1
|
Efimenko AY, Shmakova AA, Popov VS, Basalova NA, Vigovskiy MA, Grigorieva OA, Sysoeva VY, Klimovich PS, Khabibullin NR, Tkachuk VA, Rubina KA, Semina EV. Mesenchymal stem/stromal cells alleviate early-stage pulmonary fibrosis in a uPAR-dependent manner. Cell Biol Int 2024; 48:1714-1730. [PMID: 39023281 DOI: 10.1002/cbin.12222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/09/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Pulmonary fibrosis, a debilitating lung disorder characterised by excessive fibrous tissue accumulation in lung parenchyma, compromises respiratory function leading to a life-threatening respiratory failure. While its origins are multifaceted and poorly understood, the urokinase system, including urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plays a significant role in regulating fibrotic response, extracellular matrix remodelling, and tissue repair. Mesenchymal stem/stromal cells (MSCs) hold promise in regenerative medicine for treating pulmonary fibrosis. Our study aimed to investigate the potential of MSCs to inhibit pulmonary fibrosis as well as the contribution of uPAR expression to this effect. We found that intravenous MSC administration significantly reduced lung fibrosis in the bleomycin-induced pulmonary fibrosis model in mice as revealed by MRI and histological evaluations. Notably, administering the MSCs isolated from adipose tissue of uPAR knockout mice (Plaur-/- MSCs) attenuated lung fibrosis to a lesser extent as compared to WT MSCs. Collagen deposition, a hallmark of fibrosis, was markedly reduced in lungs treated with WT MSCs versus Plaur-/- MSCs. Along with that, endogenous uPA levels were affected differently; after Plaur-/- MSCs were administered, the uPA content was specifically decreased within the blood vessels. Our findings support the potential of MSC treatment in attenuating pulmonary fibrosis. We provide evidence that the observed anti-fibrotic effect depends on uPAR expression in MSCs, suggesting that uPAR might counteract the uPA accumulation in lungs.
Collapse
Affiliation(s)
- Anastasia Yu Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A Shmakova
- Institut Gustave Roussy, Université Paris Saclay, UMR 9018, CNRS, Villejuif, France
| | - Vladimir S Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia A Basalova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim A Vigovskiy
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Grigorieva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Polina S Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| | | | - Vsevolod A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina V Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| |
Collapse
|
2
|
Watanabe S, Kobayashi K, Suzukawa M, Igarashi S, Takada K, Imoto S, Kitani M, Fukami T, Nagase T, Ohta K. Identification of ANXA2 on epithelial cells as a new receptor for secretory IgA using immunoprecipitation and mass spectrometry. Clin Exp Immunol 2022; 208:351-360. [PMID: 35511485 PMCID: PMC9226145 DOI: 10.1093/cei/uxac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
Secretory immunoglobulin A plays an important role in the protection against exogenous pathogens and antigens, but it has also been reported to have pathogenic potential. We previously found that secretory immunoglobulin A accumulated in the peripheral lungs during idiopathic pulmonary fibrosis and that transferrin receptor/CD71 was partially involved in secretory immunoglobulin A-induced inflammatory cytokine production in A549 cells. This study aimed to identify the receptor responsible for the induction of cytokine production by secretory immunoglobulin A-stimulated airway epithelial cells. To this end, immunoprecipitation followed by time-of-flight mass spectrometry and peptide mass fingerprinting were performed and Annexin A2 was detected as a novel receptor for secretory immunoglobulin A. Enzyme-linked immunosorbent assay demonstrated binding of secretory immunoglobulin A to Annexin A2, and flow cytometry showed robust expression of Annexin A2 on the surface of BEAS-2B cells, A549 cells, and normal human bronchial/tracheal epithelial cells. Experiments in A549 cells using Annexin A2 small interfering RNA and neutralizing antibodies suggested that Annexin A2 was partially involved in the production of interleukin-8/CXCL8 and C-C motif chemokine ligand 2/monocyte chemoattractant protein-1 induced by secretory immunoglobulin A. Immunohistochemistry using lung sections revealed clear expression of Annexin A2 on airway epithelial cells, although the staining remained equivalent in idiopathic pulmonary fibrosis, asthma, and healthy control lungs. In conclusion, we identified that Annexin A2 expressed in airway epithelial cells is a novel receptor for secretory immunoglobulin A, which is involved in cytokine synthesis.
Collapse
Affiliation(s)
- Shizuka Watanabe
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - Koichi Kobayashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan.,Department of Internal medicine, Yoshikawa Central General Hospital, Saitama, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Sayaka Igarashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Geriatric Medicine, University of Tokyo, Tokyo, Japan
| | - Sahoko Imoto
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - Masashi Kitani
- Department of Pathology, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Takeshi Fukami
- Department of Surgery, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Japan Anti-Tuberculosis Association (JATA), Fukujuji Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Plasminogen and plasmin can bind to human T cells and generate truncated CCL21 that increases dendritic cell chemotactic responses. J Biol Chem 2022; 298:102112. [PMID: 35690148 PMCID: PMC9270246 DOI: 10.1016/j.jbc.2022.102112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
Plasmin is a broad-spectrum protease and therefore needs to be tightly regulated. Active plasmin is formed from plasminogen, which is found in high concentrations in the blood and is converted by the plasminogen activators. In the circulation, high levels of α2-antiplasmin rapidly and efficiently inhibit plasmin activity. Certain myeloid immune cells have been shown to bind plasmin and plasminogen on their cell surface via proteins that bind to the plasmin(ogen) kringle domains. Our earlier work showed that T cells can activate plasmin, but that they do not themselves express plasminogen. Here, we demonstrate that T cells express several known plasminogen receptors, and that they bind plasminogen on their cell surface. We show T cell-bound plasminogen was converted to plasmin by plasminogen activators upon T cell activation. To examine functional consequences of plasmin generation by activated T cells, we investigated its effect on the chemokine, C-C Motif Chemokine Ligand 21 (CCL21). Video microscopy and western blotting confirmed that plasmin bound by human T cells cleaves CCL21 and increases the chemotactic response of monocyte-derived dendritic cells towards higher CCL21 concentrations along the concentration gradient by increasing their directional migration and track straightness. These results demonstrate how migrating T cells and potentially other activated immune cells may co-opt a powerful proteolytic system from the plasma towards immune processes in the peripheral tissues, where α2-antiplasmin is more likely to be absent. We propose that plasminogen bound to migrating immune cells may strongly modulate chemokine responses in peripheral tissues.
Collapse
|
4
|
Schuliga M, Read J, Knight DA. Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Res Rev 2021; 70:101405. [PMID: 34242806 DOI: 10.1016/j.arr.2021.101405] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Age is a major risk factor for chronic respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and certain phenotypes of asthma. The recent COVID-19 pandemic also highlights the increased susceptibility of the elderly to acute respiratory distress syndrome (ARDS), a diffuse inflammatory lung injury with often long-term effects (ie parenchymal fibrosis). Collectively, these lung conditions are characterized by a pathogenic reparative process that, rather than restoring organ function, contributes to structural and functional tissue decline. In the ageing lung, the homeostatic control of wound healing following challenge or injury has an increased likelihood of being perturbed, increasing susceptibility to disease. This loss of fidelity is a consequence of a diverse range of underlying ageing mechanisms including senescence, mitochondrial dysfunction, proteostatic stress and diminished autophagy that occur within the lung, as well as in other tissues, organs and systems of the body. These ageing pathways are highly interconnected, involving localized and systemic increases in inflammatory mediators and damage associated molecular patterns (DAMPs); along with corresponding changes in immune cell function, metabolism and composition of the pulmonary and gut microbiomes. Here we comprehensively review the roles of ageing mechanisms in the tissue remodeling of lung disease.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Mitochondrial ATP-Sensitive K+ Channel Opening Increased the Airway Smooth Muscle Cell Proliferation by Activating the PI3K/AKT Signaling Pathway in a Rat Model of Asthma. Can Respir J 2021; 2021:8899878. [PMID: 34336047 PMCID: PMC8289566 DOI: 10.1155/2021/8899878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/13/2020] [Indexed: 12/02/2022] Open
Abstract
Abnormal proliferation of airway smooth muscle cells (ASMCs) leads to airway remodeling and the development of asthma. This study aimed to assess whether mitochondrial ATP-sensitive K+ (mitoKATP) channels regulated the proliferation of ASMCs by regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway in asthmatic rats. Forty-eight Sprague Dawley rats were immunized with ovalbumin-containing alum to establish the asthma models. The ASMCs were isolated and identified by phase-contrast microscopic images and immunohistochemical staining for α-smooth muscle actin. The ASMCs were treated with a potent activator of mitoKATP, diazoxide, or an inhibitor of mitoKATP, 5-hydroxydecanoate (5-HD). Rhodamine-123 (R-123) was used for detecting the mitochondrial membrane potential (Δψm). The proliferation of ASMCs was examined by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The protein and mRNA expressions of AKT and p-AKT were detected using western blotting and quantitative real-time PCR. The results showed that diazoxide enhanced the mitoKATP channel opening in ASMCs in the rat model of asthma, while 5-HD impeded it. Diazoxide also increased ASMC proliferation in the rat model of asthma, whereas 5-HD alleviated it. However, LY294002, a PI3K/AKT pathway inhibitor, reversed the functional roles of diazoxide in the proliferation ability of ASMCs in the rat model of asthma. Furthermore, treatment with diazoxide induced the phosphorylation of AKT, and treatment with 5-HD decreased the phosphorylation of AKT in ASMCs in the rat model of asthma. In conclusion, the mitoKATP channel opening increased the proliferation of ASMCs by activating the PI3K/AKT signaling pathway in a rat model of asthma.
Collapse
|
6
|
Grumelli S, Pinto-Plata V, Celli B. Genetic Switches between Cancer and Emphysema Resolution of Cigarette-Smoke Induced Inflammation. EC PULMONOLOGY AND RESPIRATORY MEDICINE 2019; 8:https://www.ecronicon.com/ecprm/pdf/ECPRM-08-00502.pdf. [PMID: 38116482 PMCID: PMC10729994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cigarette smoke initiates an inflammatory response that has aftermath long after quitting. We segregated former smokers, according to their lung function and their co-founding diseases, in 3 groups: Cancer, Emphysema and COPD. Then we searched for outlier genes in intersections of Venn diagrams where we identified 6 subsets and 23 genes that may be responsible for disease outcome. Genes expressed in the cancer patients with or without emphysema (PPA subset) were BHLH, FPRL2, CD49D, DEADH, NRs4A3, MBLL, GNS, BE675435, ISGF-3, and FLJ23462. Patients with emphysema as co-founding disease, with or without cancer (APP), had only ANXA2 in common. Genes expressed only in non-cancer patients (AAP subset) of COPD group were IL-1A, SOX13, RPP38; TBXA2R, NPEPL1, CFLAR, TFEB, PRKCBP1, IGF1R, DDX11, and KCNAB1. HIV-1Rev was the gene expressed in cancer patients with emphysema (APA subset). Then, we also looked at out-layers genes significantly expressed in all patients (PPP subset with 5066 genes), the down-regulated in Emphysema were MMP9, PLUNC, CEACAM5, and NR4A1 while the up-regulated were F2R, COL15A1, PDE4C, and BGN. We chose genes and checked them at the protein level on immune cells, this showed that neutrophils from Cancer group had increased expression of CD49d, and their total number was also increased in bronchial-alveolar lavage (154%). Macrophages in the lung of patients with emphysema were associated with a significant increase of adhesion molecule CD58 and to significant CD95 decrease, indicating they do not die. Besides, macrophages downregulated MMP9 in the lung compared to blood macrophages. Overall, we find that cancer progression requires a stickier and greater number of neutrophils in the lung while emphysema requires stickier and longevous macrophages to lead matrix destruction, and together with higher expression of SOX13 and RPP38, may promote autoimmunity. We also identified two genes, ANXA2 and HIV1-rev, that may be a pivot between cancer and emphysema outcome of inflammation.
Collapse
Affiliation(s)
- Sandra Grumelli
- Center of Investigation in Medicine of Respiration, (CIMeR), Cordoba, Argentina
- Saint Elizabeth Hospital associated to TUFT University, Boston, United States
| | - Victor Pinto-Plata
- Saint Elizabeth Hospital associated to TUFT University, Boston, United States
| | - Bartolome Celli
- Saint Elizabeth Hospital associated to TUFT University, Boston, United States
- Brigham and Woman's Hospital, Boston, United States
| |
Collapse
|
7
|
Nuerzhati Y, Dong R, Song Z, Zheng S. Role of the long non‑coding RNA‑Annexin A2 pseudogene 3/Annexin A2 signaling pathway in biliary atresia‑associated hepatic injury. Int J Mol Med 2018; 43:739-748. [PMID: 30569159 PMCID: PMC6317672 DOI: 10.3892/ijmm.2018.4023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022] Open
Abstract
Biliary atresia (BA) is the most common cause of chronic cholestasis in children. The long non‑coding RNA (lncRNA) Annexin A2 pseudogene 3 (ANXA2P3) and Annexin A2 (ANXA2) have been suggested to serve pivotal roles in BA; however, the clinical significance and biological roles of ANXA2P3 and ANXA2 in BA remain to be elucidated. The present study aimed to elucidate the function of ANAX2P3 and ANXA2 in BA‑induced liver injury using a human liver cell line and liver tissues from patients with BA. Reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry were conducted to determine the expression levels of ANXA2 and ANXA2P3 in liver tissues from patients with BA. Classification of fibrosis was analyzed by Masson staining. The functional roles of ANXA2 and ANXA2P3 in liver cells were determined by Cell Counting kit‑8 assay, and flow cytometric and cell cycle analyses. Activation of the ANXA2/ANXA2P3 signaling pathway in liver cells was evaluated by western blot analysis. According to the present results, the expression levels of ANXA2 and ANXA2P3 were significantly increased in liver tissues from patients with BA. In addition, knocking down the expression of ANXA2P3 and ANXA2 may result in reduced liver cell proliferation, cell cycle arrest in G1 phase and increased apoptosis of liver cells in vitro. Furthermore, in cells in which ANXA2 and ANXA2P3 were overexpressed, cell apoptosis was reduced and cell cycle arrest in G2 phase. Taken together, these results indicated that ANXA2P3 and ANXA2 may have protective effects against liver injury progression and may be considered biomarkers in patients with BA.
Collapse
Affiliation(s)
- Yeletai Nuerzhati
- Department of Pediatric Hepatobiliary Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Rui Dong
- Department of Pediatric Hepatobiliary Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Zai Song
- Department of Pediatric Hepatobiliary Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Shan Zheng
- Department of Pediatric Hepatobiliary Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
8
|
Schuliga M, Grainge C, Westall G, Knight D. The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. Int J Biochem Cell Biol 2018; 97:108-117. [PMID: 29474926 DOI: 10.1016/j.biocel.2018.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/27/2022]
Abstract
Fibrosis causes irreversible damage to lung structure and function in restrictive lung diseases such as idiopathic pulmonary fibrosis (IPF). Extravascular coagulation involving fibrin formation in the intra-alveolar compartment is postulated to have a pivotal role in the development of pulmonary fibrosis, serving as a provisional matrix for migrating fibroblasts. Furthermore, proteases of the coagulation and plasminogen activation (plasminergic) systems that form and breakdown fibrin respectively directly contribute to pulmonary fibrosis. The coagulants, thrombin and factor Xa (FXa) evoke fibrogenic effects via cleavage of the N-terminus of protease-activated receptors (PARs). Whilst the formation and activity of plasmin, the principle plasminergic mediator is suppressed in the airspaces of patients with IPF, localized increases are likely to occur in the lung interstitium. Plasmin-evoked proteolytic activation of factor XII (FXII), matrix metalloproteases (MMPs) and latent, matrix-bound growth factors such as epidermal growth factor (EGF) indirectly implicate plasmin in pulmonary fibrosis. Another plasminergic protease, urokinase plasminogen activator (uPA) is associated with regions of fibrosis in the remodelled lung of IPF patients and elicits fibrogenic activity via binding its receptor (uPAR). Plasminogen activator inhibitor-1 (PAI-1) formed in the injured alveolar epithelium also contributes to pulmonary fibrosis in a manner that involves vitronectin binding. This review describes the mechanisms by which components of the two systems primarily involved in fibrin homeostasis contribute to interstitial fibrosis, with a particular focus on IPF. Selectively targeting the receptor-mediated mechanisms of coagulant and plasminergic proteases may limit pulmonary fibrosis, without the bleeding complications associated with conventional anti-coagulant and thrombolytic therapies.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.
| | - Christopher Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Glen Westall
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada
| |
Collapse
|
9
|
Miura A, Ishiguro K, Koizumi K, Yaita Y, Ozaki-Masuzawa Y, Hosono T, Seki T. Effects of pharmacological inhibition of plasminogen binding on liver regeneration in rats. Biosci Biotechnol Biochem 2017; 81:2105-2111. [PMID: 28914172 DOI: 10.1080/09168451.2017.1372180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The fibrinolysis system is thought to play an important role in liver regeneration. We previously found that plasminogen (Plg) is localized to the cell surface of regenerating liver tissue as well as proliferating hepatocytes in vitro. Here, we investigated the significance of Plg binding to the cell surface during liver regeneration. Pre-administration of tranexamic acid (TXA), which is a competitive inhibitor of Plg binding, to hepatectomized rats mildly delayed restoration of liver weight in vivo. Although binding of Plg to the cell membrane decreased following TXA administration, TXA showed little effect on hepatocyte proliferation in rats. We also discovered that Plg treatment did not stimulate proliferation of primary rat hepatocytes in vitro. These results suggest that Plg/plasmin potentiates liver regeneration via a pathway distinct from those through which hepatocyte proliferation is stimulated.
Collapse
Affiliation(s)
- Atsushi Miura
- a Department of Applied Life Sciences , Nihon University Graduate School of Bioresource Sciences , Fujisawa , Japan
| | - Kyoko Ishiguro
- b Department of Chemistry and Life Science , Nihon University College of Bioresource Sciences , Fujisawa , Japan
| | - Kouta Koizumi
- b Department of Chemistry and Life Science , Nihon University College of Bioresource Sciences , Fujisawa , Japan
| | - Yuki Yaita
- b Department of Chemistry and Life Science , Nihon University College of Bioresource Sciences , Fujisawa , Japan
| | - Yori Ozaki-Masuzawa
- b Department of Chemistry and Life Science , Nihon University College of Bioresource Sciences , Fujisawa , Japan
| | - Takashi Hosono
- a Department of Applied Life Sciences , Nihon University Graduate School of Bioresource Sciences , Fujisawa , Japan.,b Department of Chemistry and Life Science , Nihon University College of Bioresource Sciences , Fujisawa , Japan
| | - Taiichiro Seki
- a Department of Applied Life Sciences , Nihon University Graduate School of Bioresource Sciences , Fujisawa , Japan.,b Department of Chemistry and Life Science , Nihon University College of Bioresource Sciences , Fujisawa , Japan
| |
Collapse
|
10
|
Wang Z, Wei Q, Han L, Cao K, Lan T, Xu Z, Wang Y, Gao Y, Xue J, Shan F, Feng J, Xie X. Tenascin-c renders a proangiogenic phenotype in macrophage via annexin II. J Cell Mol Med 2017; 22:429-438. [PMID: 28857429 PMCID: PMC5742692 DOI: 10.1111/jcmm.13332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022] Open
Abstract
Tenascin-c is an extracellular matrix glycoprotein, the expression of which relates to the progression of atherosclerosis, myocardial infarction and heart failure. Annexin II acts as a cell surface receptor of tenascin-c. This study aimed to delineate the role of tenascin-c and annexin II in macrophages presented in atherosclerotic plaque. Animal models with atherosclerotic lesions were established using ApoE-KO mice fed with high-cholesterol diet. The expression of tenascin-c and annexin II in atherosclerotic lesions was determined by qRT-PCR, Western blot and immunohistochemistry analysis. Raw 264.7 macrophages and human primary macrophages were exposed to 5, 10 and 15 μg/ml tenascin-c for 12 hrs. Cell migration as well as the proangiogenic ability of macrophages was examined. Additionally, annexin II expression was delineated in raw 264.7 macrophages under normal condition (20% O2 ) for 12 hrs or hypoxic condition (1% O2 ) for 6-12 hrs. The expression of tenascin-c and annexin II was markedly augmented in lesion aorta. Tenascin-c positively regulated macrophage migration, which was dependent on the expression of annexin II in macrophages. VEGF release from macrophages and endothelial tube induction by macrophage were boosted by tenascin-c and attenuated by annexin II blocking. Furthermore, tenascin-c activated Akt/NF-κB and ERK signalling through annexin II. Lastly, hypoxia conditioning remarkably facilitates annexin II expression in macrophages through hypoxia-inducible factor (HIF)-1α but not HIF-2α. In conclusion, tenascin-c promoted macrophage migration and VEGF expression through annexin II, the expression of which was modulated by HIF-1α.
Collapse
Affiliation(s)
- Zhiyang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Qi Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Liang Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Keqing Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Tianfeng Lan
- Institute of Integrated Medical Information, Xi'an, China
| | - Zhenjie Xu
- Institute of Integrated Medical Information, Xi'an, China
| | - Yingjuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yuan Gao
- Department of Traditional Chinese Medicine, College of Life Science, Northwest University, Xi'an, China
| | - Jing Xue
- Department of Traditional Chinese Medicine, College of Life Science, Northwest University, Xi'an, China
| | - Fei Shan
- Department of Cardiovascular Surgery, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Jun Feng
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.,Institute of Integrated Medical Information, Xi'an, China
| |
Collapse
|
11
|
Schuliga M, Jaffar J, Berhan A, Langenbach S, Harris T, Waters D, Lee PVS, Grainge C, Westall G, Knight D, Stewart AG. Annexin A2 contributes to lung injury and fibrosis by augmenting factor Xa fibrogenic activity. Am J Physiol Lung Cell Mol Physiol 2017; 312:L772-L782. [DOI: 10.1152/ajplung.00553.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
In lung injury and disease, including idiopathic pulmonary fibrosis (IPF), extravascular factor X is converted into factor Xa (FXa), a coagulant protease with fibrogenic actions. Extracellular annexin A2 binds to FXa, augmenting activation of the protease-activated receptor-1 (PAR-1). In this study, the contribution of annexin A2 in lung injury and fibrosis was investigated. Annexin A2 immunoreactivity was observed in regions of fibrosis, including those associated with fibroblasts in lung tissue of IPF patients. Furthermore, annexin A2 was detected in the conditioned media and an EGTA membrane wash of human lung fibroblast (LF) cultures. Incubation with human plasma (5% vol/vol) or purified FXa (15–50 nM) evoked fibrogenic responses in LF cultures, with FXa increasing interleukin-6 (IL-6) production and cell number by 270 and 46%, respectively ( P < 0.05, n = 5–8). The fibrogenic actions of plasma or FXa were attenuated by the selective FXa inhibitor apixaban (10 μM, or antibodies raised against annexin A2 or PAR-1 (2 μg/ml). FXa-stimulated LFs from IPF patients ( n = 6) produced twice as much IL-6 as controls ( n = 10) ( P < 0.05), corresponding with increased levels of extracellular annexin A2. Annexin A2 gene deletion in mice reduced bleomycin-induced increases in bronchoalveolar lavage fluid (BALF) IL-6 levels and cell number (* P < 0.05; n = 4–12). Lung fibrogenic gene expression and dry weight were reduced by annexin A2 gene deletion, but lung levels of collagen were not. Our data suggest that annexin A2 contributes to lung injury and fibrotic disease by mediating the fibrogenic actions of FXa. Extracellular annexin A2 is a potential target for the treatment of IPF.
Collapse
Affiliation(s)
- Michael Schuliga
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jade Jaffar
- Department of Allergy, Immunology, and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Asres Berhan
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Shenna Langenbach
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Trudi Harris
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - David Waters
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Peter V. S. Lee
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia; and
| | - Glen Westall
- Department of Allergy, Immunology, and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alastair G. Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Deng Y, Zhang Y, Wu H, Shi Z, Sun X. Knockdown of FSTL1 inhibits PDGF‑BB‑induced human airway smooth muscle cell proliferation and migration. Mol Med Rep 2017; 15:3859-3864. [PMID: 28393245 DOI: 10.3892/mmr.2017.6439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/14/2016] [Indexed: 11/05/2022] Open
Abstract
Abnormal proliferation and migration of airway smooth muscle (ASM) cells serve roles in airway remodeling, and contribute to airway hyper‑responsiveness. Follistatin‑like protein 1 (FSTL1) is a secreted glycoprotein that belongs to the follistatin family of proteins. It was reported that in the lungs of patients suffering from severe asthma, FSTL1 is highly expressed by macrophages. However, the role of FSTL1 in ASM cell proliferation and migration remains unknown. The present study aimed to investigate the role of FSTL1 in cell proliferation and migration mediated by platelet‑derived growth factor subunit B (PDGF‑BB) in human ASM cells. The results of the present study demonstrated that PDGF‑BB stimulation upregulated FSTL1 expression levels in ASM cells in vitro. Knockdown of FSTL1 inhibited cell proliferation and arrested the cell cycle in the G2/M phase in PDGF‑BB‑stimulated ASM cells. Additionally, knockdown of FSTL1 inhibited PDGF‑BB‑induced ASM cell migration. Furthermore, FSTL1 knockdown caused the downregulation of phosphorylated (p)‑extracellular signal‑regulated kinase (ERK) and p‑protein kinase B (AKT) expression levels induced by PDGF‑BB in ASM cells. In conclusion, the present study demonstrated that knockdown of FSTL1 inhibited ASM cell proliferation and migration induced by PDGF‑BB, at least partially via inhibiting the activation of ERK and AKT. FSTL1 may therefore represent a novel therapeutic target for airway remodeling in childhood asthma.
Collapse
Affiliation(s)
- Yuelin Deng
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yao Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Huajie Wu
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhaoling Shi
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
13
|
Schuliga M, Jaffar J, Harris T, Knight DA, Westall G, Stewart AG. The fibrogenic actions of lung fibroblast-derived urokinase: a potential drug target in IPF. Sci Rep 2017; 7:41770. [PMID: 28139758 PMCID: PMC5282574 DOI: 10.1038/srep41770] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/28/2016] [Indexed: 11/16/2022] Open
Abstract
The role of urokinase plasminogen activator (uPA) in idiopathic pulmonary fibrosis (IPF) remains unclear. uPA-generated plasmin has potent fibrogenic actions involving protease activated receptor-1 (PAR-1) and interleukin-6 (IL-6). Here we characterize uPA distribution or levels in lung tissue and sera from IPF patients to establish the mechanism of its fibrogenic actions on lung fibroblasts (LFs). uPA immunoreactivity was detected in regions of fibrosis including fibroblasts of lung tissue from IPF patients (n = 7). Serum uPA levels and activity were also higher in IPF patients (n = 18) than controls (n = 18) (P < 0.05), being negatively correlated with lung function as measured by forced vital capacity (FVC) %predicted (P < 0.05). The culture supernatants of LFs from IPF patients, as compared to controls, showed an increase in plasmin activity after plasminogen incubation (5–15 μg/mL), corresponding with increased levels of uPA and IL-6 (n = 5–6, P < 0.05). Plasminogen-induced increases in plasmin activity and IL-6 levels were attenuated by reducing uPA and/or PAR-1 expression by RNAi. Plasmin(ogen)-induced mitogenesis was also attenuated by targeting uPA, PAR-1 or IL-6. Our data shows uPA is formed in active regions of fibrosis in IPF lung and contributes to LF plasmin generation, IL-6 production and proliferation. Urokinase is a potential target for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Michael Schuliga
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jade Jaffar
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Trudi Harris
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada
| | - Glen Westall
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Alastair G Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Kling T, Ferrarese R, Ó hAilín D, Johansson P, Heiland DH, Dai F, Vasilikos I, Weyerbrock A, Jörnsten R, Carro MS, Nelander S. Integrative Modeling Reveals Annexin A2-mediated Epigenetic Control of Mesenchymal Glioblastoma. EBioMedicine 2016; 12:72-85. [PMID: 27667176 PMCID: PMC5078587 DOI: 10.1016/j.ebiom.2016.08.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/02/2022] Open
Abstract
Glioblastomas are characterized by transcriptionally distinct subtypes, but despite possible clinical relevance, their regulation remains poorly understood. The commonly used molecular classification systems for GBM all identify a subtype with high expression of mesenchymal marker transcripts, strongly associated with invasive growth. We used a comprehensive data-driven network modeling technique (augmented sparse inverse covariance selection, aSICS) to define separate genomic, epigenetic, and transcriptional regulators of glioblastoma subtypes. Our model identified Annexin A2 (ANXA2) as a novel methylation-controlled positive regulator of the mesenchymal subtype. Subsequent evaluation in two independent cohorts established ANXA2 expression as a prognostic factor that is dependent on ANXA2 promoter methylation. ANXA2 knockdown in primary glioblastoma stem cell-like cultures suppressed known mesenchymal master regulators, and abrogated cell proliferation and invasion. Our results place ANXA2 at the apex of a regulatory cascade that determines glioblastoma mesenchymal transformation and validate aSICS as a general methodology to uncover regulators of cancer subtypes. Glioblastoma, a form of brain cancer, is characterised by distinct molecular subtypes: proneural, classical and mesenchymal. We used a comprehensive data-driven strategy, aSICS, to elucidate the cellular mechanisms behind the subtypes. Epigenetic control of Annexin A2 (ANXA2) was predicted and confirmed to determine the invasive mesenchymal subtype.
Most cancers have distinct and clinically relevant transcriptional subtypes, but the underlying cellular mechanism behind such subtypes is often hard to resolve. We show that joint analysis across several layers of genomics data can uncover subtype regulators with good accuracy. Our method is applied to the brain cancer glioblastoma multiforme (GBM), revealing that the invasive mesenchymal subtype is driven by epigenetic modulation of the expression of Annexin A2 (ANXA2). Our analysis adds significantly to our understanding of brain cancer subtypes and open for new potential treatment options. The proposed computational technique can be applied to other cancers as well.
Collapse
Affiliation(s)
- Teresia Kling
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Roberto Ferrarese
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Darren Ó hAilín
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, Schnzlestrasse 1, University of Freiburg, D-79104 Freiburg, Germany
| | - Patrik Johansson
- Dept of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Fangping Dai
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ioannis Vasilikos
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Astrid Weyerbrock
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Rebecka Jörnsten
- Mathematical Sciences, University of Gothenburg and Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Maria Stella Carro
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Sven Nelander
- Dept of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
15
|
Schuliga M, Royce SG, Langenbach S, Berhan A, Harris T, Keenan CR, Stewart AG. The Coagulant Factor Xa Induces Protease-Activated Receptor-1 and Annexin A2-Dependent Airway Smooth Muscle Cytokine Production and Cell Proliferation. Am J Respir Cell Mol Biol 2016; 54:200-9. [PMID: 26120939 DOI: 10.1165/rcmb.2014-0419oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During asthma exacerbation, plasma circulating coagulant factor X (FX) enters the inflamed airways and is activated (FXa). FXa may have an important role in asthma, being involved in thrombin activation and an agonist of protease-activated receptor-1 (PAR-1). Extracellular annexin A2 and integrins are also implicated in PAR-1 signaling. In this study, the potential role of PAR-1 in mediating the effects of FXa on human airway smooth muscle (ASM) cell cytokine production and proliferation was investigated. FXa (5-50 nM), but not FX, stimulated increases in ASM IL-6 production and cell number after 24- and 48-hour incubation, respectively (P < 0.05; n = 5). FXa (15 nM) also stimulated increases in the levels of mRNA for cytokines (IL-6), cell cycle-related protein (cyclin D1), and proremodeling proteins (FGF-2, PDGF-B, CTGF, SM22, and PAI-1) after 3-hour incubation (P < 0.05; n = 4). The actions of FXa were insensitive to inhibition by hirudin (1 U/ml), a selective thrombin inhibitor, but were attenuated by SCH79797 (100 nM), a PAR-1 antagonist, or Cpd 22 (1 μM), an inhibitor of integrin-linked kinase. The selective targeting of PAR-1, annexin A2, or β1-integrin by small interfering RNA and/or by functional blocking antibodies also attenuated FXa-evoked responses. In contrast, the targeting of annexin A2 did not inhibit thrombin-stimulated ASM function. In airway biopsies of patients with asthma, FXa and annexin A2 were detected in the ASM bundle by immunohistochemistry. These findings establish FXa as a potentially important asthma mediator, stimulating ASM function through actions requiring PAR-1 and annexin A2 and involving integrin coactivation.
Collapse
Affiliation(s)
- Michael Schuliga
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Simon G Royce
- 2 Department Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Shenna Langenbach
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Asres Berhan
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Trudi Harris
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Christine R Keenan
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| | - Alastair G Stewart
- 1 Lung Health Research Centre, Department Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; and
| |
Collapse
|
16
|
Zhao LP, Xu TM, Kan MJ, Xiao YC, Cui MH. A novel uPAg-KPI fusion protein inhibits the growth and invasion of human ovarian cancer cells in vitro. Int J Mol Med 2016; 37:1310-6. [PMID: 27035617 PMCID: PMC4829131 DOI: 10.3892/ijmm.2016.2540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/17/2016] [Indexed: 12/19/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) acts by breaking down the basement membrane and is involved in cell proliferation, migration and invasion. These actions are mediated by binding to the uPA receptor (uPAR) via its growth factor domain (GFD). The present study evaluated the effects of uPAg-KPI, a fusion protein of uPA-GFD and a kunitz protease inhibitor (KPI) domain that is present in the amyloid β-protein precursor. Using SKOV-3 cells, an ovarian cancer cell line, we examined cell viability, migration, invasion and also protein expression. Furthermore, we examined wound healing, and migration and invasion using a Transwell assay. Our data showed that uPAg-KPI treatment reduced the viability of ovarian cancer SKOV-3 cells in both a concentration and time-dependent manner by arresting tumor cells at G1/G0 phase of the cell cycle. The IC50 of uPAg-KPI was 0.5 µg/µl after 48 h treatment. At this concentration, uPAg-KPI also inhibited tumor cell colony formation, wound closure, as well as cell migration and invasion capacity. At the protein level, western blot analysis demonstrated that uPAg-KPI exerted no significant effect on the expression of total extracellular signal-regulated kinase (ERK)1/ERK2 and AKT, whereas it suppressed levels of phosphorylated ERK1/ERK2 and AKT. Thus, we suggest that this novel uPAg-KPI fusion protein reduced cell viability, colony formation, wound healing and the invasive ability of human ovarian cancer SKOV-3 cells in vitro by regulating ERK and AKT signaling. Further studies using other cell lines will confirm these findings.
Collapse
Affiliation(s)
- Li-Ping Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Tian-Min Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Mu-Jie Kan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye-Chen Xiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Man-Hua Cui
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
17
|
The inflammatory actions of coagulant and fibrinolytic proteases in disease. Mediators Inflamm 2015; 2015:437695. [PMID: 25878399 PMCID: PMC4387953 DOI: 10.1155/2015/437695] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 12/30/2022] Open
Abstract
Aside from their role in hemostasis, coagulant and fibrinolytic proteases are important mediators of inflammation in diseases such as asthma, atherosclerosis, rheumatoid arthritis, and cancer. The blood circulating zymogens of these proteases enter damaged tissue as a consequence of vascular leak or rupture to become activated and contribute to extravascular coagulation or fibrinolysis. The coagulants, factor Xa (FXa), factor VIIa (FVIIa), tissue factor, and thrombin, also evoke cell-mediated actions on structural cells (e.g., fibroblasts and smooth muscle cells) or inflammatory cells (e.g., macrophages) via the proteolytic activation of protease-activated receptors (PARs). Plasmin, the principle enzymatic mediator of fibrinolysis, also forms toll-like receptor-4 (TLR-4) activating fibrin degradation products (FDPs) and can release latent-matrix bound growth factors such as transforming growth factor-β (TGF-β). Furthermore, the proteases that convert plasminogen into plasmin (e.g., urokinase plasminogen activator) evoke plasmin-independent proinflammatory actions involving coreceptor activation. Selectively targeting the receptor-mediated actions of hemostatic proteases is a strategy that may be used to treat inflammatory disease without the bleeding complications of conventional anticoagulant therapies. The mechanisms by which proteases of the coagulant and fibrinolytic systems contribute to extravascular inflammation in disease will be considered in this review.
Collapse
|
18
|
Dai Y, Li F, Wu L, Wang R, Li P, Yan S, Xu H, Xia M, Bai C. Roxithromycin treatment inhibits TGF-β1-induced activation of ERK and AKT and down-regulation of caveolin-1 in rat airway smooth muscle cells. Respir Res 2014; 15:96. [PMID: 25109503 PMCID: PMC4256937 DOI: 10.1186/s12931-014-0096-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/05/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Roxithromycin (RXM) has been widely used in asthma treatment; however, the mechanism has not been fully understood. The aim of our study was to investigate the underlying mechanism of RXM treatment in mediating the effect of transforming growth factor (TGF)-β1 on airway smooth muscle cells (ASMCs) proliferation and caveolinn-1 expression. METHODS Firstly, the rat ovalbumin (OVA) model was built according to the previous papers. Rat ASMCs were prepared and cultured, and then TGF-β1 production in ASMCs was measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the proliferation of ASMCs was determined using cell counting kit (CCK-8) assay. Additionally, the expressions of caveolin-1, phosphorylated-ERK1/2 (p-ERK1/2) and phosphorylated-AKT (p-AKT) in ASMCs treated with or without PD98059 (an ERK1/2 inhibitor), wortannin (a PI3K inhibitor), β-cyclodextrin (β-CD) and RXM were measured by Western blot. Finally, data were evaluated using t-test or one-way ANOVA, and then a P value < 0.05 was set as a threshold. RESULTS Compared with normal control, TGF-β1 secretion was significantly increased in asthmatic ASMCs; meanwhile, TGF-β1 promoted ASMCs proliferation (P < 0.05). However, ASMCs proliferation was remarkably inhibited by RXM, β-CD, PD98059 and wortmannin (P < 0.05). Moreover, the expressions of p-ERK1/2 and p-AKT were increased and peaked at 20 min after TGF-β1 stimulation, and then suppressed by RXM. Further, caveolin-1 level was down-regulated by TGF-β1 and up-regulated by inhibitors and RXM. CONCLUSION Our findings demonstrate that RXM treatment inhibits TGF-β1-induced activation of ERK and AKT and down-regulation of caveolin-1, which may be the potential mechanism of RXM protection from chronic inflammatory diseases, including bronchial asthma.
Collapse
|
19
|
Shang RZ, Dai B, Wang DS. Role of uPA/uPAR system in tumors. Shijie Huaren Xiaohua Zazhi 2014; 22:1235-1240. [DOI: 10.11569/wcjd.v22.i9.1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Urokinase type plasminogen activator (uPA) is a major activator of plasminogen, and uPA receptor is the specific receptor of uPA. The uPA/uPAR system regulates plasminogen activity, which participates in degradation and remodeling of the extracellular matrix (ECM), and is involved in many pathophysiological processes. In neoplasms, the activation of plasminogen into plasmin caused by the uPA/uPAR system induces the degradation of components in the basement membrane as well as in the ECM, which provides a favorable microenvironment for tumor invasion and metastasis. In addition, the uPA/uPAR system regulates tumor proliferation and angiogenesis. In this review, we will discuss the role of the uPA/uPAR system in tumors and its potential clinical implications.
Collapse
|
20
|
Alkhouri H, Poppinga WJ, Tania NP, Ammit A, Schuliga M. Regulation of pulmonary inflammation by mesenchymal cells. Pulm Pharmacol Ther 2014; 29:156-65. [PMID: 24657485 DOI: 10.1016/j.pupt.2014.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/01/2014] [Accepted: 03/10/2014] [Indexed: 01/13/2023]
Abstract
Pulmonary inflammation and tissue remodelling are common elements of chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and pulmonary hypertension (PH). In disease, pulmonary mesenchymal cells not only contribute to tissue remodelling, but also have an important role in pulmonary inflammation. This review will describe the immunomodulatory functions of pulmonary mesenchymal cells, such as airway smooth muscle (ASM) cells and lung fibroblasts, in chronic respiratory disease. An important theme of the review is that pulmonary mesenchymal cells not only respond to inflammatory mediators, but also produce their own mediators, whether pro-inflammatory or pro-resolving, which influence the quantity and quality of the lung immune response. The notion that defective pro-inflammatory or pro-resolving signalling in these cells potentially contributes to disease progression is also discussed. Finally, the concept of specifically targeting pulmonary mesenchymal cell immunomodulatory function to improve therapeutic control of chronic respiratory disease is considered.
Collapse
Affiliation(s)
- Hatem Alkhouri
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Wilfred Jelco Poppinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands; University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Navessa Padma Tania
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands; University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Alaina Ammit
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Schuliga
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; Lung Health Research Centre, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|