1
|
Calleja-Conde J, Echeverry-Alzate V, Bühler KM, Morales-García JÁ, Segovia-Rodríguez L, Durán-González P, Olmos P, de Fonseca FR, Giné E, López-Moreno JA. Dissecting operant alcohol self-administration using saccharin-fading procedure. Neuropsychopharmacol Rep 2023; 43:12-22. [PMID: 36727594 PMCID: PMC10009421 DOI: 10.1002/npr2.12289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Although alcohol use disorder is a complex human pathology, the use of animal models represents an opportunity to study some aspects of this pathology. One of the most used paradigms to study the voluntary alcohol consumption in rodents is operant self-administration (OSA). AIMS In order to facilitate the performance of this paradigm, we aim to describe some critical steps of OSA under a saccharin-fading procedure. MATERIAL & METHODS We used 40 male Wistar rats to study the process of acquiring the operant response through a saccharin-fading procedure under a fixed ratio (FR1) schedule of reinforcement. Next, we analyze the alcohol introduction and concentration increase, the effect of an alcohol deprivation, and the analogy between this paradigm with the Drinking in the Dark-Multiple Scheduled Access paradigm. RESULTS During alcohol concentration increase, animals reduced their lever presses in accordance with the increase in alcohol concentration. On the contrary, the consumption measured in g·kg-1 BW showed a great stability. The lever presses pattern within operant session changes with the introduction of different alcohol concentrations: at higher alcohol concentrations, animals tended to accumulate most of their presses in the initial period of the session. DISCUSSION We show the utility of fading with low concentrations of saccharin and the evolution of the operant response through the different concentrations of alcohol. CONCLUSION Taken together, our results aimed to dissect the acquisition and maintenance of OSA behavior as well as other related variables, to facilitate the understanding and performance of this paradigm.
Collapse
Affiliation(s)
| | - Víctor Echeverry-Alzate
- School of Life and Nature Sciences, Nebrija University, Madrid, Spain.,Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas Campus, Complutense University of Madrid, Madrid, Spain.,IMABIS Foundation, Regenerative Medicine Laboratory, Carlos Haya Regional University Hospital, Málaga, Spain
| | - Kora-Mareen Bühler
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas Campus, Complutense University of Madrid, Madrid, Spain
| | | | - Lucía Segovia-Rodríguez
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas Campus, Complutense University of Madrid, Madrid, Spain
| | - Pedro Durán-González
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas Campus, Complutense University of Madrid, Madrid, Spain
| | - Pedro Olmos
- Center for Energy, Environmental and Technological Research (CIEMAT), Madrid, Spain
| | | | - Elena Giné
- Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jose Antonio López-Moreno
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas Campus, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Fonseca-Barriendos D, Frías-Soria CL, Pérez-Pérez D, Gómez-López R, Borroto Escuela DO, Rocha L. Drug-resistant epilepsy: Drug target hypothesis and beyond the receptors. Epilepsia Open 2021; 7 Suppl 1:S23-S33. [PMID: 34542940 PMCID: PMC9340308 DOI: 10.1002/epi4.12539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Epilepsy is a chronic neurological disorder that affects more than 50 million people worldwide. Despite a recent introduction of antiseizure drugs for the treatment of epileptic seizures, one-third of these patients suffer from drug-resistant epilepsy (DRE). The therapeutic target hypothesis is a cited theory to explain DRE. According to the target hypothesis, the failure to achieve seizure freedom leads to alteration of the structure and/or function of the antiseizure medication (ASM) target. However, this hypothesis fails to explain why patients with DRE do not respond to antiseizure medications of different targets. This review presents different conditions, such as epigenetic mechanisms and protein-protein interactions that may result in alterations of diverse drug targets using different mechanisms. These novel conditions represent new targets to control DRE.
Collapse
Affiliation(s)
| | | | - Daniel Pérez-Pérez
- Plan of Combined Studies in Medicine (PECEM), Faculty of Medicine, UNAM, México City, Mexico
| | - Rosenda Gómez-López
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, México
| | | | - Luisa Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies, México City, México
| |
Collapse
|
3
|
Labib HMA. Alteration of CYP2E1, DBN1, DNMT1, miRNA-335, miRNA-21, c-Fos and Cox-2 gene expression in prefrontal cortex of rats' offspring submitted to prenatal ethanol exposure during their neurodevelopment and the preventive role of nancocurcumin administration: A histological, ultrastructural and molecular study. J Chem Neuroanat 2021; 113:101940. [PMID: 33657396 DOI: 10.1016/j.jchemneu.2021.101940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/05/2021] [Accepted: 02/21/2021] [Indexed: 12/27/2022]
Abstract
Ethanol (EtOH) has been linked to neurotoxic effects on the fetus and prenatal alcohol exposure (PAE) has a negative impact on brain neurodevelopment. Therefore, the present study was aimed to focus on the underlying mechanisms of alcohol-induced oxidative stress and apoptotic cell death in addition to shedding the light on the modulatory effect of nanocurcumin in rats' offspring prefrontal cortices. The current study investigated the effects of prenatal maternal exposure to EtOH intragastric (i.g.) administration of 0.015 mL/g of a 10 % v/v ethanol solution throughout gestation and the concomitant use of nanocurcumin, on 21-day-old offspring Wistar rat prefrontal cortex parameters. CYP2E1, DBN1, DNMT1, miRNA-335, miRNA-21, c-Fos and Cox-2 gene expression as well as the accompanying histological and ultrastructural alterations were assessed. The implemented experimental setting has revealed that ethanol exposure caused significant alterations in the above mentioned parameters. Changes observed in nanocurcumin-treated animals were significantly different to the ethanol-treated group when nanocurcumin was concomitantly administered.
Collapse
Affiliation(s)
- Heba Mohamed Ali Labib
- Department of Anatomy and Embryology, Faculty of Medicine, Kasr Alainy, Cairo University, 71 El Kasr Al Ainy. Sector, Greater Cairo, 11562, Cairo, Egypt.
| |
Collapse
|
4
|
Calleja-Conde J, Fernández-Calle R, Zapico JM, Ramos A, de Pascual-Teresa B, Bühler KM, Echeverry-Alzate V, Giné E, Rodríguez de Fonseca F, López-Moreno JA, Herradón G. Inhibition of Receptor Protein Tyrosine Phosphatase β/ζ Reduces Alcohol Intake in Rats. Alcohol Clin Exp Res 2020; 44:1037-1045. [PMID: 32154588 DOI: 10.1111/acer.14321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pleiotrophin (PTN) and midkine (MK) are cytokines that are up-regulated in the prefrontal cortex (PFC) after alcohol administration and have been shown to reduce alcohol intake and reward. Both cytokines are endogenous inhibitors of receptor protein tyrosine phosphatase (RPTP) β/ζ (a.k.a. PTPRZ1). Recently, a new compound named MY10 was designed with the aim of mimicking the activity of PTN and MK. MY10 has already shown promising results regulating alcohol-related behaviors in mice. METHODS We have now tested the effects of MY10 on alcohol operant self-administration and Drinking In the Dark-Multiple Scheduled Access (DID-MSA) paradigms in rats. Gene expression of relevant genes in the PTN/MK signaling pathway in the PFC was analyzed by real-time PCR. RESULTS MY10, at the highest dose tested (100 mg/kg), reduced alcohol consumption in the alcohol operant self-administration paradigm (p = 0.040). In the DID-MSA paradigm, rats drank significantly less alcohol (p = 0.019) and showed a significant decrease in alcohol preference (p = 0.002). We observed that the longer the exposure to alcohol, the greater the suppressing effects of MY10 on alcohol consumption. It was demonstrated that the effects of MY10 were specific to alcohol since saccharin intake was not affected by MY10 (p = 0.804). MY10 prevented the alcohol-induced down-regulation of Ptprz1 (p = 0.004) and anaplastic lymphoma kinase (Alk; p = 0.013) expression. CONCLUSIONS Our results support and provide further evidence regarding the efficacy of MY10 on alcohol-related behaviors and suggest the consideration of the blockade of RPTPβ/ζ as a target for reducing excessive alcohol consumption.
Collapse
Affiliation(s)
- Javier Calleja-Conde
- From the, Department of Psychobiology and Behavioral Sciences Methods, (JC-C, K-MB, VE-A, JAL-M), School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Rosalía Fernández-Calle
- Departamento de Ciencias Farmacéuticas y de la Salud, (RF-C, GH), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, Spain
| | - José M Zapico
- Departamento de Química y Bioquímica, (JMZ, AR, BP-T), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, Spain
| | - Ana Ramos
- Departamento de Química y Bioquímica, (JMZ, AR, BP-T), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, (JMZ, AR, BP-T), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, Spain
| | - Kora-Mareen Bühler
- From the, Department of Psychobiology and Behavioral Sciences Methods, (JC-C, K-MB, VE-A, JAL-M), School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Victor Echeverry-Alzate
- From the, Department of Psychobiology and Behavioral Sciences Methods, (JC-C, K-MB, VE-A, JAL-M), School of Psychology, Complutense University of Madrid, Madrid, Spain.,Laboratorio de Medicina Regenerativa, (VE-A, FRF), Hospital Regional Universitario Carlos Haya, Fundación IMABIS, Málaga, Spain
| | - Elena Giné
- Department of Cellular Biology, (EG), School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, (VE-A, FRF), Hospital Regional Universitario Carlos Haya, Fundación IMABIS, Málaga, Spain
| | - Jose Antonio López-Moreno
- From the, Department of Psychobiology and Behavioral Sciences Methods, (JC-C, K-MB, VE-A, JAL-M), School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, (RF-C, GH), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, Spain
| |
Collapse
|
5
|
Echeverry-Alzate V, Bühler KM, Calleja-Conde J, Huertas E, Maldonado R, Rodríguez de Fonseca F, Santiago C, Gómez-Gallego F, Santos A, Giné E, López-Moreno JA. Adult-onset hypothyroidism increases ethanol consumption. Psychopharmacology (Berl) 2019; 236:1187-1197. [PMID: 30470859 DOI: 10.1007/s00213-018-5123-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/14/2018] [Indexed: 12/29/2022]
Abstract
RATIONALE Only in Europe it can be estimated that more than 20 million of people would be affected by hypothyroidism in some moment of their life. Given that ethanol consumption is so frequent, it would be reasonable to ask what the consequences of ethanol consumption in those individuals affected by hypothyroidism are. OBJECTIVES To study the interaction between hypothyroidism and ethanol consumption. METHODS We study ethanol consumption in a rat model of methyl-mercaptoimidazole-induced-adult-onset hypothyroidism and thyroid T4/T3 hormone supplementation. Also, we studied the effects of ethanol on motor activity, memory, and anxiety. RESULTS We found that hypothyroidism increased the voluntary ethanol consumption and that this was enhanced by thyroid hormone supplementation. Hypothyroidism was associated with motor hyperactivity which was prevented either by T4/T3 supplementation or ethanol. The relationship between hypothyroidism, ethanol, and anxiety was more complex. In an anxiogenic context, hypothyroidism and T4/T3 supplementation would increase immobility, an anxiety-like behavior, while in a less anxiogenic context would decrease rearing, a behavior related to anxiety. Regarding memory, acute ethanol administration did not alter episodic-like memory in hypothyroid rats. Gene expression of enzymes involved in the metabolism of ethanol, i.e., Adh1 and Aldh2, were altered by hypothyroidism and T4/T3 supplementation. CONCLUSIONS Our results suggest that hypothyroid patients would need personalized attention in terms of ethanol consumption. In addition, they point that it would be useful to embrace the thyroid axis in the study of ethanol addiction, including as a possible therapeutic target for the treatment of alcoholism and its comorbid disorders.
Collapse
Affiliation(s)
- V Echeverry-Alzate
- Department of Psychobiology & Behavioral Sciences Methods, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223, Madrid, Spain
| | - K M Bühler
- Department of Psychobiology & Behavioral Sciences Methods, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223, Madrid, Spain
| | - J Calleja-Conde
- Department of Psychobiology & Behavioral Sciences Methods, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223, Madrid, Spain
| | - E Huertas
- Department of Experimental Psychology, Cognitive Processes & Speech Therapy, School of Psychology, Complutense University of Madrid, 28223, Madrid, Spain
| | - R Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - F Rodríguez de Fonseca
- Fundación IMABIS, Laboratorio de Medicina Regenerativa, Hospital Regional Universitario Carlos Haya, 29010, Málaga, Spain
| | - C Santiago
- Department of Basic Biomedical Science, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670, Madrid, Spain
| | - F Gómez-Gallego
- Facultad de Ciencias de la Salud, Universidad Internacional de la Rioja (UNIR), La Rioja, Spain
| | - A Santos
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - E Giné
- Department of Cellular Biology, School of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - J A López-Moreno
- Department of Psychobiology & Behavioral Sciences Methods, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223, Madrid, Spain.
| |
Collapse
|
6
|
Navarrete-Modesto V, Orozco-Suárez S, Feria-Romero IA, Rocha L. The molecular hallmarks of epigenetic effects mediated by antiepileptic drugs. Epilepsy Res 2019; 149:53-65. [DOI: 10.1016/j.eplepsyres.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
7
|
Low Phytanic Acid-Concentrated DHA Prevents Cognitive Deficit and Regulates Alzheimer Disease Mediators in an ApoE -/- Mice Experimental Model. Nutrients 2018; 11:nu11010011. [PMID: 30577526 PMCID: PMC6356727 DOI: 10.3390/nu11010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the main cause of dementia and cognitive impairment. It has been associated with a significant diminution of omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) levels in the brain. Clinical trials with DHA as a treatment in neurological diseases have shown inconsistent results. Previously, we reported that the presence of phytanic acid (PhA) in standard DHA compositions could be blunting DHA’s beneficial effects. Therefore, we aimed to analyze the effects of a low PhA-concentrated DHA and a standard PhA-concentrated DHA in Apolipoprotein E knockout (ApoE−/−) mice. Behavioral tests and protein expression of pro-inflammatory, pro-oxidant, antioxidant factors, and AD-related mediators were evaluated. Low PhA-concentrated DHA decreased Aβ, ß-amyloid precursor protein (APP), p-tau, Ca2+/calmodulin-dependent protein kinase II (CAMKII), caspase 3, and catalase, and increased brain derived neurotrophic factor (BDNF) when compared to standard PhA-concentrated DHA. Low PhA-concentrated DHA decreased interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α) protein expression in ApoE−/− mice when compared to standard PhA-concentrated DHA. No significant differences were found in p22phox, inducible nitric oxide synthase (iNOS), glutathione peroxidase (GPx), superoxide dismutase 1 (SOD-1), and tau protein expression. The positive actions of a low PhA-concentrated DHA were functionally reflected by improving the cognitive deficit in the AD experimental model. Therefore, reduction of PhA content in DHA compositions could highlight a novel pathway for the neurodegeneration processes related to AD.
Collapse
|
8
|
Abstract
Patients who suffer from alcohol use disorders (AUDs) usually go through various socio-behavioral and pathophysiological changes that take place in the brain and other organs. Recently, consumption of unhealthy food and excess alcohol along with a sedentary lifestyle has become a norm in both developed and developing countries. Despite the beneficial effects of moderate alcohol consumption, chronic and/or excessive alcohol intake is reported to negatively affect the brain, liver and other organs, resulting in cell death, organ damage/failure and death. The most effective therapy for alcoholism and alcohol related comorbidities is alcohol abstinence, however, chronic alcoholic patients cannot stop drinking alcohol. Therefore, targeted therapies are urgently needed to treat such populations. Patients who suffer from alcoholism and/or alcohol abuse experience harmful effects and changes that occur in the brain and other organs. Upon stopping alcohol consumption, alcoholic patients experience acute withdrawal symptoms followed by a protracted abstinence syndrome resulting in the risk of relapse to heavy drinking. For the past few decades, several drugs have been available for the treatment of AUDs. These drugs include medications to reduce or stop severe alcohol withdrawal symptoms during alcohol detoxification as well as recovery medications to reduce alcohol craving and support abstinence. However, there is no drug that completely antagonizes the adverse effects of excessive amounts of alcohol. This review summarizes the drugs which are available and approved by the FDA and their mechanisms of action as well as the medications that are under various phases of preclinical and clinical trials. In addition, the repurposing of the FDA approved drugs, such as anticonvulsants, antipsychotics, antidepressants and other medications, to prevent alcoholism and treat AUDs and their potential target mechanisms are summarized.
Collapse
Affiliation(s)
- Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| | - Mark Egli
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Antonio Noronha
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
9
|
Arenas MC, Mateos-García A, Manzanedo C, Rodríguez-Arias M, Aguilar MA, Navarrete F, Gutiérrez MSG, Manzanares J, Miñarro J. Topiramate increases the rewarding properties of cocaine in young-adult mice limiting its clinical usefulness. Psychopharmacology (Berl) 2016; 233:3849-3859. [PMID: 27596289 DOI: 10.1007/s00213-016-4409-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/16/2016] [Indexed: 02/02/2023]
Abstract
RATIONALE Topiramate is an anticonvulsant drug which has been evaluated as a therapeutic option for the treatment of cocaine addiction during the last decade. OBJECTIVES The purpose of this study was to evaluate the effects of topiramate on the reinforcing actions of cocaine. To this aim, the topiramate-mediated regulation of acquisition and extinction phases of the cocaine conditioned place preference (CPP) was assessed in young-adult mice using three experimental designs. METHODS Topiramate (50 mg/kg, p.o.) was given as follows: (1) during cocaine (1 and 25 mg/kg, i.p.) conditioning sessions (4 days) and cocaine (25 mg/kg) post-conditioning session; (2) 2 weeks before and during cocaine conditioning (25 mg/kg); and (3) during extinction of CPP induced by cocaine (25 mg/kg). In the first experimental design, changes in tyrosine hydroxylase (TH) and dopamine transporter (DAT) gene expressions were measured in the ventral tegmental area (VTA). RESULTS Topiramate significantly increased cocaine-induced CPP and delayed or failed to produce extinction after the first cocaine reinstatement extinction in the first and second experiments. Furthermore, treatment with topiramate after place conditioning blocked the extinction of cocaine-induced CPP. TH and DAT gene expression in the VTA was significantly lower both with topiramate alone and in combination with cocaine compared with animals receiving only cocaine. CONCLUSIONS These findings suggest that topiramate increases the rewarding properties of cocaine, at least in part, by regulating dopaminergic signaling in the mesolimbic circuit. Consequently, the results of this study do not support the use of topiramate for the treatment of problems related to cocaine dependence. HIGHLIGHTS • Topiramate increases the rewarding properties of cocaine in CPP • Topiramate alters dopaminergic signaling in the mesolimbic circuit • Topiramate delays the extinction of cocaine-induced CPP • TH and DAT gene expression in the VTA decreases with topiramate and/or with cocaine • Results show that it should limit the use of topiramate in cocaine-dependent subjects.
Collapse
Affiliation(s)
- M C Arenas
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibañez, 21, 46010, Valencia, Spain.
| | - A Mateos-García
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibañez, 21, 46010, Valencia, Spain
| | - C Manzanedo
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibañez, 21, 46010, Valencia, Spain
| | - M Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibañez, 21, 46010, Valencia, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - M A Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibañez, 21, 46010, Valencia, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - F Navarrete
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. Ramón y Cajal s/n, 03550, San Juan de Alicante, Alicante, Spain
| | - M S García Gutiérrez
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. Ramón y Cajal s/n, 03550, San Juan de Alicante, Alicante, Spain
| | - J Manzanares
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. Ramón y Cajal s/n, 03550, San Juan de Alicante, Alicante, Spain
| | - J Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibañez, 21, 46010, Valencia, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
10
|
Morales-Garcia JA, Echeverry-Alzate V, Alonso-Gil S, Sanz-SanCristobal M, Lopez-Moreno JA, Gil C, Martinez A, Santos A, Perez-Castillo A. Phosphodiesterase7 Inhibition Activates Adult Neurogenesis in Hippocampus and Subventricular Zone In Vitro and In Vivo. Stem Cells 2016; 35:458-472. [PMID: 27538853 DOI: 10.1002/stem.2480] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 11/08/2022]
Abstract
The phosphodiesterase 7 (PDE7) enzyme is one of the enzymes responsible for controlling intracellular levels of cyclic adenosine 3',5'-monophosphate in the immune and central nervous system. We have previously shown that inhibitors of this enzyme are potent neuroprotective and anti-inflammatory agents. In addition, we also demonstrated that PDE7 inhibition induces endogenous neuroregenerative processes toward a dopaminergic phenotype. Here, we show that PDE7 inhibition controls stem cell expansion in the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the subventricular zone (SVZ) in the adult rat brain. Neurospheres cultures obtained from SGZ and SVZ of adult rats treated with PDE7 inhibitors presented an increased proliferation and neuronal differentiation compared to control cultures. PDE7 inhibitors treatment of neurospheres cultures also resulted in an increase of the levels of phosphorylated cAMP response element binding protein, suggesting that their effects were indeed mediated through the activation of the cAMP/PKA signaling pathway. In addition, adult rats orally treated with S14, a specific inhibitor of PDE7, presented elevated numbers of proliferating progenitor cells, and migrating precursors in the SGZ and the SVZ. Moreover, long-term treatment with this PDE7 inhibitor shows a significant increase in newly generated neurons in the olfactory bulb and the hippocampus. Also a better performance in memory tests was observed in S14 treated rats, suggesting a functional relevance for the S14-induced increase in SGZ neurogenesis. Taken together, our results indicate for the first time that inhibition of PDE7 directly regulates proliferation, migration and differentiation of neural stem cells, improving spatial learning and memory tasks. Stem Cells 2017;35:458-472.
Collapse
Affiliation(s)
- Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Victor Echeverry-Alzate
- Departamento de Psicobiologia, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jose A Lopez-Moreno
- Departamento de Psicobiologia, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid, Spain
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
11
|
Siniscalchi A, Bonci A, Biagio Mercuri N, Pirritano D, Squillace A, De Sarro G, Gallelli L. The Role of Topiramate in the Management of Cocaine Addiction: a Possible Therapeutic Option. Curr Neuropharmacol 2016; 13:815-8. [PMID: 26630959 PMCID: PMC4759320 DOI: 10.2174/1570159x13666150729222643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/01/2015] [Accepted: 07/28/2015] [Indexed: 12/27/2022] Open
Abstract
Topiramate (TPM) is an antiepileptic drug able to play a role in both neurological and
psychiatric disorders. TPM facilitates gamma-aminobutyric acid (GABA) transmission and inhibits
glutamatergic transmission (i.e. AMPA/kainate receptors). Several studies reported that the modulation of GABAergic and glutamatergic synaptic transmission may reduce cocaine
reinforcement. Therefore, TPM could be used in the management of cocaine dependence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luca Gallelli
- Clinical Specialist (Neurologist), Department of Neurology, Annunziata Hospital, Via F. Migliori, 1 - 87100 Cosenza, Italy.
| |
Collapse
|
12
|
Calleja‐Conde J, Echeverry‐Alzate V, Giné E, Bühler K, Nadal R, Maldonado R, Rodríguez de Fonseca F, Gual A, López‐Moreno JA. Nalmefene is effective at reducing alcohol seeking, treating alcohol-cocaine interactions and reducing alcohol-induced histone deacetylases gene expression in blood. Br J Pharmacol 2016; 173:2490-505. [PMID: 27238566 PMCID: PMC4959953 DOI: 10.1111/bph.13526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/28/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The opioid antagonist nalmefene (selincro®) was approved for alcohol-related disorders by the European Medicines Agency in 2013. However, there have been no studies regarding the effectiveness of nalmefene when alcohol is used in combination with cocaine. EXPERIMENTAL APPROACH Using operant alcohol self-administration in Wistar rats and qRT-PCR, we evaluated (i) the dose-response curve for s.c. and p.o. nalmefene; (ii) the effects of nalmefene with increasing concentrations of alcohol; (iii) the efficacy of nalmefene on cocaine-potentiated alcohol responding; and (iv) the gene expression profiles of histone deacetylases (Hdac1-11) in peripheral blood in vivo and in the prefrontal cortex, heart, liver and kidney post mortem. KEY RESULTS S.c. (0.01, 0.05, 0.1 mg·kg(-1) ) and p.o. (10, 20, 40 mg·kg(-1) ) nalmefene dose-dependently reduced alcohol-reinforced responding by up to 50.3%. This effect of nalmefene was not dependent on alcohol concentration (10, 15, 20%). Cocaine potentiated alcohol responding by approximately 40% and nalmefene (0.05 mg·kg(-1) ) reversed this effect of cocaine. Alcohol increased Hdac gene expression in blood and nalmefene prevented the increases in Hdacs 3, 8, 5, 7, 9, 6 and 10. In the other tissues, alcohol and nalmefene either did not alter the gene expression of Hdacs, as in the prefrontal cortex, or a tissue-Hdac-specific effect was observed. CONCLUSIONS AND IMPLICATIONS Nalmefene might be effective as a treatment for alcohol-dependent patients who also use cocaine. Also, the expression of Hdacs in peripheral blood might be useful as a biomarker of alcohol use and drug response.
Collapse
Affiliation(s)
- Javier Calleja‐Conde
- Department of Psychobiology, School of Psychology, Campus de SomosaguasComplutense University of MadridMadridSpain
| | - Victor Echeverry‐Alzate
- Department of Psychobiology, School of Psychology, Campus de SomosaguasComplutense University of MadridMadridSpain
| | - Elena Giné
- Department of Cellular Biology, School of MedicineComplutense University of MadridMadridSpain
| | - Kora‐Mareen Bühler
- Department of Psychobiology, School of Psychology, Campus de SomosaguasComplutense University of MadridMadridSpain
| | - Roser Nadal
- Psychobiology Unit, School of PsychologyInstitut de Neurociències, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu FabraBarcelonaSpain
| | - Fernando Rodríguez de Fonseca
- Department of Psychobiology, School of Psychology, Campus de SomosaguasComplutense University of MadridMadridSpain
- Instituto IBIMA de Málaga, Unidad de Gestión Clínica de Salud MentalHospital Regional UniversitarioMálagaSpain
| | - Antoni Gual
- Addictions Unit, Department of PsychiatryClinical Institute of Neuroscience, Hospital ClínicBarcelonaSpain
| | - Jose Antonio López‐Moreno
- Department of Psychobiology, School of Psychology, Campus de SomosaguasComplutense University of MadridMadridSpain
| |
Collapse
|
13
|
López-Moreno JA, Marcos M, Calleja-Conde J, Echeverry-Alzate V, Bühler KM, Costa-Alba P, Bernardo E, Laso FJ, Rodríguez de Fonseca F, Nadal R, Viveros MP, Maldonado R, Giné E. Histone Deacetylase Gene Expression Following Binge Alcohol Consumption in Rats and Humans. Alcohol Clin Exp Res 2015; 39:1939-50. [PMID: 26365275 DOI: 10.1111/acer.12850] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/22/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol binge drinking is one of the most common patterns of excessive alcohol use and recent data would suggest that histone deacetylases (HDACs) gene expression profiling could be useful as a biomarker for psychiatric disorders. METHODS This study aimed to characterize the gene expression patterns of Hdac 1-11 in samples of rat peripheral blood, liver, heart, prefrontal cortex, and amygdala following repeated binge alcohol consumption and to determine the parallelism of Hdac gene expression between rats and humans in peripheral blood. To accomplish this goal, we examined Hdac gene expression following 1, 4, or 8 alcohol binges (3 g/kg, orally) in the rat, in patients who were admitted to the hospital emergency department for acute alcohol intoxication, and in rats trained in daily operant alcohol self-administration. RESULTS We primarily found that acute alcohol binging reduced gene expression (Hdac1-10) in the peripheral blood of alcohol-naïve rats and that this effect was attenuated following repeated alcohol binges. There was also a reduction of Hdac gene expression in the liver (Hdac2,4,5), whereas there was increased expression in the heart (Hdac1,7,8) and amygdala (Hdac1,2,5). Additionally, increased blood alcohol concentrations were measured in rat blood at 1 to 4 hours following repeated alcohol binging, and the only group that developed hepatic steotosis (fatty liver) were those animals exposed to 8 alcohol binge events. Finally, both binge consumption of alcohol in humans and daily operant alcohol self-administration in rats increased Hdac gene expression in peripheral blood. CONCLUSIONS Our results suggest that increases in HDAC gene expression within the peripheral blood are associated with chronic alcohol consumption, whereas HDAC gene expression is reduced following initial exposure to alcohol.
Collapse
Affiliation(s)
| | - Miguel Marcos
- Alcoholism Unit, Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
| | - Javier Calleja-Conde
- Department of Psychobiology, School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Victor Echeverry-Alzate
- Department of Psychobiology, School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Kora M Bühler
- Department of Psychobiology, School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Pilar Costa-Alba
- Emergency Department, University Hospital of Salamanca, Salamanca, Spain
| | - Edgar Bernardo
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Francisco-Javier Laso
- Alcoholism Unit, Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
| | | | - Roser Nadal
- Psychobiology Unit, School of Psychology, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Paz Viveros
- Department of Physiology (Animal Physiology II), School of Biology, Complutense University of Madrid, Madrid, Spain
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Giné
- Department of Cellular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|