the EP2R does not affect EP4R expression. This implies that EP4 receptors have an important master role in controlling inflammatory responses.
Collapse
Affiliation(s)
- Alaa Kashmiry
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
| | - Rothwelle Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
| | - Giuliana Rotondo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
| | - Jillian Davidson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
| | - Dino Rotondo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK.
| |
Collapse
|
6
|
Dale P, Head V, Dowling MR, Taylor CW. Selective inhibition of histamine-evoked Ca 2+ signals by compartmentalized cAMP in human bronchial airway smooth muscle cells. Cell Calcium 2017; 71:53-64. [PMID: 29604964 PMCID: PMC5893132 DOI: 10.1016/j.ceca.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 01/29/2023]
Abstract
β2-adrenoceptors, via cAMP and PKA, inhibit histamine-evoked Ca2+ signals in human bronchial airway smooth muscle cells. Responses to other Ca2+-mobilizing receptors are unaffected or minimally affected by cAMP. There is no consistent relationship between the amounts of cAMP produced by different stimuli and inhibition of histamine-evoked Ca2+ release. Local delivery of cAMP within hyperactive signaling junctions stimulates PKA. PKA inhibits an early step in the signaling pathway activated by H1 histamine receptors.
Intracellular Ca2+ and cAMP typically cause opposing effects on airway smooth muscle contraction. Receptors that stimulate these pathways are therapeutic targets in asthma and chronic obstructive pulmonary disease. However, the interactions between different G protein-coupled receptors (GPCRs) that evoke cAMP and Ca2+ signals in human bronchial airway smooth muscle cells (hBASMCs) are poorly understood. We measured Ca2+ signals in cultures of fluo-4-loaded hBASMCs alongside measurements of intracellular cAMP using mass spectrometry or [3H]-adenine labeling. Interactions between the signaling pathways were examined using selective ligands of GPCRs, and inhibitors of Ca2+ and cAMP signaling pathways. Histamine stimulated Ca2+ release through inositol 1,4,5-trisphosphate (IP3) receptors in hBASMCs. β2-adrenoceptors, through cAMP and protein kinase A (PKA), substantially inhibited histamine-evoked Ca2+ signals. Responses to other Ca2+-mobilizing stimuli were unaffected by cAMP (carbachol and bradykinin) or minimally affected (lysophosphatidic acid). Prostaglandin E2 (PGE2), through EP2 and EP4 receptors, stimulated formation of cAMP and inhibited histamine-evoked Ca2+ signals. There was no consistent relationship between the inhibition of Ca2+ signals and the amounts of intracellular cAMP produced by different stimuli. We conclude that β-adrenoceptors, EP2 and EP4 receptors, through cAMP and PKA, selectively inhibit Ca2+ signals evoked by histamine in hBASMCs, suggesting that PKA inhibits an early step in H1 receptor signaling. Local delivery of cAMP within hyperactive signaling junctions mediates the inhibition.
Collapse
Affiliation(s)
- Philippa Dale
- Department of Pharmacology,Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Victoria Head
- Novartis Institutes for BioMedical Research, Fabrikstrasse, CH-4056, Basel, Switzerland
| | - Mark R Dowling
- Novartis Institutes for BioMedical Research Inc., 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Colin W Taylor
- Department of Pharmacology,Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
7
|
Cyclic AMP Recruits a Discrete Intracellular Ca 2+ Store by Unmasking Hypersensitive IP 3 Receptors. Cell Rep 2017; 18:711-722. [PMID: 28099849 PMCID: PMC5276804 DOI: 10.1016/j.celrep.2016.12.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/17/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3) stimulates Ca2+ release from the endoplasmic reticulum (ER), and the response is potentiated by 3′,5′-cyclic AMP (cAMP). We investigated this interaction in HEK293 cells using carbachol and parathyroid hormone (PTH) to stimulate formation of IP3 and cAMP, respectively. PTH alone had no effect on the cytosolic Ca2+ concentration, but it potentiated the Ca2+ signals evoked by carbachol. Surprisingly, however, the intracellular Ca2+ stores that respond to carbachol alone could be both emptied and refilled without affecting the subsequent response to PTH. We provide evidence that PTH unmasks high-affinity IP3 receptors within a discrete Ca2+ store. We conclude that Ca2+ stores within the ER that dynamically exchange Ca2+ with the cytosol maintain a functional independence that allows one store to be released by carbachol and another to be released by carbachol with PTH. Compartmentalization of ER Ca2+ stores adds versatility to IP3-evoked Ca2+ signals. Cyclic AMP directly potentiates IP3-evoked Ca2+ release The Ca2+ stores released by IP3 alone or IP3 with cAMP are functionally independent Cyclic AMP unmasks high-affinity IP3 receptors in a discrete ER Ca2+ store Independent regulation of discrete Ca2+ stores increases signaling versatility
Collapse
|
8
|
O’Sullivan MJ, Gabriel E, Panariti A, Park CY, Ijpma G, Fredberg JJ, Lauzon AM, Martin JG. Epithelial Cells Induce a Cyclo-Oxygenase-1-Dependent Endogenous Reduction in Airway Smooth Muscle Contractile Phenotype. Am J Respir Cell Mol Biol 2017; 57:683-691. [PMID: 28708434 PMCID: PMC5765417 DOI: 10.1165/rcmb.2016-0427oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/29/2017] [Indexed: 12/11/2022] Open
Abstract
Airway smooth muscle cells (ASMCs) are phenotypically regulated to exist in either a proliferative or a contractile state. However, the influence of other airway structural cell types on ASMC phenotype is largely unknown. Although epithelial cells are known to drive ASM proliferation, their effects on the contractile phenotype are uncertain. In the current study, we tested the hypothesis that epithelial cells reduce the contractile phenotype of ASMCs. To do so, we measured force production by traction microscopy, gene and protein expression, as well as calcium release by Fura-2 ratiometric imaging. ASMCs incubated with epithelial-derived medium produced less force after histamine stimulation. We observed reduced expression of myocardin, α-smooth muscle actin, and calponin within ASMCs after coculture with epithelial cells. Peak calcium release in response to histamine was diminished, and depended on the synthesis of cyclo-oxygenase-1 products by ASM and on prostaglandin E receptors 2 and 4. Together, these in vitro results demonstrate that epithelial cells have the capacity to coordinately reduce ASM contraction by functional antagonism and by reduction of the expression of certain contractile proteins.
Collapse
Affiliation(s)
- Michael J. O’Sullivan
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Elizabeth Gabriel
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Alice Panariti
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Chan Y. Park
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Gijs Ijpma
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Jeffrey J. Fredberg
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - James G. Martin
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| |
Collapse
|
9
|
Li HH, Hsu HH, Chang GJ, Chen IC, Ho WJ, Hsu PC, Chen WJ, Pang JHS, Huang CC, Lai YJ. Prostanoid EP 4 agonist L-902,688 activates PPARγ and attenuates pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2017; 314:L349-L359. [PMID: 29146573 DOI: 10.1152/ajplung.00245.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Prostacyclin agonists that bind the prostacyclin receptor (IP) to stimulate cAMP synthesis are effective vasodilators for the treatment of idiopathic pulmonary arterial hypertension (IPAH), but this signaling may occur through nuclear peroxisome proliferator-activated receptor-γ (PPARγ). There is evidence of scant IP and PPARγ expression but stable prostanoid EP4 receptor (EP4) expression in IPAH patients. Both IP and EP4 functionally couple with stimulatory G protein (Gs), which activates signal transduction. We investigated the effect of an EP4-specific agonist on pulmonary arterial remodeling and its regulatory mechanisms in pulmonary arterial smooth muscle cells (PASMCs). Immunoblotting evealed IP, EP4, and PPARγ expression in human pulmonary arterial hypertension (PAH) and monocrotaline (MCT)-induced PAH rat lung tissue. Isolated PASMCs from MCT-induced PAH rats (MCT-PASMCs) were treated with L-902,688, a selective EP4 agonist, to investigate the anti-vascular remodeling effect. Scant expression of IP and PPARγ but stable expression of EP4 was observed in IPAH patient lung tissues and MCT-PASMCs. L-902,688 inhibited IP-insufficient MCT-PASMC proliferation and migration by activating PPARγ in a time- and dose-dependent manner, but these effects were reversed by AH-23848 (an EP4 antagonist) and H-89 [a protein kinase A (PKA) inhibitor], highlighting the crucial role of PPARγ in the activity of this EP4 agonist. L-902,688 attenuated pulmonary arterial remodeling in hypoxic PAH mice and MCT-induced PAH rats; therefore, we conclude that the selective EP4 agonist L-902,688 reverses vascular remodeling by activating PPARγ. This study identified a novel EP4-PKA-PPARγ pathway, and we propose EP4 as a potential therapeutic target for PAH.
Collapse
Affiliation(s)
- Hsin-Hsien Li
- Department of Respiratory Therapy, Chang-Gung University College of Medicine , Tao-Yuan , Taiwan
| | - Hsao-Hsun Hsu
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University , Tao-Yuan , Taiwan
| | - I-Chen Chen
- Graduate Institute of Clinical Medical Sciences, Chang Gung University , Tao-Yuan , Taiwan
| | - Wan-Jing Ho
- Cardiovascular Division, Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Pei-Chen Hsu
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| | - Wei-Jan Chen
- Cardiovascular Division, Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University , Tao-Yuan , Taiwan
| | - Chung-Chi Huang
- Department of Respiratory Therapy, Chang-Gung University College of Medicine , Tao-Yuan , Taiwan.,Division of Thoracic Medicine, Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Ying-Ju Lai
- Department of Respiratory Therapy, Chang-Gung University College of Medicine , Tao-Yuan , Taiwan.,Cardiovascular Division, Chang Gung Memorial Hospital , Tao-Yuan , Taiwan.,Department of Respiratory Care, Chang-Gung University of Science and Technology, Chia-Yi, Taiwan
| |
Collapse
|
10
|
Taylor EJA, Pantazaka E, Shelley KL, Taylor CW. Prostaglandin E 2 Inhibits Histamine-Evoked Ca 2+ Release in Human Aortic Smooth Muscle Cells through Hyperactive cAMP Signaling Junctions and Protein Kinase A. Mol Pharmacol 2017; 92:533-545. [PMID: 28877931 PMCID: PMC5635517 DOI: 10.1124/mol.117.109249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/23/2017] [Indexed: 11/22/2022] Open
Abstract
In human aortic smooth muscle cells, prostaglandin E2 (PGE2) stimulates adenylyl cyclase (AC) and attenuates the increase in intracellular free Ca2+ concentration evoked by activation of histamine H1 receptors. The mechanisms are not resolved. We show that cAMP mediates inhibition of histamine-evoked Ca2+ signals by PGE2. Exchange proteins activated by cAMP were not required, but the effects were attenuated by inhibition of cAMP-dependent protein kinase (PKA). PGE2 had no effect on the Ca2+ signals evoked by protease-activated receptors, heterologously expressed muscarinic M3 receptors, or by direct activation of inositol 1,4,5-trisphosphate (IP3) receptors by photolysis of caged IP3. The rate of Ca2+ removal from the cytosol was unaffected by PGE2, but PGE2 attenuated histamine-evoked IP3 accumulation. Substantial inhibition of AC had no effect on the concentration-dependent inhibition of Ca2+ signals by PGE2 or butaprost (to activate EP2 receptors selectively), but it modestly attenuated responses to EP4 receptors, activation of which generated less cAMP than EP2 receptors. We conclude that inhibition of histamine-evoked Ca2+ signals by PGE2 occurs through “hyperactive signaling junctions,” wherein cAMP is locally delivered to PKA at supersaturating concentrations to cause uncoupling of H1 receptors from phospholipase C. This sequence allows digital signaling from PGE2 receptors, through cAMP and PKA, to histamine-evoked Ca2+ signals.
Collapse
Affiliation(s)
- Emily J A Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Evangelia Pantazaka
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Kathryn L Shelley
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Wang Q, Oka T, Yamagami K, Lee JK, Akazawa H, Naito AT, Yasui T, Ishizu T, Nakaoka Y, Sakata Y, Komuro I. An EP4 Receptor Agonist Inhibits Cardiac Fibrosis Through Activation of PKA Signaling in Hypertrophied Heart. Int Heart J 2016; 58:107-114. [PMID: 27829645 DOI: 10.1536/ihj.16-200] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cardiac fibrosis is a pathological feature of myocardium of failing heart and plays causative roles in arrhythmia and cardiac dysfunction, but its regulatory mechanisms remain largely elusive. In this study, we investigated the effects of the novel EP4 receptor agonist ONO-0260164 on cardiac fibrosis in hypertrophied heart and explored the regulatory mechanisms in cardiac fibroblasts.In a mouse model of cardiac hypertrophy generated by transverse aortic constriction (TAC), ONO-0260164 treatment significantly prevented systolic dysfunction and progression of myocardial fibrosis at 5 weeks after TAC. In cultured neonatal rat cardiac fibroblasts, transforming growth factor-β1 (TGF-β1) induced upregulation of collagen type 1, alpha 1 (Col1a1) and type 3, alpha 1 (Col3a1), which was inhibited by ONO-0260164 treatment. ONO-0260164 activated protein kinase A (PKA) in the presence of TGF-β1 in the cardiac fibroblasts. PKA activation suppressed an increase in collagen expression induced by TGF-β1, indicating the important inhibitory roles of PKA activation in TGF-β1mediated collagen induction.We have demonstrated for the first time the antifibrotic effects of the novel EP4 agonist ONO-0260164 in vivo and in vitro, and the important role of PKA activation in the effects.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kennedy AJ, Yang P, Read C, Kuc RE, Yang L, Taylor EJA, Taylor CW, Maguire JJ, Davenport AP. Chemerin Elicits Potent Constrictor Actions via Chemokine-Like Receptor 1 (CMKLR1), not G-Protein-Coupled Receptor 1 (GPR1), in Human and Rat Vasculature. J Am Heart Assoc 2016; 5:e004421. [PMID: 27742615 PMCID: PMC5121526 DOI: 10.1161/jaha.116.004421] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Circulating levels of chemerin are significantly higher in hypertensive patients and positively correlate with blood pressure. Chemerin activates chemokine-like receptor 1 (CMKLR1 or ChemR23) and is proposed to activate the "orphan" G-protein-coupled receptor 1 (GPR1), which has been linked with hypertension. Our aim was to localize chemerin, CMKLR1, and GPR1 in the human vasculature and determine whether 1 or both of these receptors mediate vasoconstriction. METHODS AND RESULTS Using immunohistochemistry and molecular biology in conduit arteries and veins and resistance vessels, we localized chemerin to endothelium, smooth muscle, and adventitia and found that CMKLR1 and GPR1 were widely expressed in smooth muscle. C9 (chemerin149-157) contracted human saphenous vein (pD2=7.30±0.31) and resistance arteries (pD2=7.05±0.54) and increased blood pressure in rats by 9.1±1.0 mm Hg at 200 nmol. Crucially, these in vitro and in vivo vascular actions were blocked by CCX832, which we confirmed to be highly selective for CMKLR1 over GPR1. C9 inhibited cAMP accumulation in human aortic smooth muscle cells and preconstricted rat aorta, consistent with the observed vasoconstrictor action. Downstream signaling was explored further and, compared to chemerin, C9 showed a bias factor=≈5000 for the Gi protein pathway, suggesting that CMKLR1 exhibits biased agonism. CONCLUSIONS Our data suggest that chemerin acts at CMKLR1, but not GPR1, to increase blood pressure. Chemerin has an established detrimental role in metabolic syndrome, and these direct vascular actions may contribute to hypertension, an additional risk factor for cardiovascular disease. This study provides proof of principle for the therapeutic potential of selective CMKLR1 antagonists.
Collapse
Affiliation(s)
- Amanda J Kennedy
- Experimental Medicine and Immunotherapeutics, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Cai Read
- Experimental Medicine and Immunotherapeutics, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Lucy Yang
- Experimental Medicine and Immunotherapeutics, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Emily J A Taylor
- Department of Pharmacology, University of Cambridge, United Kingdom
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| |
Collapse
|
13
|
Sledd J, Wu D, Ahrens R, Lee J, Waggoner L, Tsai YT, Wang YH, Hogan SP. Loss of IL-4Rα-mediated PI3K signaling accelerates the progression of IgE/mast cell-mediated reactions. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:420-30. [PMID: 26734464 PMCID: PMC4693723 DOI: 10.1002/iid3.80] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/27/2015] [Accepted: 08/10/2015] [Indexed: 02/06/2023]
Abstract
Clinical and experimental evidence indicate that polymorphisms within the interleukin 4 (IL‐4) receptor (IL‐4R) chain are sufficient for altered strength of IL‐4/IL‐13 signaling, leading to an exaggerated allergic inflammatory response and increase susceptibility to allergic phenotypes. In the present study, we show that ablation of IL‐4Rα–induced phosphatidylinositol 3‐kinase (PI3K) activating signal by germline point mutation within the IL‐4Rα motif (Y500F) did not alter susceptibility to IgE‐mediated, food‐induced experimental anaphylaxis. Moreover, diarrhea occurrence, antigen‐specific IgE and intestinal mastocytosis were comparable between WT and IL‐4RαY500F mice. However, mice unable to stimulate IL‐4Rα–mediated PI3K signaling had accelerated disease progression. Notably, the accelerated anaphylactic response was associated with more rapid histamine‐induced hypovolemia. Mechanistic in vitro and in vivo analyses revealed that endothelial IL‐4Rα PI3K signaling negatively regulates the histamine‐induced endothelial leak response. These results define an unanticipated role for IL‐4Rα–mediated PI3K signaling in negative regulation of IgE‐mediated anaphylactic reactions.
Collapse
Affiliation(s)
- Jane Sledd
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - David Wu
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - Richard Ahrens
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - Jeebong Lee
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - Lisa Waggoner
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - Ying Ting Tsai
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - Yui-Hsi Wang
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| | - Simon P Hogan
- Divisions of Allergy and Immunology and of Immunobiology Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Children's Hospital Medical Center 3333 Burnet Avenue Cincinnati OH 45229
| |
Collapse
|
14
|
EP2 and EP4 receptors mediate PGE2 induced relaxation in murine colonic circular muscle: Pharmacological characterization. Pharmacol Res 2014; 90:76-86. [DOI: 10.1016/j.phrs.2014.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 01/27/2023]
|
15
|
Meena A, Tovey SC, Taylor CW. Sustained signalling by PTH modulates IP3 accumulation and IP3 receptors through cyclic AMP junctions. J Cell Sci 2014; 128:408-20. [PMID: 25431134 PMCID: PMC4294780 DOI: 10.1242/jcs.163071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Parathyroid hormone (PTH) stimulates adenylyl cyclase through type 1 PTH receptors (PTH1R) and potentiates the Ca2+ signals evoked by carbachol, which stimulates formation of inositol 1,4,5-trisphosphate (IP3). We confirmed that in HEK cells expressing PTH1R, acute stimulation with PTH(1-34) potentiated carbachol-evoked Ca2+ release. This was mediated by locally delivered cyclic AMP (cAMP), but unaffected by inhibition of protein kinase A (PKA), exchange proteins activated by cAMP, cAMP phosphodiesterases (PDEs) or substantial inhibition of adenylyl cyclase. Sustained stimulation with PTH(1-34) causes internalization of PTH1R–adenylyl cyclase signalling complexes, but the consequences for delivery of cAMP to IP3R within cAMP signalling junctions are unknown. Here, we show that sustained stimulation with PTH(1-34) or with PTH analogues that do not evoke receptor internalization reduced the potentiated Ca2+ signals and attenuated carbachol-evoked increases in cytosolic IP3. Similar results were obtained after sustained stimulation with NKH477 to directly activate adenylyl cyclase, or with the membrane-permeant analogue of cAMP, 8-Br-cAMP. These responses were independent of PKA and unaffected by substantial inhibition of adenylyl cyclase. During prolonged stimulation with PTH(1-34), hyperactive cAMP signalling junctions, within which cAMP is delivered directly and at saturating concentrations to its targets, mediate sensitization of IP3R and a more slowly developing inhibition of IP3 accumulation.
Collapse
Affiliation(s)
- Abha Meena
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Stephen C Tovey
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| |
Collapse
|