1
|
Zhang W, Chen X, Deng H, Yang X, Cai S, Yang H, Ren H, Yan Y. Thioether functionalized degradable poly(amino acids) and its calcium sulfate/calcium hydrogen phosphate composites: Reducing oxidative stress and promoting osteogenesis. Colloids Surf B Biointerfaces 2025; 248:114485. [PMID: 39754887 DOI: 10.1016/j.colsurfb.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
The imbalance of redox homeostasis, especially the abnormal levels of reactive oxygen species (ROS), is a key obstacle in the bone repair process. Therefore, developing materials capable of scavenging ROS and modulating the microenvironment of bone defects is crucial for promoting bone repair. In this study, to endow poly(amino acids) (PAA) and its composites with anti-oxidative stress properties and enhanced osteogenic differentiation, we designed and prepared a calcium sulfate/calcium hydrogen phosphate/poly(amino acids) (PCDM) composite material with a thioether structure (-S-) in the molecular chain of PAA matrix through situ polymerization and physical blending method. The results showed that the thioether was successfully introduced into the polymer, and the intrinsic viscosities of the poly(amino acids) ranged from 0.27 to 0.73 dL/g. PCDM materials exhibited good mechanical properties, with a compressive strength ranging from 16.28 to 33.83 MPa. The degradation performance results showed that the composite materials had a weight loss of 23.9-35.3 % after four weeks. The antioxidant stress results showed that the PCDM composite materials scavenged 67.6 %-78.3 % of DPPH radicals after 24 h and 61.4 %-93.6 % of ABTS radicals after 4 h, effectively reducing ROS levels in mouse bone mesenchymal stem cells. The cytotoxicity and osteogenic differentiation results showed that the materials had cytocompatibility and could promote alkaline phosphatase secretion and mineralized nodule formation. In conclusion, PCDM materials might broaden the application of poly(amino acids) composites in bone defect repair by regulating the ROS microenvironment and promoting the osteogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Wei Zhang
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Xiaolu Chen
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Hao Deng
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Xinyue Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Shijie Cai
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Hulin Yang
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Haohao Ren
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China.
| | - Yonggang Yan
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China.
| |
Collapse
|
2
|
Xu Y, Yang Y, Shi Y, Li B, Xie Y, Le G. Dietary methionine supplementation improves cognitive dysfunction associated with transsulfuration pathway upregulation in subacute aging mice. NPJ Sci Food 2024; 8:104. [PMID: 39702349 DOI: 10.1038/s41538-024-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
To explore the effects of methionine (Met) supplementation on cognitive dysfunction and the associated mechanisms in aging mice. The mice were administrated 0.15 g/kg/day D-galactose subcutaneously and fed a normal (0.86% Met) or a Met-supplemented diet (1.72% Met) for 11 weeks. Behavioral experiments were conducted, and we measured the plasma metabolite levels, hippocampal and plasma redox and inflammatory states, and hippocampal transsulfuration pathway-related parameters. Met supplementation prevented aging-induced anxiety and cognitive deficiencies, and normalized the plasma levels of multiple systemic metabolites (e.g., betaine, taurine, and choline). Furthermore, dietary Met supplementation abolished oxidative stress and inflammation, selectively modulated the expression of multiple cognition-related genes and proteins, and increased flux via the transsulfuration pathway in the hippocampi of aging mice, with significant increase in H2S and glutathione production. Our findings suggest that dietary Met supplementation prevented cognitive deficiencies in aging mice, probably because of increased flux via the transsulfuration pathway.
Collapse
Affiliation(s)
- Yuncong Xu
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhui Yang
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.
| | - Yonghui Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Bowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanli Xie
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Guowei Le
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Zheng Y, Cheng S, Li H, Sun Y, Guo L, Man C, Zhang Y, Zhang W, Jiang Y. Lacticaseibacillus paracasei JM053 alleviates osteoporosis in rats by increasing the content of soy isoflavone aglycones in fermented soymilk. Food Funct 2024; 15:12118-12133. [PMID: 39575987 DOI: 10.1039/d4fo04381b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Lacticaseibacillus paracasei JM053 has a significant ability to convert soy isoflavones and can be used as a fermentation strain to ferment soymilk, thereby increasing the content of free aglycones in soymilk and thus providing an effective method to alleviate osteoporosis symptoms. This study aims to establish a rat model of osteoporosis induced by dexamethasone (DEX) and clarify the alleviating effect of soymilk fermented with Lacticaseibacillus paracasei JM053 on osteoporosis. Research has shown that fermented soymilk with Lacticaseibacillus paracasei JM053 can inhibit weight loss in rats caused by DEX, regulate the expression of inflammatory factors such as tumor necrosis factor-α (TNF-α) towards normal levels, and increase levels of alkaline phosphatase (ALP) and osteocalcin (OCN) to promote bone synthesis. By observing the microstructure of bone tissue through microCT and Goldner staining, it was found that, compared with the model group, fermented soymilk with Lacticaseibacillus paracasei JM053 can alleviate the damage to bone tissue structure caused by DEX by increasing the number of bone trabeculae and reducing fracture. Fermented soymilk with Lacticaseibacillus paracasei JM053 can alleviate bone metabolism disorders by regulating gut microbiota and metabolite content. This study provides theoretical and data-based support for developing functional products that can alleviate osteoporosis.
Collapse
Affiliation(s)
- Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Shasha Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Hongxuan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yilin Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China
| |
Collapse
|
4
|
Li SR, Li DW, Man QW. Proteomic profile of tissue-derived extracellular vesicles from benign odontogenic lesions. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101921. [PMID: 38795909 DOI: 10.1016/j.jormas.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Benign odontogenic lesions (BOLs) can cause severe jaw bone defects and compromise the quality of life of patients. Extracellular vesicles (EVs) are well-established and versatile players in mediating pathophysiological events. EVs in the interstitial space (tissue-derived EVs or Ti-EVs) possess higher specificity and sensitivity in disease-related biomarker discovery. However, the role of Ti-EV-loaded proteins in mediating the development of BOLs has remained untapped. Herein, we aim to explore the contribution of Ti-EV-loaded proteins to the development of BOLs. METHODS Samples were obtained from 3 with dental follicle, 3 with dentigerous cyst (DC), 7 with odontogenic keratocyst (OKC), and 3 patients with ameloblastoma (AM). Tissue-derived EVs were then extracted, purified, and validated using ultracentrifugation, transmission electron microscopy, and western blotting. Proteins from Ti-EVs were analyzed using LC-ESI tandem mass spectroscopy and differentially expressed proteins were screened, which was then validated by immunohistochemistry and immunofluorescence assays. RESULTS The protein profile of Ti-EVs in each group was mapped by LC-MS analysis. The top 10 abundant proteins in BOL-derived Ti-EVs were COL6A3, COL6A1, ALB, HIST1H4A, HBB, ACTB, HIST1H2BD, ANXA2, COL6A2 and FBN1. Additionally, unique proteins in the Ti-EVs from various lesions were identified. Moreover, focal adhesion kinase (FAK) and myeloid differentiation primary response 88 (MyD88) showed higher expressions in Ti-EVs derived from OKC and AM, which were confirmed by immunohistochemistry and immunofluorescence staining. CONCLUSIONS Ti-EVs containing FAK and MyD88 might be related to the development of OKC and AM, which can be potential therapeutic targets.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China
| | - Dong-Wen Li
- Department of Orthodontic, Affiliated Stomatological Hospital of Jiamusi University, Jiamusi 154003, China
| | - Qi-Wen Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China; Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China..
| |
Collapse
|
5
|
Zhou L, Yan Z, Yang S, Lu G, Nie Y, Ren Y, Xue Y, Shi JS, Xu ZH, Geng Y. High methionine intake alters gut microbiota and lipid profile and leads to liver steatosis in mice. Food Funct 2024; 15:8053-8069. [PMID: 38989659 DOI: 10.1039/d4fo01613k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Methionine is an important sulfur-containing amino acid. Health effects of both methionine restriction (MR) and methionine supplementation (MS) have been studied. This study aimed to investigate the impact of a high-methionine diet (HMD) (1.64% methionine) on both the gut and liver functions in mice through multi-omic analyses. Hepatic steatosis and compromised gut barrier function were observed in mice fed the HMD. RNA-sequencing (RNA-seq) analysis of liver gene expression patterns revealed the upregulation of lipid synthesis and degradation pathways, cholesterol metabolism and inflammation-related nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Metagenomic sequencing of cecal content demonstrated a shift in gut microbial composition with an increased abundance of opportunistic pathogens and gut microbial functions with up-regulated lipopolysaccharide (LPS) biosynthesis in mice fed HMD. Metabolomic study of cecal content showed an altered gut lipid profile and the level of bioactive lipids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitoylethanolamide (PEA), linoleoyl ethanolamide (LEA) and arachidonoyl ethanolamide (AEA), that carry anti-inflammatory effects significantly reduced in the gut of mice fed the HMD. Correlation analysis demonstrated that gut microbiota was highly associated with liver and gut functions and gut bioactive lipid content. In conclusion, this study suggested that the HMD exerted negative impacts on both the gut and liver, and an adequate amount of methionine intake should be carefully determined to ensure normal physiological function without causing adverse effects.
Collapse
Affiliation(s)
- Lingxi Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhen Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Songfan Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Gexue Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Yawen Nie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Zheng-Hong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Innovation Center for Advanced Brewing Science and Technology, Sichuan University, Chengdu, China.
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Liang B, Shi X, Wang X, Ma C, Leslie WD, Lix LM, Shi X, Kan B, Yang S. Association between amino acids and recent osteoporotic fracture: a matched incident case-control study. Front Nutr 2024; 11:1360959. [PMID: 38567247 PMCID: PMC10985241 DOI: 10.3389/fnut.2024.1360959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Context Osteoporotic fracture is a major public health issue globally. Human research on the association between amino acids (AAs) and fracture is still lacking. Objective To examine the association between AAs and recent osteoporotic fractures. Methods This age and sex matched incident case-control study identified 44 recent x-ray confirmed fracture cases in the Second Hospital of Jilin University and 88 community-based healthy controls aged 50+ years. Plasma AAs were measured by high performance liquid chromatography coupled with mass spectrometry. After adjusting for covariates (i.e., body mass index, milk intake >1 time/week, falls and physical activity), we conducted conditional logistical regression models to test the association between AAs and fracture. Results Among cases there were 23 (52.3%) hip fractures and 21 (47.7%) non-hip fractures. Total, essential, and non-essential AAs were significantly lower in cases than in controls. In the multivariable conditional logistic regression models, after adjusting for covariates, each standard deviation increase in the total (odds ratio [OR]: 0.304; 95% confidence interval [CI]: 0.117-0.794), essential (OR: 0.408; 95% CI: 0.181-0.923) and non-essential AAs (OR: 0.290; 95%CI: 0.107-0.782) was negatively associated with recent fracture. These inverse associations were mainly found for hip fracture, rather than non-hip fractures. Among these AAs, lysine, alanine, arginine, glutamine, histidine and piperamide showed the significantly negative associations with fracture. Conclusion There was a negative relationship between AAs and recent osteoporotic fracture; such relationship appeared to be more obvious for hip fracture.
Collapse
Affiliation(s)
- Bing Liang
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiao tong University, Xi’an, China
| | - Xinyan Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xinwei Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chao Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - William D. Leslie
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Lisa M. Lix
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Bo Kan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shuman Yang
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Zhu X, Du L, Zhang L, Ding L, Xu W, Lin X. The critical role of toll-like receptor 4 in bone remodeling of osteoporosis: from inflammation recognition to immunity. Front Immunol 2024; 15:1333086. [PMID: 38504994 PMCID: PMC10948547 DOI: 10.3389/fimmu.2024.1333086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disorder. Recently, increasing numbers of studies have demonstrated that Toll-like receptor 4 (TLR4, a receptor located on the surface of osteoclasts and osteoblasts) plays a pivotal role in the development of osteoporosis. Herein, we performed a comprehensive review to summarize the findings from the relevant studies within this topic. Clinical data showed that TLR4 polymorphisms and aberrant TLR4 expression have been associated with the clinical significance of osteoporosis. Mechanistically, dysregulation of osteoblasts and osteoclasts induced by abnormal expression of TLR4 is the main molecular mechanism underlying the pathological processes of osteoporosis, which may be associated with the interactions between TLR4 and NF-κB pathway, proinflammatory effects, ncRNAs, and RUNX2. In vivo and in vitro studies demonstrate that many promising substances or agents (i.e., methionine, dioscin, miR-1906 mimic, artesunate, AEG-1 deletion, patchouli alcohol, and Bacteroides vulgatus) have been able to improve bone metabolism (i.e., inhibits bone resorption and promotes bone formation), which may partially attribute to the inhibition of TLR4 expression. The present review highlights the important role of TLR4 in the clinical significance and the pathogenesis of osteoporosis from the aspects of inflammation and immunity. Future therapeutic strategies targeting TLR4 may provide a new insight for osteoporosis treatment.
Collapse
Affiliation(s)
- Xianping Zhu
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Li Du
- Educational Administration Department, Chongqing University Cancer Hospital, Chongqing, China
| | - Lai Zhang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Lingzhi Ding
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Weifang Xu
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xuezheng Lin
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
8
|
Zhang YW, Wu Y, Liu XF, Chen X, Su JC. Targeting the gut microbiota-related metabolites for osteoporosis: The inextricable connection of gut-bone axis. Ageing Res Rev 2024; 94:102196. [PMID: 38218463 DOI: 10.1016/j.arr.2024.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Osteoporosis is a systemic skeletal disease characterized by decreased bone mass, destruction of bone microstructure, raised bone fragility, and enhanced risk of fractures. The correlation between gut microbiota and bone metabolism has gradually become a widespread research hotspot in recent years, and successive studies have revealed that the alterations of gut microbiota and its-related metabolites are related to the occurrence and progression of osteoporosis. Moreover, several emerging studies on the relationship between gut microbiota-related metabolites and bone metabolism are also underway, and extensive research evidence has indicated an inseparable connection between them. Combined with latest literatures and based on inextricable connection of gut-bone axis, this review is aimed to summarize the relation, potential mechanisms, application strategies, clinical application prospects, and existing challenges of gut microbiota and its-related metabolites on osteoporosis, thus updating the knowledge in this research field and providing certain reference for future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Xiang-Fei Liu
- Department of Orthopaedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Xiao Chen
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China.
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
9
|
Zeraattalab-Motlagh S, Mortazavi AS, Ghoreishy SM, Mohammadi H. Association between total and animal proteins with risk of fracture: A systematic review and dose-response meta-analysis of cohort studies. Osteoporos Int 2024; 35:11-23. [PMID: 37855886 DOI: 10.1007/s00198-023-06948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Previous cohort studies have indicated that consumption of total and animal proteins are related to fracture risk; however, results were inconclusive. This dose-dependent review sought to summarize the earlier evidence regarding the relation between total and animal proteins and fracture risk. We searched Scopus, PubMed, and Web of Science until July 2023 for original research articles examining the association of certain types of proteins and the incidence of all fractures in general adults. Summary relative risks (RRs) were calculated using random effects analysis to examine the relation between each certain amount (g/day) increment of total and animal protein and fracture risk. Twenty cohort studies with serious to moderate risk of bias involving 780,322 individuals were included. There was a non-statistically significant relation between intake of animal proteins and dairy products and all fracture risk. However, 43% and 5% decreased incidence of fracture was obtained with total protein (RR, 0.57; 95%CI, 0.36 to 0.93; per 100 g/day) and fish (RR, 0.95; 95%CI, 0.91 to 0.99; per 15 g/day) intake. Every 100 g/day total and animal protein consumption and every 15 g/day fish consumption were linked to 48%, 50%, and 5% lower hip fracture risk. Greater dietary animal protein intake might reduce risk of hip but not fracture at any site. We obtained a lower risk of any or hip fracture with greater total protein (per 100 g/day) and fish (per 15 g/day) intake. No evidence was obtained that higher intake of dairy could decrease risk of fracture.
Collapse
Affiliation(s)
- Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Sadat Mortazavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Ghoreishy
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Gao X, Zhou S, Liu Z, Ruan D, Wu J, Quan J, Zheng E, Yang J, Cai G, Wu Z, Yang M. Genome-Wide Association Study for Somatic Skeletal Traits in Duroc × (Landrace × Yorkshire) Pigs. Animals (Basel) 2023; 14:37. [PMID: 38200769 PMCID: PMC10778498 DOI: 10.3390/ani14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The pig bone weight trait holds significant economic importance in southern China. To expedite the selection of the pig bone weight trait in pig breeding, we conducted molecular genetic research on these specific traits. These traits encompass the bone weight of the scapula (SW), front leg bone weight (including humerus and ulna) (FLBW), hind leg bone weight (including femur and tibia) (HLBW), and spine bone weight (SBW). Up until now, the genetic structure related to these traits has not been thoroughly explored, primarily due to challenges associated with obtaining the phenotype data. In this study, we utilized genome-wide association studies (GWAS) to discern single nucleotide polymorphisms (SNPs) and genes associated with four bone weight traits within a population comprising 571 Duroc × (Landrace × Yorkshire) hybrid pigs (DLY). In the analyses, we employed a mixed linear model, and for the correction of multiple tests, both the false discovery rate and Bonferroni methods were utilized. Following functional annotation, candidate genes were identified based on their proximity to the candidate sites and their association with the bone weight traits. This study represents the inaugural application of GWAS for the identification of SNPs associated with individual bone weight in DLY pigs. Our analysis unveiled 26 SNPs and identified 12 promising candidate genes (OPRM1, SLC44A5, WASHC4, NOPCHAP1, RHOT1, GLP1R, TGFB3, PLCB1, TLR4, KCNJ2, ABCA6, and ABCA9) associated with the four bone weight traits. Furthermore, our findings on the genetic mechanisms influencing pig bone weight offer valuable insights as a reference for the genetic enhancement of pig bone traits.
Collapse
Affiliation(s)
- Xin Gao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.G.); (S.Z.); (Z.L.)
| | - Shenping Zhou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.G.); (S.Z.); (Z.L.)
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Zhihong Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.G.); (S.Z.); (Z.L.)
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.G.); (S.Z.); (Z.L.)
| |
Collapse
|
11
|
Liu G, Kim WK. The Functional Roles of Methionine and Arginine in Intestinal and Bone Health of Poultry: Review. Animals (Basel) 2023; 13:2949. [PMID: 37760349 PMCID: PMC10525669 DOI: 10.3390/ani13182949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
This review explores the roles of methionine and arginine in promoting the well-being of poultry, with a specific focus on their impacts on intestinal and bone health. The metabolic pathways of methionine and arginine are elucidated, highlighting their distinct routes within the avian system. Beyond their fundamental importance in protein synthesis, methionine and arginine also exert their functional roles through their antioxidant capacities, immunomodulating effects, and involvement in the synthesis of metabolically important molecules such as S-adenosylmethionine, nitric oxide, and polyamines. These multifaceted actions enable methionine and arginine to influence various aspects of intestinal health such as maintaining the integrity of the intestinal barrier, regulating immune responses, and even influencing the composition of the gut microbiota. Additionally, they could play a pivotal role in promoting bone development and regulating bone remodeling, ultimately fostering optimal bone health. In conclusion, this review provides a comprehensive understanding of the potential roles of methionine and arginine in intestinal and bone health in poultry, thereby contributing to advancing the nutrition, overall health, and productivity of poultry in a sustainable manner.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
12
|
Tetrault E, Swenson J, Aaronson B, Marcho C, Albertson RC. The transcriptional state and chromatin landscape of cichlid jaw shape variation across species and environments. Mol Ecol 2023; 32:3922-3941. [PMID: 37160741 PMCID: PMC10524807 DOI: 10.1111/mec.16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Adaptive phenotypes are shaped by a combination of genetic and environmental forces, but how they interact remains poorly understood. Here, we utilize the cichlid oral jaw apparatus to better understand these gene-by-environment effects. First, we employed RNA-seq in bony and ligamentous tissues important for jaw opening to identify differentially expressed genes between species and across foraging environments. We used two Lake Malawi species adapted to different foraging habitats along the pelagic-benthic ecomorphological axis. Our foraging treatments were designed to force animals to employ either suction or biting/scraping, which broadly mimic pelagic or benthic modes of feeding. We found a large number of differentially expressed genes between species, and while we identified relatively few differences between environments, species differences were far more pronounced when they were challenged with a pelagic versus benthic foraging mode. Expression data carried the signature of genetic assimilation, and implicated cell cycle regulation in shaping the jaw across species and environments. Next, we repeated the foraging experiment and performed ATAC-seq procedures on nuclei harvested from the same tissues. Cross-referencing results from both analyses revealed subsets of genes that were both differentially expressed and differentially accessible. This reduced dataset implicated notable candidate genes including the Hedgehog effector, KIAA0586 and the ETS transcription factor, etv4, which connects environmental stress and craniofacial morphogenesis. Taken together, these data provide novel insights into the epigenetic, genetic and cellular bases of species- and environment-specific bone shapes.
Collapse
Affiliation(s)
- Emily Tetrault
- Graduate Program in Molecular and Cell Biology, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - John Swenson
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - Ben Aaronson
- Biology Department, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - Chelsea Marcho
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - R. Craig Albertson
- Biology Department, University of Massachusetts, Amherst MA, 01003, U.S.A
| |
Collapse
|
13
|
Akinsuyi OS, Roesch LFW. Meta-Analysis Reveals Compositional and Functional Microbial Changes Associated with Osteoporosis. Microbiol Spectr 2023; 11:e0032223. [PMID: 37042756 PMCID: PMC10269714 DOI: 10.1128/spectrum.00322-23] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past decade, the role of the gut microbiota in many disease states has gained a great deal of attention. Mounting evidence from case-control and observational studies has linked changes in the gut microbiota to the pathophysiology of osteoporosis (OP). Nonetheless, the results of these studies contain discrepancies, leaving the literature without a consensus on osteoporosis-associated microbial signatures. Here, we conducted a comprehensive meta-analysis combining and reexamining five publicly available 16S rRNA partial sequence data sets to identify gut bacteria consistently associated with osteoporosis across different cohorts. After adjusting for the batch effect associated with technical variation and heterogeneity of studies, we observed a significant shift in the microbiota composition in the osteoporosis group. An increase in the relative abundance of opportunistic pathogens Clostridium sensu stricto, Bacteroides, and Intestinibacter was observed in the OP group. Moreover, short-chain-fatty-acid (SCFA) producers, including members of the genera Collinsella, Megasphaera, Agathobaculum, Mediterraneibacter, Clostridium XIV, and Dorea, were depleted in the OP group relative to the healthy control (HC) group. Lactic acid-producing bacteria, including Limosilactobacillus, were significantly increased in the OP group. The random forest algorithm further confirmed that these bacteria differentiate the two groups. Furthermore, functional prediction revealed depletion of the SCFA biosynthesis pathway (glycolysis, tricarboxylic acid [TCA] cycle, and Wood-Ljungdahl pathway) and amino acid biosynthesis pathway (methionine, histidine, and arginine) in the OP group relative to the HC group. This study uncovered OP-associated compositional and functional microbial alterations, providing robust insight into OP pathogenesis and aiding the possible development of a therapeutic intervention to manage the disease. IMPORTANCE Osteoporosis is the most common metabolic bone disease associated with aging. Mounting evidence has linked changes in the gut microbiota to the pathophysiology of osteoporosis. However, which microbes are associated with dysbiosis and their impact on bone density and inflammation remain largely unknown due to inconsistent results in the literature. Here, we present a meta-analysis with a standard workflow, robust statistical approaches, and machine learning algorithms to identify notable microbial compositional changes influencing osteoporosis.
Collapse
Affiliation(s)
- Oluwamayowa S. Akinsuyi
- Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Luiz F. W. Roesch
- Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Increased Dietary Intakes of Total Protein, Animal Protein and White Meat Protein Were Associated with Reduced Bone Loss—A Prospective Analysis Based on Guangzhou Health and Nutrition Cohort, South China. Nutrients 2023; 15:nu15061432. [PMID: 36986162 PMCID: PMC10051092 DOI: 10.3390/nu15061432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
In this study, we aimed to prospectively investigate the relationships between different types of dietary protein and changes in bone mass in Chinese middle-aged and elderly people. Dietary intakes were evaluated by means of a validated food frequency questionnaire. Bone mineral density (BMD) was measured using a dual-energy bone densitometer at multiple bone sites. Multivariable regression models were applied to investigate the associations of the participants’ dietary intakes of total protein, intakes of protein from various sources, and amino acid intakes with the annualized changes in BMD during a 3-year follow-up. A total of 1987 participants aged 60.3 ± 4.9 years were included in the analyses. Multivariable linear regression results showed that dietary intakes of total protein, animal protein, and protein from white meat were positively correlated with BMD changes, with standardized coefficients (β) of 0.104, 0.073, and 0.074 at the femur neck (p < 0.01) and 0.118, 0.067, and 0.067 at the trochanter (p < 0.01), respectively. With each increase of 0.1g·kg−1·d−1 in animal protein and white meat protein intakes, the BMD losses were reduced by 5.40 and 9.24 mg/cm2 at the femur neck (p < 0.05) and 1.11 and 1.84 mg/cm2 at the trochanter (p < 0.01), respectively. Our prospective data, obtained from Chinese adults, showed that dietary total and animal protein, especially protein from white meat, could significantly reduce bone loss at the femur neck and trochanter.
Collapse
|
15
|
Solanki P, Ansari MD, Alam MI, Aqil M, Ahmad FJ, Sultana Y. Precision engineering designed phospholipid-tagged pamidronate complex functionalized SNEDDS for the treatment of postmenopausal osteoporosis. Drug Deliv Transl Res 2023; 13:883-913. [PMID: 36414929 DOI: 10.1007/s13346-022-01259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Disodium pamidronate, a second-generation bisphosphonate is a potent drug for the treatment of osteoporosis, which has been very well established by previous literature. It has very low oral permeability, leading to its low oral bioavailability, which restrict this drug to being administered orally. Therefore, the present research work includes the development of an orally effective nanoformulation of pamidronate. In this work, disodium pamidronate was complexed with phospholipon 90G for the enhancement of permeability and to investigate the phospholipon 90G-tagged pamidronate complex-loaded SNEDDS for oral delivery with promises of enhanced bioavailability and anti-osteoporotic activity. The rational design and optimization was employed using Central Composite Design (Design Expert® 12, software) to optimize nanoformulation parameters. In this work, a commercially potential self nano-emulsifying drug delivery system (SNEDDS) has been developed and evaluated for improved oral bioavailability and better clinical acceptance. The hot micro-emulsification and ultracentrifugation method with vortex mixing was utilized for effective tagging of phospholipon 90G with pamidronate and then loading into the SNEDDS nanocarrier. The optimized Pam-PLc SNEDDS formulation was characterized for particle size, PDI, and zeta potential and found to be 56.38 ± 1.37 nm, 0.218 ± 0.113, and 22.41 ± 1.14 respectively. Also, a 37.9% improved bioavailability of pamidronate compared to marketed tablet was observed. Similarly, in vivo pharmacokinetic studies suggest a 31.77% increased bone density and significant enhanced bone biomarkers compared to marketed tablets. The developed formulation is safe and effectively overcomes anti-osteoporosis promises with improved therapeutic potential. This work provides very significant achievements in postmenopausal osteoporosis treatment and may lead to possible use of nanotherapeutic-driven emerging biodegradable carriers-based drug delivery.
Collapse
Affiliation(s)
- Pavitra Solanki
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Danish Ansari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Iqbal Alam
- Department of Physiology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India.
| |
Collapse
|
16
|
Yang W, Zhang W, Li F, Xu N, Sun P. Dysregulation of circRNA-0076906 and circRNA-0134944 is Correlated with Susceptibility to Osteoporosis and Osteoporotic Fracture in Postmenopausal Females from the Chinese Han Population. Pharmgenomics Pers Med 2023; 16:183-194. [PMID: 36926413 PMCID: PMC10013579 DOI: 10.2147/pgpm.s394757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/12/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction Many circRNAs, such as circRNA-0076906 and circRNA-0134944, have been reported to participate in the pathogenesis of osteoporosis via sponging miRNAs in postmenopausal female patients. In this study, we aimed to study potential signaling pathways underlying the role of certain circRNAs, miRNAs and their target genes in the pathogenesis of osteoporotic fracture in postmenopausal females. Methods Quantitative real-time PCR was performed to analyze the expression of circRNAs, miRNAs and their targets genes. Luciferase assays were carried out to explore the regulatory relationship between circ_0076906/miR-548i/OGN and circ_0134944/miR-630/TLR4. Results Osteoporosis and fracture were positively correlated to the expression of circ_0134944, miR-548i and TLR4, but negatively correlated to the expression of circ_0076906, miR-630 and OGN in the peripheral blood and bone tissue samples of postmenopausal women. Luciferase activities of wild-type circ_0076906 and OGN were inhibited by miR-548i, and the luciferase activities of wild-type circ_0134944 and TLR4 were suppressed by miR-630 in MG-63 and U-2 OS cells. Inhibition of circ_0076906 expression in MG-63 and U-2 OS cells activated the expression of miR-548i and inhibited the expression of OGN. Moreover, the overexpression of circ_0134944 in MG-63 and U-2 OS cells suppressed the expression of miR-630 and enhanced the expression of TLR4. Conclusion This study implied that the dysregulation of circRNA-0076906 and circRNA-0134944 modulated their specific signaling and thus contributed to the severity of osteoporosis, increasing the risk of osteoporotic fracture.
Collapse
Affiliation(s)
- Weijie Yang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Wei Zhang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Fengqian Li
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Ning Xu
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Ping Sun
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| |
Collapse
|
17
|
Zeng B, Wu X, Liang W, Huang X. Network pharmacology combined with molecular docking to explore the anti-osteoporosis mechanisms of β-ecdysone derived from medicinal plants. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
β-Ecdysone is a phytosteroid derived from multifarious medicinal plants, such as Achyranthes root (Achyranthes bidentata) and Tinospora cordifolia, possessing the potential anti-osteoporosis effect. However, the underlying mechanisms for β-ecdysone treating osteoporosis remain unclear. This study aims to explore the molecular mechanisms of β-ecdysone against osteoporosis by network pharmacology and molecular docking. First, the potential targets of β-ecdysone and osteoporosis were predicted by public databases. Protein interaction and functional enrichment analyses of potential targets were performed using the STRING and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases. Finally, hub targets were identified from network pharmacology, and their interaction with β-ecdysone was validated by molecular docking. Results showed that 47 potential targets were related to the mechanisms of β-ecdysone treating osteoporosis. Enrichment analyses revealed that the potential targets were mainly associated with steroid biosynthetic and metabolic processes, as well as HIF-1 and estrogen signaling pathways. By protein–protein interaction network analysis, top 10 hub targets were screened, including TNF, ALB, SRC, STAT3, MAPK3, ESR1, PPARG, CASP3, TLR4, and NR3C1. Molecular docking showed that β-ecdysone had good affinity with TLR4, TNF, and ESR1. Therefore, β-ecdysone might exert therapeutic effect on osteoporosis development via targeting TLR4, TNF, and ESR1 and regulating HIF-1 and estrogen pathways.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Articular, Zhoushan Hospital of Traditional Chinese Medicine , No. 355 Xinqiao Road, Dinghai District , Zhoushan 316000 , Zhejiang , China
| | - Xudong Wu
- Department of Articular, Zhoushan Hospital of Traditional Chinese Medicine , No. 355 Xinqiao Road, Dinghai District , Zhoushan 316000 , Zhejiang , China
| | - Wenqing Liang
- Department of Articular, Zhoushan Hospital of Traditional Chinese Medicine , No. 355 Xinqiao Road, Dinghai District , Zhoushan 316000 , Zhejiang , China
| | - Xiaogang Huang
- Department of Articular, Zhoushan Hospital of Traditional Chinese Medicine , No. 355 Xinqiao Road, Dinghai District , Zhoushan 316000 , Zhejiang , China
| |
Collapse
|
18
|
Wu H, Zhang D, Xia H, Li Y, Mao F, Liao Y. SDH5 down-regulation mitigates the damage of osteoporosis via inhibiting the MyD88/NF-κB signaling pathway. Immunopharmacol Immunotoxicol 2022; 45:317-327. [DOI: 10.1080/08923973.2022.2143372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongzi Wu
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Dehua Zhang
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Haijun Xia
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Yongqi Li
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Feng Mao
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Yi Liao
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| |
Collapse
|
19
|
Srimadh Bhagavatham SK, Pulukool SK, Pradhan SS, R S, Ashok Naik A, V M DD, Sivaramakrishnan V. Systems biology approach delineates critical pathways associated with disease progression in rheumatoid arthritis. J Biomol Struct Dyn 2022:1-22. [PMID: 36047508 DOI: 10.1080/07391102.2022.2115555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease leading to inflammation, cartilage cell death, synoviocyte proliferation, and increased and impaired differentiation of osteoclasts and osteoblasts leading to joint erosions and deformities. Transcriptomics, proteomics, and metabolomics datasets were analyzed to identify the critical pathways that drive the RA pathophysiology. Single nucleotide polymorphisms (SNPs) associated with RA were analyzed for the functional implications, clinical outcomes, and blood parameters later validated by literature. SNPs associated with RA were grouped into pathways that drive the immune response and cytokine production. Further gene set enrichment analysis (GSEA) was performed on gene expression omnibus (GEO) data sets of peripheral blood mononuclear cells (PBMCs), synovial macrophages, and synovial biopsies from RA patients showed enrichment of Th1, Th2, Th17 differentiation, viral and bacterial infections, metabolic signalling and immunological pathways with potential implications for RA. The proteomics data analysis presented pathways with genes involved in immunological signaling and metabolic pathways, including vitamin B12 and folate metabolism. Metabolomics datasets analysis showed significant pathways like amino-acyl tRNA biosynthesis, metabolism of amino acids (arginine, alanine aspartate, glutamate, glutamine, phenylalanine, and tryptophan), and nucleotide metabolism. Furthermore, our commonality analysis of multi-omics datasets identified common pathways with potential implications for joint remodeling in RA. Disease-modifying anti-rheumatic drugs (DMARDs) and biologics treatments were found to modulate many of the pathways that were deregulated in RA. Overall, our analysis identified molecular signatures associated with the observed symptoms, joint erosions, potential biomarkers, and therapeutic targets in RA. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sujith Kumar Pulukool
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Saiswaroop R
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Ashwin Ashok Naik
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India
| |
Collapse
|
20
|
IL-6 and Leptin Are Potential Biomarkers for Osteoporotic Fracture Risk Assessment and Prediction of Postmenopausal Women with Low Bone Mass: A Follow-Up Study Using a Regional Sample Cohort. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8691830. [PMID: 35993023 PMCID: PMC9385352 DOI: 10.1155/2022/8691830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Osteoporotic fracture, a major complication which is known as the outcome postmenopausal osteoporosis, seriously threatens the health of postmenopausal women. At present, the traditional osteoporotic fracture prediction methods are characterized by inconvenient application and time-consuming statistical results, while predictive serum biomarkers can make up for this shortcoming. Accurate and advanced risk prediction of osteoporotic fracture is meaningful to early prevention and intervention, effectively avoiding the risk of this disease and the secondary fracture in the surgical treatment. In this study, based on the BEYOND cohort, a 2-year follow-up study was conducted after subjects participated to survey if OF occurred. Independent sample t-test and Mann–Whitney U-test were used to analyze the differences of bone metabolism biomarkers between the OF and non-OF group. Cox proportional hazard model was used to screen the potential biomarkers might be used to predict OF risk. ROC curves and AUCs were used to analyze the predictive accuracy, and the Delong's test was used to compare the differences between the AUCs. 15 postmenopausal women with low bone mass and OF were found, and other 60 subjects without OF were matched with 1 : 4, age, and BMI classification as control group. The serum IL-6 (OR = 1.139, 95%CI = 1.058 − 1.226) and leptin (OR = 0.921, 95%CI = 0.848 − 1.000) were found as OF risk predictive biomarkers for postmenopausal women with low bone mass with high accuracy (IL − 6 = 0.871) (leptin = 0.813) and accuracy enhanced when they were combined (AUC = 0.898). The results of Delong's test showed that the difference of AUC between leptin and IL-6&Leptin was meaningful (P = 0.024) but meaningless between IL-6 and leptin (P = 0.436), IL-6 and IL-6&Leptin (P = 0.606). To sum up, IL-6 and leptin are the predictive biomarkers of OF for postmenopausal women with low bone mass. The IL-6 can improve the prediction accuracy of leptin (P = 0.024), but not vice versa (P = 0.606). Trial Information. Registered on the Chinese Clinical Trial Registry already. (Registration Number: ChiCTR-SOC-17013090).
Collapse
|
21
|
Wan X, Eguchi A, Fujita Y, Ma L, Wang X, Yang Y, Qu Y, Chang L, Zhang J, Mori C, Hashimoto K. Effects of (R)-ketamine on reduced bone mineral density in ovariectomized mice: A role of gut microbiota. Neuropharmacology 2022; 213:109139. [PMID: 35594949 DOI: 10.1016/j.neuropharm.2022.109139] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Depression is a high risk for osteoporosis, suggesting an association between depression and low bone mineral density (BMD). We reported that the novel antidepressant (R)-ketamine could ameliorate the reduced BMD in the ovariectomized (OVX) mice which is an animal model of postmenopausal osteoporosis. Given the role of gut microbiota in depression and bone homeostasis, we examined whether gut microbiota plays a role in the beneficial effects of (R)-ketamine in the reduced BMD of OVX mice. OVX or sham was operated for female mice. Subsequently, saline (10 ml/kg/day, twice weekly) or (R)-ketamine (10 mg/kg/day, twice weekly) was administered intraperitoneally into OVX or sham mice for the six weeks. The reduction of cortical BMD and total BMD in the OVX mice was significantly ameliorated after subsequent repeated intermittent administration of (R)-ketamine. Furthermore, there were significant changes in the α- and β-diversity between OVX + saline group and OVX + (R)-ketamine group. There were correlations between several OTUs and cortical (or total) BMD. There were also positive correlations between the genera Turicibacter and cortical (or total) BMD. Moreover, there were correlations between several metabolites in blood and cortical (or total) BMD. These data suggest that (R)-ketamine may ameliorate the reduced cortical BMD and total BMD in OVX mice through anti-inflammatory actions via gut microbiota. Therefore, it is likely that (R)-ketamine would be a therapeutic drug for depressed patients with low BMD or patients with osteoporosis.
Collapse
Affiliation(s)
- Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba, 263-8522, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Jiancheng Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba, 263-8522, Japan; Department of Bioenvironmental Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
22
|
Yu H, Zhou W, Zhong Z, Qiu R, Chen G, Zhang P. High-mobility group box chromosomal protein-1 deletion alleviates osteoporosis in OVX rat model via suppressing the osteoclastogenesis and inflammation. J Orthop Surg Res 2022; 17:232. [PMID: 35414033 PMCID: PMC9004163 DOI: 10.1186/s13018-022-03110-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Osteoporosis is a skeletal metabolic disease that constitutes a great threaten to human health. However, there is currently no gold standard for its treatment. High-mobility group box chromosomal protein-1 (HMGB-1) has been reported to play an important role in various orthopedic diseases. Till now, its role in osteoporosis remains elusive. METHODS Rats underwent ovariectomy (OVX) were used to construct a postmenopausal model of osteoporosis. Then, rats were divided into sham groups without OVX surgery, OVX model group, HMGB-1 knockdown (HMGB-1 KD) OVX model groups. The expression of HMGB1 was evaluated by qRT-PCR and western blotting. Subsequently, the changes of trabeculae were evaluated by micro-computed tomography (CT) assay. Skeletal necrosis and metabolism were further analyzed by hematoxylin-eosin (HE) staining, Alcian blue staining and Masson's trichrome staining. The contents of serum alkaline phosphatase (ALP) and osteocalcin were detected by ELISA assay. Expression of osteoclast-associated receptor (OSCAR) and tartrate-resistant acid phosphatase (TRAP) were determined to investigate the effects of HMGB-1 loss on osteoclastogenesis. RESULTS Single HMGB-1 deletion exerted no significant effect on rat trabeculae, serum ALP and osteocalcin. Noticeably, HMGB1 knockdown dramatically ameliorated OVX-induced changes in above indexes. Trabeculae structures of OVX rats were sparse with disorder arrangement, which were greatly recovered after HMGB-1 deletion. Enhanced osteoclastogenesis was observed in OVX rats by increasing number of TRAP + cells and expression of TRAP and OSCAR, and loss of HMGB1 ameliorated osteoclastogenesis in OVA rats. Moreover, HMGB-1 deletion antagonized OVX-evoked downregulation of osteoblast activity markers osterix (OSX), collagen type I alpha 1(COL1A1) and distal-less homeobox 2 (DLX2) protein. Furthermore, loss of HMGB-1 attenuated fluctuation of inflammatory factors in OVX rats. Additionally, HMGB-1 deficiency inhibited OVX-evoked activation of the Toll-like receptor (TLR) 4/NF-κB signaling pathway. Moreover, reactivating the TLR4 signaling further aggravated OVX-induced osteoporosis, which was reversed by HMGB1 knockdown. CONCLUSION HMGB-1 deletion alleviated OVX-triggered osteoporosis by suppressing osteoclastogenesis and inflammatory disorder via the inhibition of the TLR4 signaling. Therefore, HMGB-1 may be a promising therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Haotao Yu
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Wei Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Zhihong Zhong
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Ruixin Qiu
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Guoquan Chen
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China
| | - Ping Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
23
|
Cui X, Li Y, Bao J, Wang K, Wu X. Downregulation of miR-760 Causes Human Intervertebral Disc Degeneration by Targeting the MyD88/Nuclear Factor-Kappa B Signaling Pathway. Front Bioeng Biotechnol 2022; 10:813070. [PMID: 35480984 PMCID: PMC9035519 DOI: 10.3389/fbioe.2022.813070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) plays a critical role in the development of intervertebral disc degeneration (IDD). In this study, we present evidence from in vitro and in vivo research to elucidate the mechanism underlying the role of miR-760 in IDD. miRNA microarray and quantitative reverse transcription-polymerase chain reaction were used to determine the miRNA profiles in patients with IDD. Functional analysis was performed to evaluate the role of miR-760 in the pathogenesis of IDD. Luciferase reporter and western blotting assays were used to confirm the miRNA targets. The expression of miR-760 was significantly decreased in degenerative nucleus pulposus (NP) cells and negatively correlated with disc degeneration grade. Functional assays demonstrated that miR-760 delivery significantly increased NP cell proliferation and promoted the expression of collagen II and aggrecan. Moreover, MyD88 was identified as a target gene of miR-760. miR-760 effectively suppressed MyD88 expression by interacting with the 3'-untranslated region, which was abolished by miR-760 binding site mutations. An in vivo experiment using an IDD mouse model showed that the upregulation of miR-760 could effectively suspend IDD. Therefore, miR-760 was found to play an important role in IDD and can be used as a promising therapeutic target for the treatment of patients with IDD.
Collapse
Affiliation(s)
- Xueliang Cui
- Medical School of Southeast University, Nanjing, China
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yanan Li
- Department of Orthopaedics, Qingdao Women and Children's Hospital, Qingdao, China
| | - Junping Bao
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Kun Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaotao Wu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Greenbaum J, Lin X, Su KJ, Gong R, Shen H, Shen J, Xiao HM, Deng HW. Integration of the Human Gut Microbiome and Serum Metabolome Reveals Novel Biological Factors Involved in the Regulation of Bone Mineral Density. Front Cell Infect Microbiol 2022; 12:853499. [PMID: 35372129 PMCID: PMC8966780 DOI: 10.3389/fcimb.2022.853499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
While the gut microbiome has been reported to play a role in bone metabolism, the individual species and underlying functional mechanisms have not yet been characterized. We conducted a systematic multi-omics analysis using paired metagenomic and untargeted serum metabolomic profiles from a large sample of 499 peri- and early post-menopausal women to identify the potential crosstalk between these biological factors which may be involved in the regulation of bone mineral density (BMD). Single omics association analyses identified 22 bacteria species and 17 serum metabolites for putative association with BMD. Among the identified bacteria, Bacteroidetes and Fusobacteria were negatively associated, while Firmicutes were positively associated. Several of the identified serum metabolites including 3-phenylpropanoic acid, mainly derived from dietary polyphenols, and glycolithocholic acid, a secondary bile acid, are metabolic byproducts of the microbiota. We further conducted a supervised integrative feature selection with respect to BMD and constructed the inter-omics partial correlation network. Although still requiring replication and validation in future studies, the findings from this exploratory analysis provide novel insights into the interrelationships between the gut microbiome and serum metabolome that may potentially play a role in skeletal remodeling processes.
Collapse
Affiliation(s)
- Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kuan-Jui Su
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Rui Gong
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong-Mei Xiao
- Center of Systems Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
25
|
Xm S, Cc L, C L, Yf L, L C, Yz Z, Sj Y. TLR4 inhibition ameliorated glucolipotoxicity-induced differentiation suppression in osteoblasts via RIAM regulation of NF-κB nuclear translocation. Mol Cell Endocrinol 2022; 543:111539. [PMID: 34929310 DOI: 10.1016/j.mce.2021.111539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
TLR4 is a key innate immune signal that mediates glucolipid toxicity through yet unclear mechanisms. Here, TLR4 truncation ameliorated bone metabolism disorders in diabetic rats, and the underlying mechanisms were explored by proteomics. Our study showed that TLR4 truncation inhibited bone loss induced by diabetes in rats. In addition, a proteomic analysis screen exposed the differential proteins associated with immune reactivity and T cell activation (RIAM and Class II histocompatibility antigen, M β1 chain). Further cellular experiments showed that TLR4 mediated the inhibition of osteoblast differentiation induced by glucolipotoxicity and promoted an increase in the nuclear level of RIAM-NF-κB. Mechanistic studies showed that TLR4 mediated glucolipotoxicity induced damage in bone metabolism primarily by regulating RIAM-NF-κB interactions, which promoted RIAM-NF-κB nuclear translocation. In conclusion, we confirmed that TLR4 inhibition could delay bone metabolism disorders induced by glycolipid toxicity via RIAM regulation of NF-κB nuclear translocation.
Collapse
Affiliation(s)
- Shen Xm
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Metabolic Diseases Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Li Cc
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Department of Cardiology, Affiliated Fuzhou First Hospital of Fujian Medical University, 190 Da Dao Road, Fuzhou, Fujian, 350009, China
| | - Lan C
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Lin Yf
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Cheng L
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Zhang Yz
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Metabolic Diseases Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Yan Sj
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Metabolic Diseases Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
26
|
Increased Ingestion of Hydroxy-Methionine by Both Sows and Piglets Improves the Ability of the Progeny to Counteract LPS-Induced Hepatic and Splenic Injury with Potential Regulation of TLR4 and NOD Signaling. Antioxidants (Basel) 2022; 11:antiox11020321. [PMID: 35204204 PMCID: PMC8868084 DOI: 10.3390/antiox11020321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Methionine, as an essential amino acid, play roles in antioxidant defense and the regulation of immune responses. This study was designed to determine the effects and mechanisms of increased consumption of methionine by sows and piglets on the capacity of the progeny to counteract lipopolysaccharide (LPS) challenge-induced injury in the liver and spleen of piglets. Primiparous sows (n = 10/diet) and their progeny were fed a diet that was adequate in sulfur amino acids (CON) or CON + 25% total sulfur amino acids as methionine from gestation day 85 to postnatal day 35. A total of ten male piglets were selected from each treatment and divided into 2 groups (n = 5/treatment) for a 2 × 2 factorial design [diets (CON, Methionine) and challenge (saline or LPS)] at 35 d old. After 24 h challenge, the piglets were euthanized to collect the liver and spleen for the histopathology, redox status, and gene expression analysis. The histopathological results showed that LPS challenge induced liver and spleen injury, while dietary methionine supplementation alleviated these damages that were induced by the LPS challenge. Furthermore, the LPS challenge also decreased the activities of GPX, SOD, and CAT and upregulated the mRNA and(or) protein expression of TLR4, MyD88, TRAF6, NOD1, NOD2, NF-kB, TNF-α, IL-8, p53, BCL2, and COX2 in the liver and (or) spleen. The alterations of GPX and SOD activities and the former nine genes were prevented or alleviated by the methionine supplementation. In conclusion, the maternal and neonatal dietary supplementation of methionine improved the ability of piglets to resist LPS challenge-induced liver and spleen injury, potentially through the increased antioxidant capacity and inhibition of TLR4 and NOD signaling pathway.
Collapse
|
27
|
Navik U, Rawat K, Tikoo K. L-Methionine prevents β-cell damage by modulating the expression of Arx, MafA and regulation of FOXO1 in type 1 diabetic rats. Acta Histochem 2022; 124:151820. [PMID: 34871948 DOI: 10.1016/j.acthis.2021.151820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022]
Abstract
L-Methionine (L-Met) is an essential sulphur-containing amino acid having a vital role in various key cellular processes. Here we investigated the effect of L-Met on streptozotocin-induced β-cell damage model of diabetes mellitus in Sprague Dawley rats. At the end of study biochemical parameters, immunoblotting, qRT-PCR and ChIP-qPCR are performed. L-Met was administered orally (250 and 500 mg/kg/day) to diabetic animals for 8 weeks improved plasma glucose and insulin levels. Pancreas immunohistochemistry showed significant increase in insulin expression, decrease in glucagon and Bax expression. Interestingly, L-Met inhibited the expression of Arx; upregulated MafA and FOXO1 which play a critical role in the maintenance of β-cell identity. Our data also showed a decrease in H3K27me3 and an increase in H3K4me3 ("bivalent domain" alteration) in diabetic rats and these recovered by L-Met. Furthermore, the chromatin-immunoprecipitation assay showed a decreased enrichment of H3K27me3 on the promoter of the FOXO1 gene in diabetic rats and L-Met prevents this decrease. Our results showed the first evidence of the involvement of H3K27me3 in regulating the expression of the FOXO1 gene and the prevention of β-cell injury by L-Met treatment. In conclusion, we report the involvement of L-Met in the modulation of α-cell identity marker (Arx), β-cell identity marker (MafA) and regulation of FOXO1 by histone methylation marks for the first time. We are of the opinion that this employed as a novel therapeutic approach for mitigating diabetes-induced β-cell death.
Collapse
Affiliation(s)
- Umashanker Navik
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab 160062, India; Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, India.
| | - Kajal Rawat
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab 160062, India.
| |
Collapse
|
28
|
Navik U, Sheth VG, Khurana A, Jawalekar SS, Allawadhi P, Gaddam RR, Bhatti JS, Tikoo K. Methionine as a double-edged sword in health and disease: Current perspective and future challenges. Ageing Res Rev 2021; 72:101500. [PMID: 34700006 DOI: 10.1016/j.arr.2021.101500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/18/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
Methionine is one of the essential amino acids and plays a vital role in various cellular processes. Reports advocate that methionine restriction and supplementation provide promising outcomes, and its regulation is critical for maintaining a healthy life. Dietary methionine restriction in houseflies and rodents has been proven to extend lifespan. Contrary to these findings, long-term dietary restriction of methionine leads to adverse events such as bone-related disorders, stunted growth, and hyperhomocysteinemia. Conversely, dietary supplementation of methionine improves hepatic steatosis, insulin resistance, inflammation, fibrosis, and bone health. However, a high level of methionine intake shows adverse effects such as hyperhomocysteinemia, reduced body weight, and increased cholesterol levels. Therefore, dietary methionine in a safe dose could have medicinal values. Hence, this review is aimed to provide a snapshot of the dietary role and regulation of methionine in the modulation of health and age-related diseases.
Collapse
|
29
|
Zhang Y, Liu X, Li Y, Song M, Li Y, Yang A, Zhang Y, Wang D, Hu M. Aucubin slows the development of osteoporosis by inhibiting osteoclast differentiation via the nuclear factor erythroid 2-related factor 2-mediated antioxidation pathway. PHARMACEUTICAL BIOLOGY 2021; 59:1556-1565. [PMID: 34757891 PMCID: PMC8583775 DOI: 10.1080/13880209.2021.1996614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
CONTEXT Osteoporosis (OP) is a metabolic disease. We have previously demonstrated that aucubin (AU) has anti-OP effects that are due to its promotion of the formation of osteoblasts. OBJECTIVES To investigate the mechanisms of anti-OP effects of AU. MATERIALS AND METHODS C57BL/6 mice were randomly divided into control group, 30 mg/kg Dex-induced OP group (OP model group, 15 μg/kg oestradiol-treated positive control group, 5 or 45 mg/kg AU-treated group), and 45 mg/kg AU-alone-treated group. The administration lasted for 7 weeks. Subsequently, 1, 2.5 and 5 µM AU were incubated with 50 ng/mL RANKL-induced RAW264.7 cells for 7 days to observe osteoclast differentiation. The effect of AU was evaluated by analysing tissue lesions, biochemical factor and protein expression. RESULTS The LD50 of AU was greater than 45 mg/kg. AU increased the number of trabeculae and reduced the loss of chondrocytes in OP mice. Compared to OP mice, AU-treated mice exhibited decreased serum concentrations of TRAP5b (19.6% to 28.4%), IL-1 (12.2% to 12.6%), IL-6 (12.1%) and ROS (5.9% to 10.7%) and increased serum concentrations of SOD (14.6% to 19.4%) and CAT (17.2% to 27.4%). AU treatment of RANKL-exposed RAW264.7 cells decreased the numbers of multi-nuclear TRAP-positive cells, reversed the over-expression of TRAP5, NFATc1 and CTSK. Furthermore, AU increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins in RANKL-exposed RAW264.7 cells. CONCLUSIONS AU slows the development of OP via Nrf2-mediated antioxidant pathways, indicating the potential use of AU in OP therapy and other types of OP research.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Yangyang Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Minkai Song
- School of Life Sciences, Jilin University, Changchun, China
| | - Yutong Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Anhui Yang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
- CONTACT Di Wang School of Life Sciences, Jilin University, Qianjin Street 2699, Changchun, Jilin, P. R. China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
- Min Hu Department of Orthodontics, College of Stomatology, Jilin University, No. 1500, Qinghua Road, Changchun, Jilin, P. R. China
| |
Collapse
|
30
|
Huang Y, Zhou P, Liu S, Duan W, Zhang Q, Lu Y, Wei X. Metabolome and microbiome of chronic periapical periodontitis in permanent anterior teeth: a pilot study. BMC Oral Health 2021; 21:599. [PMID: 34814909 PMCID: PMC8609808 DOI: 10.1186/s12903-021-01972-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 11/26/2022] Open
Abstract
Background Periapical periodontitis is a common oral inflammatory disease that affects periapical tissues and is caused by bacteria in the root canal system. The relationship among the local metabolome, the inflammatory grade, and the type and abundance of microorganisms associated with periapical periodontitis is discussed in this study. Methods The inflammatory grades of periapical samples from 47 patients with chronic periapical periodontitis in permanent anterior teeth were determined based on the immune cell densities in tissues subjected to haematoxylin and eosin staining. The metabolome was evaluated using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, followed by principal component analysis and orthogonal partial least squares discriminant analysis. The microbiome was accessed using 16 S rRNA high-throughput sequencing. The differences in the metabolomes and microbiomes of the periapical periodontitis samples were assessed using Spearman’s correlation analysis. Result N-acetyl-D-glucosamine, L-tryptophan, L-phenylalanine, and 15 other metabolites were identified by the comparison between samples with severe inflammation and mild or moderate inflammation. Four amino acid metabolism pathways and one sugar metabolism pathway were associated with the inflammatory grade of periapical periodontitis. The abundance of Actinomycetes was negatively correlated with the abundance of glucosamine (GlcN), while the abundance of Tannerella was positively correlated with the abundance of L-methionine. Conclusions The local metabolome of periapical periodontitis is correlated with the inflammatory grade. The abundance of the local metabolites GlcN and L-methionine is correlated with the abundance of the major microorganisms Actinomycetes and Tannerella, respectively.
Collapse
Affiliation(s)
- Yun Huang
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Conservative Dentistry and Endodontics, Stomatological Hospital, Nanjing Medical University, Nanjing, China.,Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Peng Zhou
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Conservative Dentistry and Endodontics, Stomatological Hospital, Nanjing Medical University, Nanjing, China.,Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Siqi Liu
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Conservative Dentistry and Endodontics, Stomatological Hospital, Nanjing Medical University, Nanjing, China.,Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wei Duan
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Conservative Dentistry and Endodontics, Stomatological Hospital, Nanjing Medical University, Nanjing, China.,Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Qinqin Zhang
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Conservative Dentistry and Endodontics, Stomatological Hospital, Nanjing Medical University, Nanjing, China.,Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ying Lu
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Conservative Dentistry and Endodontics, Stomatological Hospital, Nanjing Medical University, Nanjing, China.,Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xin Wei
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Conservative Dentistry and Endodontics, Stomatological Hospital, Nanjing Medical University, Nanjing, China. .,Department of Operative Dentistry and Endodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China. .,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
31
|
Liu ZM, Huang Q, Li SY, Liu YP, Wu Y, Zhang SJ, Li BL, Chen YM. A 1:1 matched case-control study on dietary protein intakes and hip fracture risk in Chinese elderly men and women. Osteoporos Int 2021; 32:2205-2216. [PMID: 33890124 DOI: 10.1007/s00198-021-05960-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022]
Abstract
UNLABELLED The role of protein intake in bone has been controversial. Our case-control study among Chinese elderly concluded that a higher consumption of protein, even substituted for fat, is associated with lowered hip fracture risk. Differences in protein sources, amino acids composition, gender, and calcium sufficiency may explain the inconsistency. PURPOSE The aim of the study was to investigate the association of dietary protein intakes with hip fracture risk among Chinese elderly. METHODS This was a 1:1 age and sex matched cross-sectional study of case-control design among 1070 pairs of elderly Chinese people aged 55 to 80 years. Patients who were newly diagnosed (within 2-week) hip fracture by X-ray were recruited from four hospitals in Guangdong Province of China. Dietary intakes were evaluated by a validated food frequency questionnaire for total protein, protein from different sources, amino acids profiles, and estimated renal acid load in diet. RESULTS Daily average intakes of total protein were 58.1±27.0 (women) and 65.7±31.8 (men) g/d for cases, and 66.8±21.5 (women) and 72.1±24.4 (men) for controls (p<0.001). Multivariable regression indicated that, compared with the lowest quartile, the highest quartile of consumption of energy adjusted total protein [OR: 0.360 (0.206~0.630) for women and 0.381 (0.153~0.949) for men] and animal protein [0.326 (0.183, 0.560) for women and 0.335 (0.136~0.828) for men] was significantly associated with the lowered risk of hip fracture in a dose-response manner (all p for trend <0.05). A significant hip fracture risk reduction was observed in women with higher intakes of sulfur amino acids [OR: 0.464 (0.286~0.753)] and aromatic amino acids [0.537 (0.326~0.884)] but not in men. Subgroup analysis suggested that these associations were more evident in elderly with lower body mass index and dietary calcium intake less than 400 mg/d. CONCLUSIONS A higher level of protein intake, even substituted for fat, is associated with lowered hip fracture risk.
Collapse
Affiliation(s)
- Z-M Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Q Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - S-Y Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Y-P Liu
- Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Zhongshan Road 2, Guangzhou, 510080, China
| | - Y Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - S-J Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - B-L Li
- Guangzhou Orthopaedics Trauma Hospital, Guangzhou, China
| | - Y-M Chen
- Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
32
|
Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, Coutinho de Almeida R, Wu TT, Zheng J, Hartley A, Teder-Laving M, Skogholt AH, Terao C, Zengini E, Alexiadis G, Barysenka A, Bjornsdottir G, Gabrielsen ME, Gilly A, Ingvarsson T, Johnsen MB, Jonsson H, Kloppenburg M, Luetge A, Lund SH, Mägi R, Mangino M, Nelissen RRGHH, Shivakumar M, Steinberg J, Takuwa H, Thomas LF, Tuerlings M, Babis GC, Cheung JPY, Kang JH, Kraft P, Lietman SA, Samartzis D, Slagboom PE, Stefansson K, Thorsteinsdottir U, Tobias JH, Uitterlinden AG, Winsvold B, Zwart JA, Davey Smith G, Sham PC, Thorleifsson G, Gaunt TR, Morris AP, Valdes AM, Tsezou A, Cheah KSE, Ikegawa S, Hveem K, Esko T, Wilkinson JM, Meulenbelt I, Lee MTM, van Meurs JBJ, Styrkársdóttir U, Zeggini E. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021; 184:4784-4818.e17. [PMID: 34450027 PMCID: PMC8459317 DOI: 10.1016/j.cell.2021.07.038] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/26/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.
Collapse
Affiliation(s)
- Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Tian T Wu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - April Hartley
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Musculoskeletal Research Unit, Translation Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Eleni Zengini
- 4(th) Psychiatric Department, Dromokaiteio Psychiatric Hospital, 12461 Athens, Greece
| | - George Alexiadis
- 1(st) Department of Orthopaedics, KAT General Hospital, 14561 Athens, Greece
| | - Andrei Barysenka
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Thorvaldur Ingvarsson
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland; Department of Orthopedic Surgery, Akureyri Hospital, 600 Akureyri, Iceland
| | - Marianne B Johnsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway; Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0424 Oslo, Norway
| | - Helgi Jonsson
- Department of Medicine, Landspitali The National University Hospital of Iceland, 108 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Margreet Kloppenburg
- Departments of Rheumatology and Clinical Epidemiology, Leiden University Medical Center, 9600, 23OORC Leiden, the Netherlands
| | - Almut Luetge
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Rob R G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, 9600, 23OORC Leiden, the Netherlands
| | - Manu Shivakumar
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Hiroshi Takuwa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan; Department of Orthopedic Surgery, Shimane University, Shimane 693-8501, Japan
| | - Laurent F Thomas
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; BioCore-Bioinformatics Core Facility, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - George C Babis
- 2(nd) Department of Orthopaedics, National and Kapodistrian University of Athens, Medical School, Nea Ionia General Hospital Konstantopouleio, 14233 Athens, Greece
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jae Hee Kang
- Department of Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA 02115, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Steven A Lietman
- Musculoskeletal Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Jonathan H Tobias
- Musculoskeletal Research Unit, Translation Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK; MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | - Bendik Winsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - John-Anker Zwart
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Pak Chung Sham
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9LJ, UK
| | - Ana M Valdes
- Faculty of Medicine and Health Sciences, School of Medicine, University of Nottingham, Nottingham, Nottinghamshire NG5 1PB, UK
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa 411 10, Greece
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7600 Levanger, Norway
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - J Mark Wilkinson
- Department of Oncology and Metabolism and Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2RX, UK
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Ming Ta Michael Lee
- Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA; Institute of Biomedical Sciences, Academia Sinica, 115 Taipei, Taiwan
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | | | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, 81675 Munich, Germany.
| |
Collapse
|
33
|
Brunetti G, D'Amato G, De Santis S, Grano M, Faienza MF. Mechanisms of altered bone remodeling in children with type 1 diabetes. World J Diabetes 2021; 12:997-1009. [PMID: 34326950 PMCID: PMC8311475 DOI: 10.4239/wjd.v12.i7.997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/17/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Bone loss associated with type 1 diabetes mellitus (T1DM) begins at the onset of the disease, already in childhood, determining a lower bone mass peak and hence a greater risk of osteoporosis and fractures later in life. The mechanisms underlying diabetic bone fragility are not yet completely understood. Hyperglycemia and insulin deficiency can affect the bone cells functions, as well as the bone marrow fat, thus impairing the bone strength, geometry, and microarchitecture. Several factors, like insulin and growth hormone/insulin-like growth factor 1, can control bone marrow mesenchymal stem cell commitment, and the receptor activator of nuclear factor-κB ligand/osteoprotegerin and Wnt-b catenin pathways can impair bone turnover. Some myokines may have a key role in regulating metabolic control and improving bone mass in T1DM subjects. The aim of this review is to provide an overview of the current knowledge of the mechanisms underlying altered bone remodeling in children affected by T1DM.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University "A. Moro" of Bari, Bari 70125, Italy
| | - Gabriele D'Amato
- Department of Women’s and Children’s Health, ASL Bari, Neonatal Intensive Care Unit, Di Venere Hospital, Bari 70124, Italy
| | - Stefania De Santis
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari 70126, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Univ Bari, Bari 70124, Italy
| | - Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University "A.Moro", Bari 70124, Italy
| |
Collapse
|
34
|
Correction. Br J Pharmacol 2021; 178:2747-2748. [PMID: 34096043 DOI: 10.1111/bph.15568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
35
|
Cao Y, Han X, Wang Z, Liu Y, Wang Y, Zhang R, Ye J, Zou L, Dai W. TLR4 knockout ameliorates streptozotocin-induced osteoporosis in a mouse model of diabetes. Biochem Biophys Res Commun 2021; 546:185-191. [PMID: 33601314 DOI: 10.1016/j.bbrc.2021.01.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/28/2021] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by hyperglycemia manifesting as insufficient insulin. Toll-like receptor-4 (TLR4) has been implicated in diabetic osteoporosis. We established streptozotocin (STZ)-induced diabetic mouse model and examined the relevant osteoporosis factors in different experimental groups, the WT-CON group, WT-STZ group, KO-CON group and KO-STZ group, respectively. No obvious protection of TLR4 deletion was shown in mice with diabetes. There was no obvious difference in the body weight or blood glucose concentration between WT-STZ group and KO-STZ group. However, TLR4 deletion reduced the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. Furthermore, TLR4 knockout attenuated STZ-induced diabetic osteoporosis via inhibiting osteoblasts and pre-inflammation factors mediated by the NF-κB pathway. TLR4 deletion ameliorated STZ-induced diabetic osteoporosis in mice, and TLR4 may be used as a potential therapeutic target for the treatment of diabetic osteoporosis.
Collapse
Affiliation(s)
- Yonghong Cao
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Xiaofang Han
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Zhenzhen Wang
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Yan Liu
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Yunsheng Wang
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Rong Zhang
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Jun Ye
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Lingling Zou
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Wu Dai
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China.
| |
Collapse
|
36
|
Li T, Liu WB, Tian FF, Jiang JJ, Wang Q, Hu FQ, Hu WH, Zhang XS. Gender-specific SBNO2 and VPS13B as a potential driver of osteoporosis development in male ankylosing spondylitis. Osteoporos Int 2021; 32:311-320. [PMID: 32803317 DOI: 10.1007/s00198-020-05593-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
UNLABELLED To identify the critical genes and pathways that related to OP development in male AS patients, bioinformatic gene analysis and qRT-PCR validation were performed. SBNO2 and VPS13B were identified as the potential target for OP development, which may be valuable for the prevention of OP in male AS patients. INTRODUCTION Osteoporosis (OP) is common in men with ankylosing spondylitis (AS). The specific pathogenesis of OP in AS, however, is still unclear. The present study attempted to identify potential genes associated with the development of OP in males with AS. METHODS Gene expression profiles were downloaded from the GSE73754 and GSE35959 datasets from the Gene Expression Omnibus (GEO). Data from OsteoporosAtlas were downloaded as a supplement. Differentially expressed genes (DEGs) were determined with the limma package. The overlapping DEGs between male AS-related genes and OP-related genes were determined. The DEGs were validated by qRT-PCR in the blood samples of males with AS. Weighted gene co-expression network analysis (WGCNA) was utilized to establish a co-expression network to identify the hub genes. RESULTS A total of 17 overlapping DEGs were identified; 6 genes in 17 overlapping DEGs were verified as the essential genes in the pathogenesis of OP in male AS by qRT-PCR analysis. After WGCNA, the modules of MEblue (> 0.6) and MEred (> 0.8) were screened out by the correlation analysis and were determined to function mainly in MAPK signaling pathway and osteoclast differentiation. Analysis of the two modules revealed VPS13B and SBNO2 as key genes due to the high degree of correlation. Both genes play an important role in bone metabolism regulation in male AS. Two hub genes MYD88 in MEblue and NCK1 in MEred with high degree of connectivity were selected. CONCLUSIONS Gender-specific SBNO2 and VPS13B may be key genes involved in OP in male AS.
Collapse
Affiliation(s)
- T Li
- Department of Orthopedics, the First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - W-B Liu
- Department of Orthopedics, the First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - F-F Tian
- Clinical Biobank Center, the Medical Innovation Research Division, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - J-J Jiang
- Clinical Biobank Center, the Medical Innovation Research Division, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Q Wang
- Department of Orthopedics, the First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - F-Q Hu
- Department of Orthopedics, the First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - W-H Hu
- Department of Orthopedics, the First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Orthopedics, the Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100000, China.
| | - X-S Zhang
- Department of Orthopedics, the First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
37
|
Zhang Y, Zhao Q. AEG-1 deletion promotes cartilage repair and modulates bone remodeling-related cytokines via TLR4/MyD88/NF-κB inhibition in ovariectomized rats with osteoporosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1298. [PMID: 33209878 PMCID: PMC7661885 DOI: 10.21037/atm-20-5842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Osteoporosis is a systemic skeletal disorder that can impact a variety of bones throughout the body. Astrocyte-elevated gene-1 (AEG-1) is involved in multiple pro-tumorigenic functions and participates in various inflammatory reactions. However, whether it has an impact on osteoporosis-related cartilage repair and bone remodeling remains unknown. Methods We utilized an ovariectomy mouse model with AEG-1 deletion to investigate the role of AEG-1 in osteoporosis. The mRNA level of AEG-1 was detected by RT-PCR, bone markers, bone volume/total volume (BV/TV), trabecular bone surface/bone volume (BSA/BV) and trabecular bone thickness (Tb. Th) were detected by micro computed tomography (µCT), bone injury was observed by HE and alcian blue staining. The contents of IL-6, IL-17, iNOS and IL-10 in peripheral blood of the three groups were detected by ELISA. The expression of OSX, coi1a1, OC, TLR4, MyD88 and NF-κB were detected by Western Blot. Results µCT revealed increased bone volume in the AEG-1 knockout (KO) ovariectomy (OVX) group compared to the wildtype (WT) OVX group 4 weeks after surgery, indicating restored bone formation after AEG-1 deletion. Flow sorting revealed that AEG-1 deletion inhibited the production of inflammatory factors. Western blot demonstrated activation of the TLR4/MyD88/NF-κB pathway after LPS exposure, which was reduced by AEG-1 deletion. AEG-1 deletion also improved lipopolysaccharide (LPS) induced adverse reactions. Conclusions Taken together, these findings indicate that AEG-1 deletion improves cartilage repair and bone remodeling during osteoporosis, which may partly occur through the inhibition of the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Rheumatology, Henan University Huai He Hospital, Kaifeng City, China
| | - Qing Zhao
- Department of Rheumatology, Henan University Huai He Hospital, Kaifeng City, China
| |
Collapse
|
38
|
Ji K, Liang H, Ren M, Ge X, Mi H, Pan L, Yu H. The immunoreaction and antioxidant capacity of juvenile blunt snout bream (Megalobrama amblycephala) involves the PI3K/Akt/Nrf2 and NF-κB signal pathways in response to dietary methionine levels. FISH & SHELLFISH IMMUNOLOGY 2020; 105:126-134. [PMID: 32634553 DOI: 10.1016/j.fsi.2020.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 05/26/2023]
Abstract
A 75-day rearing trail was designed to evaluate the immunoreaction and antioxidant capacity of juvenile blunt snout bream in response to dietary methionine levels. Three practical diets were extruded to feed juveniles with graded methionine levels (0.40%, 0.84% and 1.28% dry matter). The data indicated that the plasma concentrations of immunoglobulin M (IgM), complement component 3 (C3) and glutathione (GSH) in the 0.84% methionine diet were markedly upper than those in the 0.40% group (P < 0.05). The activities of plasma antioxidant parameters involving catalase (CAT), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC) and glutathione peroxidase (GPx) were significantly increased by the 0.84% diet compared with the 0.40% diet, whereas plasma alanine aminotransferase (ALT) and malondialdehyde (MDA) levels were significantly induced by 0.40% methionine (P < 0.05). Compared with the 0.40% group, 0.84% dietary methionine dramatically upregulated the mRNA expression levels of protein kinase B (Akt), phosphoinositide 3-kinase (PI3K) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway related genes including CAT, manganese superoxide dismutase (Mn-SOD), heme oxygenase 1 (HO-1) and glutathione peroxidase-1 (GPx-1) in the kidney and liver, and downregulated Kelch-like ECH-associated protein 1 (Keap1) mRNA levels (P < 0.05). Compared with the 0.40% group, the 0.84% dietary methionine strikingly suppressed the mRNA levels of renal and hepatic nuclear factor-kappa B (NF-κB) and pro-inflammatory cytokines (interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6)), however, improved the mRNA expression levels of anti-inflammatory cytokines involved renal and hepatic transforming growth factor-β (TGF-β) and hepatic interleukin 10 (IL-10) (P < 0.05). Renal IL-10 and interleukin 8 (IL-8) mRNA expression levels were not markedly influenced by experimental diets (P > 0.05). Dietary methionine (0.84%) significantly upregulated renal and hepatic heat stress protein 70 (Hsp70), renal B-cell lymphoma-2 (Bcl-2) gene expression levels compared with the 0.40% diet (P < 0.05). In a word, the data represented that 0.84% dietary methionine could enhance the immune and antioxidant capacity of this fish species by inducing PI3K/Akt/Nrf2 pathway and inhibiting NF-κB pathway.
Collapse
Affiliation(s)
- Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, PR China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, PR China.
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, PR China.
| | - Haifeng Mi
- Tongwei Co., Ltd., Chengdu, 610093, PR China
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, PR China
| | - Heng Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| |
Collapse
|
39
|
Zhao Y, Jia L, Zheng Y, Li W. Involvement of Noncoding RNAs in the Differentiation of Osteoclasts. Stem Cells Int 2020; 2020:4813140. [PMID: 32908541 PMCID: PMC7468661 DOI: 10.1155/2020/4813140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
As the most important bone-resorbing cells, osteoclasts play fundamental roles in bone remodeling and skeletal health. Much effort has been focused on identifying the regulators of osteoclast metabolism. Noncoding RNAs (ncRNAs) reportedly regulate osteoclast formation, differentiation, survival, and bone-resorbing activity to participate in bone physiology and pathology. The present review intends to provide a general framework for how ncRNAs and their targets regulate osteoclast differentiation and the important events of osteoclastogenesis they are involved in, including osteoclast precursor generation, early differentiation, mononuclear osteoclast fusion, and multinucleated osteoclast function and survival. This framework is beneficial for understanding bone biology and for identifying the potential biomarkers or therapeutic targets of bone diseases. The review also summarizes the results of in vivo experiments and classic experiment methods for osteoclast-related researches.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
40
|
Xiong X, Lu W, Zhang K, Zhou W. Pterostilbene reduces endothelial cell apoptosis by regulation of the Nrf2-mediated TLR-4/MyD88/NF-κB pathway in a rat model of atherosclerosis. Exp Ther Med 2020; 20:2090-2098. [PMID: 32782521 PMCID: PMC7401285 DOI: 10.3892/etm.2020.8923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Endothelial cell injury in vascular arterial walls plays a crucial role in the pathological process of atherosclerosis. Pterostilbene, a stilbenoid chemically related to resveratrol, has anti-inflammatory, anti-apoptosis and antioxidant properties. However, the underlying mechanisms mediated by pterostilbene in regards to endothelial cell injury in vascular arterial walls are not fully understood. The purpose of the present study was to investigate the benefits of pterostilbene in a rat model of atherosclerosis. The possible mechanism of pterostilbene was also analyzed in regards to endothelial cell injury in vascular arterial walls in vitro. A rat model of atherosclerosis was established using endothelial injury of the iliac arteries. CCK-8 assay, TUNEL, immunofluorescence, western blot analysis and hematoxylin and eosin (H&E) staining were used to analyze the role of pterostilbene in the pathological processes of atherosclerosis. In vivo results showed that pterostilbene decreased cholesterol (CHO), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) in plasma and attenuated interleukin (IL)-1, tumor necrosis factor (TNF)-α and IL-6 and oxidative stress injury in serum in the experimental animals. Pterostilbene treatment reduced atherogenesis, aortic plaques, macrophage infiltration and apoptosis of vascular arterial walls in the atherosclerosis rat model. In vitro assay demonstrated that pterostilbene administration increased viability of the endothelial cells, attenuated oxidative stress injury and apoptosis of endothelial cells. The results found that pterostilbene regulated endothelial cell apoptosis via the Nrf2-mediated TLR-4/MyD88/NF-κB pathway. In conclusion, data from the present study revealed that pterostilbene protects rats against atherosclerosis by regulation of the Nrf2-mediated TLR-4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Xiaowei Xiong
- Department of General Surgery, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Weihang Lu
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Kaihua Zhang
- Department of General Surgery, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi 332001, P.R. China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| |
Collapse
|
41
|
Mohamad NV, Ima-Nirwana S, Chin KY. Are Oxidative Stress and Inflammation Mediators of Bone Loss Due to Estrogen Deficiency? A Review of Current Evidence. Endocr Metab Immune Disord Drug Targets 2020; 20:1478-1487. [PMID: 32496996 PMCID: PMC8383467 DOI: 10.2174/1871530320666200604160614] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/15/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Osteoporosis is one of the major health issues associated with menopause-related estrogen deficiency. Various reports suggest that the hormonal changes related to menopausal transition may lead to the derangement of redox homeostasis and ultimately oxidative stress. Estrogen deficiency and oxidative stress may enhance the expression of genes involved in inflammation. All these factors may contribute, in synergy, to the development of postmenopausal osteoporosis. Previous studies suggest that estrogen may act as an antioxidant to protect the bone against oxidative stress, and as an antiinflammatory agent in suppressing pro-inflammatory and pro-osteoclastic cytokines. Thus, the focus of the current review is to examine the relationship between estrogen deficiency, oxidative stress and inflammation, and the impacts of these phenomena on skeletal health in postmenopausal women.
Collapse
Affiliation(s)
- Nur-Vaizura Mohamad
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Zhang Y, Shen X, Cheng L, Chen R, Zhao F, Zhong S, Lan C, Yan S. Toll-like receptor 4 knockout protects against diabetic-induced imbalance of bone metabolism via autophagic suppression. Mol Immunol 2020; 117:12-19. [DOI: 10.1016/j.molimm.2019.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023]
|
43
|
Proteome Alterations in Equine Osteochondrotic Chondrocytes. Int J Mol Sci 2019; 20:ijms20246179. [PMID: 31817880 PMCID: PMC6940994 DOI: 10.3390/ijms20246179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023] Open
Abstract
Osteochondrosis is a failure of the endochondral ossification that affects developing joints in humans and several animal species. It is a localized idiopathic joint disorder characterized by focal chondronecrosis and growing cartilage retention, which can lead to the formation of fissures, subchondral bone cysts, or intra-articular fragments. Osteochondrosis is a complex multifactorial disease associated with extracellular matrix alterations and failure in chondrocyte differentiation, mainly due to genetic, biochemical, and nutritional factors, as well as traumas. This study describes the main proteomic alterations occurring in chondrocytes isolated from osteochondrotic cartilage fragments. A comparative analysis performed on equine osteochondrotic and healthy chondrocytes showed 26 protein species as differentially represented. In particular, quantitative changes in the extracellular matrix, cytoskeletal and chaperone proteins, and in cell adhesion and signaling molecules were observed in osteochondrotic cells, compared to healthy controls. Functional group analysis annotated most of these proteins in “growth plate and cartilage development”, while others were included in “glycolysis and gluconeogenesis”, “positive regulation of protein import”, “cell–cell adhesion mediator activity”, and “mitochondrion nucleoid”. These results may help to clarify some chondrocyte functional alterations that may play a significant role in determining the onset and progression of equine osteochondrosis and, being related, of human juvenile osteochondrosis.
Collapse
|
44
|
Navik U, Sheth VG, Kabeer SW, Tikoo K. Dietary Supplementation of Methyl Donor l-Methionine Alters Epigenetic Modification in Type 2 Diabetes. Mol Nutr Food Res 2019; 63:e1801401. [PMID: 31532875 DOI: 10.1002/mnfr.201801401] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/17/2019] [Indexed: 12/21/2022]
Abstract
SCOPE The aim of the current study is to evaluate whether l-methionine supplementation (l-Met-S) improves type 2 diabetes-induced alterations in glucose and lipid metabolism by modulating one-carbon metabolism and methylation status. METHODS AND RESULTS Diabetes is induced in male Sprague-Dawley rats using high-fat diet and low dose streptozotocin. At the end of study, various biochemical parameters, immunoblotting, qRT-PCR and ChIP-qPCR are performed. The first evidence that l-Met-S activates p-AMPK and SIRT1, very similar to "metformin," is provided. l-Met-S improves the altered key one-carbon metabolites in diabetic rats by modulating methionine adenosyl transferase 1A and cystathione β synthase expression. qRT-PCR shows that l-Met-S alleviates diabetes-induced increase in Forkhead transcription factor 1 expression and thereby regulating genes involved in glucose (G6pc, Pdk4, Pklr) and lipid metabolism (Fasn). Interestingly, l-Met-S inhibits the increased expression of DNMT1 and also prevents methylation of histone H3K36me2 under diabetic condition. ChIP assay shows that persistent increase in abundance of histone H3K36me2 on the promoter region of FOXO1 in diabetic rats and it is recovered by l-Met-S. CONCLUSION The first evidence that dietary supplementation of l-Met prevents diabetes-induced epigenetic alterations and regulating methionine levels can be therapeutically exploited for the treatment of metabolic diseases is provided.
Collapse
Affiliation(s)
- Umashanker Navik
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Vaibhav G Sheth
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| |
Collapse
|
45
|
Fabà L, Gasa J, Tokach MD, Font-i-Furnols M, Vilarrasa E, Solà-Oriol D. Effects of additional organic micro-minerals and methionine on carcass composition, gait score, bone characteristics, and osteochondrosis in replacement gilts of different growth rate. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Wang F, Zhang C, Ge W, Zhang G. Up-regulated CST5 inhibits bone resorption and activation of osteoclasts in rat models of osteoporosis via suppression of the NF-κB pathway. J Cell Mol Med 2019; 23:6744-6754. [PMID: 31402549 PMCID: PMC6787459 DOI: 10.1111/jcmm.14552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/24/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022] Open
Abstract
Here, we aim at exploring the effect of CST5 on bone resorption and activation of osteoclasts in osteoporosis (OP) rats through the NF‐κB pathway. Microarray analysis was used to screen the OP‐related differentially expressed genes. Osteoporosis was induced in rats by intragastric retinoic acid administration. The serum levels of tartrate‐resistant acid phosphatase (TRAP), bone alkaline phosphatase (BALP) and osteocalcin (OC) and the expression of CD61 on the surface of osteoclasts were examined. The number of osteoclasts and the number and area of resorption pits were detected. Besides, the pathological changes and bone mineral density in bone tissues of rats were assessed. Also, the relationship between CST5 and the NF‐κB pathway was identified through determining the expression of CST5, RANKL, RANK, OPG, p65 and IKB. Poorly expressed CST5 was indicated to affect the OP. CST5 elevation and inhibition of the NF‐κB pathway decreased serum levels of TRAP, BALP and OC and expression of CD61 in vivo and in vitro. In OP rats, CST5 overexpression increased trabecular bones and bone mineral density of bone tissues, but decreased trabecular separation, fat within the bone marrow cavities and the number of osteoclasts through inhibiting the NF‐κB pathway. In vivo experiments showed that CST5 elevation inhibited growth in number and area of osteoclastic resorption pits and restrained osteoclastic bone absorption by inhibiting the NF‐κB pathway. In summary, overexpression of CST5 suppresses the activation and bone resorption of osteoclasts by inhibiting the activation of the NF‐κB pathway.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pain, Linyi People's Hospital, Linyi, China
| | - Chuanzhu Zhang
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Wei Ge
- Department of Orthopedics, Chinese Medicine Hospital in Linyi City, Linyi, China
| | - Guoqiang Zhang
- Department of Hand and Foot Surgery, Linyi People's Hospital, Linyi, China
| |
Collapse
|
47
|
Huang X, Qiao F, Xue P. The protective role of microRNA-140-5p in synovial injury of rats with knee osteoarthritis via inactivating the TLR4/Myd88/NF-κB signaling pathway. Cell Cycle 2019; 18:2344-2358. [PMID: 31345099 PMCID: PMC6738526 DOI: 10.1080/15384101.2019.1647025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: Recently, many studies have revealed the effect of microRNAs (miRNAs) in knee osteoarthritis (KOA). This study aims to explore the role of miR-140-5p in protective effects and mechanisms of synovial injury of rats with KOA via regulating the TLR4/Myd88/NF-κB signaling pathway. Methods: The models of KOA Wistar rats were established by operation of anterior cruciate ligament transection. Rats were injected with agomir NC or miR-140-5p agomir. MiR-140-5p expression in KOA synovial tissues and synoviocytes was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The synoviocytes were transfected with mimics NC sequence and miR-140-5p mimics sequence. The expression of TLR4/Myd88/NF-κB signaling pathway-related proteins was measured by RT-qPCR and western blot analysis. The proliferation and apoptosis of synoviocytes in rats with KOA were evaluated by a string of experiments. The expression levels of inflammatory factors in KOA synovial tissues and synoviocytes were detected. Results: MiR-140-5p was down-regulated in KOA synovial tissues and synoviocytes. Upregulation of miR-140-5p could inhibit the inflammation reaction and the apoptosis of synoviocytes as well as promote proliferation of synoviocytes of rats with KOA. Furthermore, upregulated miR-140-5p could inactivate the TLR4/Myd88/NF-κB signaling pathway in rats with KOA. Conclusion: This study suggests that upregulated miR-140-5p could protect synovial injury by restraining inflammation reaction and apoptosis of synoviocytes in KOA rats via TLR4/Myd88/NF-κB signaling pathway inactivation.
Collapse
Affiliation(s)
- Xiaoqiang Huang
- Orthopaedics Department, Honghui Hospital, Xi'an Jiaotong University , Xi'an , PR China
| | - Feng Qiao
- Orthopaedics Department of Integrated Traditional Chinese and Western Medicine, Honghui Hospital, Xi'an Jiaotong University , Xi'an , PR China
| | - Peng Xue
- Orthopaedics Department of Integrated Traditional Chinese and Western Medicine, Honghui Hospital, Xi'an Jiaotong University , Xi'an , PR China
| |
Collapse
|
48
|
He ZC, Li XY, Guo YL, Ma D, Fang Q, Ren LL, Zhang ZY, Wang W, Yu ZY, Zhao P, Wang JS. Heme oxygenase-1 attenuates the inhibitory effect of bortezomib against the APRIL-NF-κB-CCL3 signaling pathways in multiple myeloma cells: Corelated with bortezomib tolerance in multiple myeloma. J Cell Biochem 2019; 120:6972-6987. [PMID: 30368867 DOI: 10.1002/jcb.27879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 01/24/2023]
Abstract
Osteoclasts (OCs) play an essential role in bone destruction in patients with multiple myeloma (MM). Bortezomib can ameliorate bone destruction in patients with MM, but advanced MM often resists bortezomib. We studied the molecular mechanisms of bortezomib tolerance in MM. The expression of the MM-related genes in newly diagnosed patients with MM and normal donors were studied. C-C motif chemokine ligand 3 (CCL3) is a cytokine involved in the differentiation of OCs, and its expression is closely related to APRIL (a proliferation-inducing ligand). We found that bortezomib treatment inhibited APRIL and CCL3. But the heme oxygenase-1 (HO-1) activator hemin attenuated the inhibitory effects of bortezomib on APRIL and CCL3. We induced mononuclear cells to differentiate into OCs, and the enzyme-linked immunosorbent assay showed that the more OCs differentiated, the higher the levels CCL3 secretions detected. Animal experiments showed that hemin promoted MM cell infiltration in mice. The weight and survival rate of tumor mice were associated with HO-1 expression. Immunohistochemical staining showed that HO-1, APRIL, and CCL3 staining were positively stained in the tumor infiltrating sites. Then, MM cells were transfected with L-HO-1/si-HO-1 expression vectors and cultured with an nuclear factor (NF)-kappa B (κB) pathway inhibitor, QNZ. The results showed that HO-1 was the upstream gene of APRIL, NF-κB, and CCL3. We showed that HO-1 could attenuate the inhibitory effect of bortezomib against the APRIL-NF-κB-CCL3 signaling pathways in MM cells, and the tolerance of MM cells to bortezomib and the promotion of bone destruction are related to HO-1.
Collapse
Affiliation(s)
- Zheng C He
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xin Y Li
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong L Guo
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Fang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ling L Ren
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhao Y Zhang
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Weili Wang
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zheng Y Yu
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Peng Zhao
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ji S Wang
- Department of Hematology, Affiliated Hospital of Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
49
|
Liu Y, Zhang Y, Pan R, Chen M, Wang X, Kong E, Yu W, Sun Y, Wu F. Lentiviral‑mediated inducible silencing of TLR4 attenuates neuropathic pain in a rat model of chronic constriction injury. Mol Med Rep 2018; 18:5545-5551. [PMID: 30365084 PMCID: PMC6236283 DOI: 10.3892/mmr.2018.9560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
An increasing body of evidence has indicated that spinal microglial Toll-like receptor 4 (TLR4) may serve a significant role in the development and maintenance of neuropathic pain (NP). In the present study, experiments were conducted to evaluate the contribution of a tetracycline inducible lentiviral-mediated delivery system for the expression of TLR4 small interfering (si)RNA to NP in rats with chronic constriction injury (CCI). Behavioral tests, including paw withdrawal latency and paw withdrawal threshold, and biochemical analysis of the spinal cord, including western blotting, reverse transcription-quantitative polymerase chain reaction and ELISA, were conducted following CCI to the sciatic nerve. Intrathecal administration of LvOn-si-TLR4 with doxycycline (Dox) attenuated allodynia and hyperalgesia. Biochemical analysis revealed that the mRNA and proteins levels of TLR4 were unregulated following CCI to the sciatic nerve, which was then blocked by intrathecal administration of LvOn-siTLR4 with Dox. The LvOn-siTLR4 was also demonstrated to have no effect on TLR4 or the pain response without Dox, which indicated that the expression of siRNA was Dox-inducible in the lentivirus delivery system. In conclusion, TLR4 may serve a significant role in neuropathy and the results of the present study provide an inducible lentivirus-mediated siRNA against TLR4 that may serve as a potential novel strategy to be applied in gene therapy for NP in the future.
Collapse
Affiliation(s)
- Yantao Liu
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Yan Zhang
- Department of Anesthesiology, Zhejiang Zhoushan Hospital, Zhoushan, Zhejiang 316021, P.R. China
| | - Ruirui Pan
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Mo Chen
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Xiaoqiang Wang
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Erliang Kong
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Weifeng Yu
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Yuming Sun
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Feixiang Wu
- Department of Anesthesiology and Intensive Care, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| |
Collapse
|
50
|
Zhang L, Chen Q, Wang H, Yang J, Sheng S. Andrographolide mitigates IL‑1β‑induced human nucleus pulposus cells degeneration through the TLR4/MyD88/NF‑κB signaling pathway. Mol Med Rep 2018; 18:5427-5436. [PMID: 30365119 PMCID: PMC6236278 DOI: 10.3892/mmr.2018.9599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a multifactorial disease with few efficacious clinical drugs, which has been demonstrated to be associated with nucleus pulposus (NP) cells apoptosis and degeneration of the extracellular matrix (ECM). Interleukin (IL)-1β, a common proinflammatory cytokine, is considered to be one of key regulators in IDD development. Andrographolide (AG), extracted from Andrographis paniculata, has been suggested to possess marked anti-inflammatory properties. However, the effects of AG on IDD has not been well explored. The present study aimed to investigate the effects and the mechanisms of AG on IDD in human NP cells. NP cells were treated with IL-1β in the absence or presence of AG to investigate the effects on cell viability, cellular apoptosis, production of ECM and matrix metalloproteinase (MMP)-3, MMP-9 and MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5. It was identified that IL-1β-induced NP cellular apoptosis was significantly inhibited by AG treatment. Furthermore, AG mitigated the IL-1β-induced degeneration of the ECM, which was paralleled by a decrease in MMPs and ADAMTS levels. In addition, AG exhibited marked inhibitory properties against the activation of Toll-like receptors (TLRs), Myeloid differentiation factor 88 (MyD88) and the nuclear translocation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Taken together, these results demonstrated that AG treatment mitigated IL-1β-induced NP cells degeneration through the TLR4/MyD88/NF-κB signaling pathway, and suggested that AG may be a potential agent for IDD prevention and therapy.
Collapse
Affiliation(s)
- Lilian Zhang
- Department of Spine Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qi Chen
- Department of Spine Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Haoli Wang
- Department of Spine Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jian Yang
- Department of Spine Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Sunren Sheng
- Department of Spine Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|