1
|
Boccella S, Fusco A, Ricciardi F, Morace AM, Bonsale R, Perrone M, Marabese I, De Gregorio D, Belardo C, Posa L, Rullo L, Piscitelli F, di Marzo V, Nicois A, Marfella B, Cristino L, Luongo L, Guida F, Candeletti S, Gobbi G, Romualdi P, Maione S. Acute kappa opioid receptor blocking disrupts the pro-cognitive effect of cannabidiol in neuropathic rats. Neuropharmacology 2025; 266:110265. [PMID: 39674399 DOI: 10.1016/j.neuropharm.2024.110265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Cannabidiol has been shown to ameliorate neuropathic pain and its affective components. Previous studies highlighted the pharmacological interaction between the CBD and opioid system, particularly the MOR, but the understanding of the interaction between CBD and kappa opioid receptor (KOR), physiologically stimulated by the endogenous opioid dynorphin, remains elusive. We assessed the pharmacological interactions between CBD and nor-BNI, a selective KOR antagonist in a rat neuropathic pain model. We show an increase in dynorphin peptide and its KOR receptors in the hippocampus' dentate gyrus (DG) of neuropathic rats showing allodynia, and memory deficits. Consistent with these findings, neuropathic pain was associated with long-term potentiation (LTP) impairment in the entorhinal cortex-DG, also referred to as the lateral perforant pathway (LPP). Moreover, a downregulation of the endocannabinoid 2-AG and an upregulation of the cannabinoid CB1 receptors in the DG were detected in neuropathic pain animals. Either an acute KOR antagonist administration or one-week CBD treatment normalized dynorphin levels and improved affective symptoms, LTP and receptor expression, whereas only CBD showed an anti-allodynic effect. In addition, CBD normalized the SNI-induced changes in neuroplasticity as well as endocannabinoid and GABA levels in the DG. Noteworthy, the acute blockade of the KOR carried out after CBD repeated administration causes the re-installment of some neuropathic condition symptoms. As a whole, these original results indicate a critical relationship between the adaptive changes in the hippocampus produced by CBD and the need to maintain the recovered physiological dynorphin tone to preserve the therapeutic effect of CBD in neuropathic rats.
Collapse
MESH Headings
- Animals
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Cannabidiol/pharmacology
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Male
- Dynorphins/metabolism
- Rats
- Naltrexone/pharmacology
- Naltrexone/analogs & derivatives
- Long-Term Potentiation/drug effects
- Narcotic Antagonists/pharmacology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Rats, Sprague-Dawley
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Rats, Wistar
- Disease Models, Animal
- Endocannabinoids/metabolism
- Hippocampus/drug effects
- Hippocampus/metabolism
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy.
| | - Antimo Fusco
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Federica Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Andrea Maria Morace
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Roozbe Bonsale
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Michela Perrone
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute, Italy; Vita Salute San Raffaele University, Milan, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Luca Posa
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, NA, Italy
| | - Vincenzo di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, NA, Italy; Faculty of Medicine and Faculty of Agricultural and Food Sciences, Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, Canada; Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada; Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Alessandro Nicois
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, NA, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Brenda Marfella
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, NA, Italy; Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, NA, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada; Research Institute, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Gaborit M, Massotte D. Therapeutic potential of opioid receptor heteromers in chronic pain and associated comorbidities. Br J Pharmacol 2023; 180:994-1013. [PMID: 34883528 DOI: 10.1111/bph.15772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/07/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
Chronic pain affects 20% to 45% of the global population and is often associated with the development of anxio-depressive disorders. Treatment of this debilitating condition remains particularly challenging with opioids prescribed to alleviate moderate to severe pain. However, despite strong antinociceptive properties, numerous adverse effects limit opioid use in the clinic. Moreover, opioid misuse and abuse have become a major health concern worldwide. This prompted efforts to design original strategies that would efficiently and safely relieve pain. Targeting of opioid receptor heteromers is one of these. This review summarizes our current knowledge on the role of heteromers involving opioid receptors in the context of chronic pain and anxio-depressive comorbidities. It also examines how heteromerization in native tissue affects ligand binding, receptor signalling and trafficking properties. Finally, the therapeutic potential of ligands designed to specifically target opioid receptor heteromers is considered. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Marion Gaborit
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Dominique Massotte
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
3
|
Drakopoulos A, Moianos D, Prifti GM, Zoidis G, Decker M. Opioid ligands addressing unconventional binding sites and more than one opioid receptor subtype. ChemMedChem 2022; 17:e202200169. [PMID: 35560796 DOI: 10.1002/cmdc.202200169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Opioid receptors (ORs) represent one of the most significant groups of G-protein coupled receptor (GPCR) drug targets and also act as prototypical models for GPCR function. In a constant effort to develop drugs with less side effects, and tools to explore the ORs nature and function, various (poly)pharmacological ligand design approaches have been performed. That is, besides classical ligands, a great number of bivalent ligands (i.e. aiming on two distinct OR subtypes), univalent heteromer-selective ligands and bitopic and allosteric ligands have been synthesized for the ORs. The scope of our review is to present the most important of the aforementioned ligands, highlight their properties and exhibit the current state-of-the-art pallet of promising drug candidates or useful molecular tools for the ORs.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- University of Gothenburg: Goteborgs Universitet, Department of Chemistry and Molecular Biology, Kemigåden 4, 431 45, Göteborg, SWEDEN
| | - Dimitrios Moianos
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Georgia-Myrto Prifti
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Grigoris Zoidis
- National and Kapodistrian University of Athens, Department of Pharmaceutical Chemistry, Panepistimioupolis-Zografou, 15771, Athens, GREECE
| | - Michael Decker
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, GERMANY
| |
Collapse
|
4
|
Wu B, Hand W, Alexov E. Opioid Addiction and Opioid Receptor Dimerization: Structural Modeling of the OPRD1 and OPRM1 Heterodimer and Its Signaling Pathways. Int J Mol Sci 2021; 22:ijms221910290. [PMID: 34638633 PMCID: PMC8509015 DOI: 10.3390/ijms221910290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Opioid addiction is a complex phenomenon with genetic, social, and other components. Due to such complexity, it is difficult to interpret the outcome of clinical studies, and thus, mutations found in individuals with these addictions are still not indisputably classified as opioid addiction-causing variants. Here, we computationally investigated two such mutations, A6V and N40D, found in the mu opioid receptor gene OPRM1. The mutations are located in the extracellular domain of the corresponding protein, which is important to the hetero-dimerization of OPRM1 with the delta opioid receptor protein (OPRD1). The hetero-dimerization of OPRD1-OPRM1 affects the signaling pathways activated by opioids and natural peptides and, thus, could be considered a factor contributing to addiction. In this study, we built four 3D structures of molecular pathways, including the G-protein signaling pathway and the β-arrestin signaling pathway of the heterodimer of OPRD1-OPRM1. We also analyzed the effect of mutations of A6V and N40D on the stability of individual OPRM1/OPRD1 molecules and the OPRD1-OPRM1 heterodimer with the goal of inferring their plausible linkage with opioid addiction. It was found that both mutations slightly destabilize OPRM1/OPRD1 monomers and weaken their association. Since hetero-dimerization is a key step for signaling processes, it is anticipated that both mutations may be causing increased addiction risk.
Collapse
Affiliation(s)
- Bohua Wu
- Department of Physics, College of Science, Clemson University, Clemson, SC 29634, USA;
| | - William Hand
- Department of Anesthesiology and Perioperative Medicine, Prisma Health, Greenville, SC 29605, USA;
| | - Emil Alexov
- Department of Physics, College of Science, Clemson University, Clemson, SC 29634, USA;
- Correspondence:
| |
Collapse
|
5
|
Giakomidi D, Bird MF, McDonald J, Marzola E, Guerrini R, Chanoch S, Sabu N, Horley B, Calo G, Lambert DG. Evaluation of [Cys(ATTO 488)8]Dermorphin-NH2 as a novel tool for the study of μ-opioid peptide receptors. PLoS One 2021; 16:e0250011. [PMID: 33891604 PMCID: PMC8064508 DOI: 10.1371/journal.pone.0250011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
The μ-opioid peptide (MOP) receptor is a member of the opioid receptor family and an important clinical target for analgesia. Measuring MOP receptor location and tracking its turnover traditionally used radiolabels or antibodies with attendant problems of utility of radiolabels in whole cells and poor antibody selectivity. To address these issues we have synthesized and characterised a novel ATTO488 based fluorescent Dermorphin analogue; [Cys(ATTO 488)8]Dermorphin-NH2 (DermATTO488). We initially assessed the binding profile of DermATTO488 in HEK cells expressing human MOP and CHO cells expressing human MOP, δ-opioid peptide (DOP), κ-opioid peptide (KOP) and Nociceptin/Orphanin FQ peptide (NOP) receptors using radioligand binding. Functional activity of the conjugated peptide was assessed by measuring (i) the ability of the ligand to engage G-protein by measuring the ability to stimulate GTPγ[35S] binding and (ii) the ability to stimulate phosphorylation of ERK1/2. Receptor location was visualised using confocal scanning laser microscopy. Dermorphin and DermATTO488 bound to HEKMOP (pKi: 8.29 and 7.00; p<0.05), CHOMOP (pKi: 9.26 and 8.12; p<0.05) and CHODOP (pKi: 7.03 and 7.16; p>0.05). Both ligands were inactive at KOP and NOP. Dermorphin and DermATTO488 stimulated the binding of GTPγ[35S] with similar pEC50 (7.84 and 7.62; p>0.05) and Emax (1.52 and 1.34fold p>0.05) values. Moreover, Dermorphin and DermATTO488 produced a monophasic stimulation of ERK1/2 phosphorylation peaking at 5mins (6.98 and 7.64-fold; p>0.05). Finally, in confocal microscopy DermATTO488 bound to recombinant MOP receptors on CHO and HEK cells in a concentration dependent manner that could be blocked by pre-incubation with unlabelled Dermorphin or Naloxone. Collectively, addition to ATTO488 to Dermorphin produced a ligand not dissimilar to Dermorphin; with ~10fold selectivity over DOP. This new ligand DermATTO488 retained functional activity and could be used to visualise MOP receptor location.
Collapse
Affiliation(s)
- Despina Giakomidi
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Mark F. Bird
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - John McDonald
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Erika Marzola
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Serena Chanoch
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Nidhuna Sabu
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Barbara Horley
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Girolamo Calo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - David G. Lambert
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Pourshadi N, Rahimi N, Ghasemi M, Faghir-Ghanesefat H, Sharifzadeh M, Dehpour AR. Anticonvulsant Effects of Thalidomide on Pentylenetetrazole-Induced Seizure in Mice: A Role for Opioidergic and Nitrergic Transmissions. Epilepsy Res 2020; 164:106362. [PMID: 32447240 DOI: 10.1016/j.eplepsyres.2020.106362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/30/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
Abstract
Although accumulating evidence indicates that the immunomodulatory medication thalidomide exerts anticonvulsant properties, the mechanisms underlying such effects of thalidomide are still unknown. Our previous preclinical study suggested that nitric oxide (NO) signaling may be involved in the anticonvulsant effects of thalidomide in a mouse model of clonic seizure. Additionally, several studies have shown a modulatory interaction between thalidomide and opioids in opioids intolerance, nociception and neuropathic pain. However, it is unclear whether opioidergic transmission or its interaction with NO signaling is involved in the anticonvulsant effects of thalidomide. Given the fact that both opioidergic and nitrergic transmissions have bimodal modulatory effects on seizure thresholds, in the present study we explored the involvement of these signaling pathways in the possible anticonvulsant effects of thalidomide on the pentylenetetrazole (PTZ)-induced clonic seizure in mice. Our data showed that acute administration of thalidomide (5-50 mg/kg, i.p., 30 min prior PTZ injection) dose-dependently elevated PTZ-induced clonic seizure thresholds. Acute administration of low doses (0.5-3 mg/kg, i.p., 60 min prior PTZ) of morphine exerted anticonvulsant effects (P < 0.001), whereas higher doses (15-60 mg/kg, 60 min prior PTZ) had proconvulsant effects (P < 0.01). Acute administration of a non-effective anticonvulsant dose of morphine (0.25 mg/kg) prior non-effective dose of thalidomide (5 mg/kg) exerted a robust (P < 0.01) anticonvulsant effect. Administration of a non-effective proconvulsant dose of morphine (7.5 mg/kg) prior thalidomide (5 mg/kg) didn't affect clonic seizure thresholds. Acute administration of a non-effective dose of the opioid receptor antagonist naltrexone (1 mg/kg, i.p.) significantly prevented anticonvulsant effects of thalidomide (10 mg/kg, i.p.). Pretreatment with non-effective dose of the NO precursor L-arginine (60 mg/kg, i.p.) significantly (P < 0.01) reduced the anticonvulsant effects of combined low doses of morphine (0.25 mg/kg) and thalidomide (5 mg/kg). Conversely, pretreatment with non-effective doses of either non-selective (L-NAME, 5 mg/kg, i.p.) or selective neuronal (7-nitroindazole, 30 mg/kg, i.p.) NO synthase (NOS) inhibitors significantly augmented the anticonvulsant effects of combined low doses of thalidomide and morphine, whereas the inducible NOS inhibitor aminoguanidine (100 mg/kg, i.p.) did not exert such effect. Our results indicate that opioidergic transmission and its interaction with neuronal NO signaling may contribute to the anti-seizure activity of thalidomide in the mice PTZ model of clonic seizure.
Collapse
Affiliation(s)
- Nastaran Pourshadi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Hedyeh Faghir-Ghanesefat
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Gentzsch C, Seier K, Drakopoulos A, Jobin M, Lanoiselée Y, Koszegi Z, Maurel D, Sounier R, Hübner H, Gmeiner P, Granier S, Calebiro D, Decker M. Selective and Wash-Resistant Fluorescent Dihydrocodeinone Derivatives Allow Single-Molecule Imaging of μ-Opioid Receptor Dimerization. Angew Chem Int Ed Engl 2020; 59:5958-5964. [PMID: 31808251 PMCID: PMC7125027 DOI: 10.1002/anie.201912683] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 12/21/2022]
Abstract
μ-Opioid receptors (μ-ORs) play a critical role in the modulation of pain and mediate the effects of the most powerful analgesic drugs. Despite extensive efforts, it remains insufficiently understood how μ-ORs produce specific effects in living cells. We developed new fluorescent ligands based on the μ-OR antagonist E-p-nitrocinnamoylamino-dihydrocodeinone (CACO), that display high affinity, long residence time and pronounced selectivity. Using these ligands, we achieved single-molecule imaging of μ-ORs on the surface of living cells at physiological expression levels. Our results reveal a high heterogeneity in the diffusion of μ-ORs, with a relevant immobile fraction. Using a pair of fluorescent ligands of different color, we provide evidence that μ-ORs interact with each other to form short-lived homodimers on the plasma membrane. This approach provides a new strategy to investigate μ-OR pharmacology at single-molecule level.
Collapse
Affiliation(s)
- Christian Gentzsch
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
| | - Kerstin Seier
- Institute of Pharmacology and ToxicologyJulius Maximilian University of WürzburgVersbacher Strasse 997078WürzburgGermany
| | - Antonios Drakopoulos
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
| | - Marie‐Lise Jobin
- Institute of Pharmacology and ToxicologyJulius Maximilian University of WürzburgVersbacher Strasse 997078WürzburgGermany
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of BirminghamIBR Tower, Level 2, EdgbastonBirminghamB152TTUK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of BirminghamIBR Tower, Level 2, EdgbastonBirminghamB152TTUK
| | - Damien Maurel
- ARPEGE (Pharmacology Screening Interactome) platform facilityInstitut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM141, rue de la Cardonille34094Montpellier Cedex 05France
| | - Rémy Sounier
- Institut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM141, rue de la Cardonille34094Montpellier Cedex 05France
| | - Harald Hübner
- Medicinal ChemistryDepartment of Chemistry and PharmacyFriedrich-Alexander University of Erlangen-Nuremberg91058ErlangenGermany
| | - Peter Gmeiner
- Medicinal ChemistryDepartment of Chemistry and PharmacyFriedrich-Alexander University of Erlangen-Nuremberg91058ErlangenGermany
| | - Sébastien Granier
- Institut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM141, rue de la Cardonille34094Montpellier Cedex 05France
| | - Davide Calebiro
- Institute of Pharmacology and ToxicologyJulius Maximilian University of WürzburgVersbacher Strasse 997078WürzburgGermany
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of BirminghamIBR Tower, Level 2, EdgbastonBirminghamB152TTUK
| | - Michael Decker
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
8
|
Dumitrascuta M, Bermudez M, Ben Haddou T, Guerrieri E, Schläfer L, Ritsch A, Hosztafi S, Lantero A, Kreutz C, Massotte D, Schmidhammer H, Wolber G, Spetea M. N-Phenethyl Substitution in 14-Methoxy-N-methylmorphinan-6-ones Turns Selective µ Opioid Receptor Ligands into Dual µ/δ Opioid Receptor Agonists. Sci Rep 2020; 10:5653. [PMID: 32221355 PMCID: PMC7101422 DOI: 10.1038/s41598-020-62530-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/21/2020] [Indexed: 11/12/2022] Open
Abstract
Morphine and structurally-derived compounds are µ opioid receptor (µOR) agonists, and the most effective analgesic drugs. However, their usefulness is limited by serious side effects, including dependence and abuse potential. The N-substituent in morphinans plays an important role in opioid activities in vitro and in vivo. This study presents the synthesis and pharmacological evaluation of new N-phenethyl substituted 14-O-methylmorphinan-6-ones. Whereas substitution of the N-methyl substituent in morphine (1) and oxymorphone (2) by an N-phenethyl group enhances binding affinity, selectivity and agonist potency at the µOR of 1a and 2a, the N-phenethyl substitution in 14-methoxy-N-methylmorphinan-6-ones (3 and 4) converts selective µOR ligands into dual µ/δOR agonists (3a and 4a). Contrary to N-methylmorphinans 1-4, the N-phenethyl substituted morphinans 1a-4a produce effective and potent antinociception without motor impairment in mice. Using docking and molecular dynamics simulations with the µOR, we establish that N-methylmorphinans 1-4 and their N-phenethyl counterparts 1a-4a share several essential receptor-ligand interactions, but also interaction pattern differences related to specific structural features, thus providing a structural basis for their pharmacological profiles. The emerged structure-activity relationships in this class of morphinans provide important information for tuning in vitro and in vivo opioid activities towards discovery of effective and safer analgesics.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Tanila Ben Haddou
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Elena Guerrieri
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lea Schläfer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Ritsch
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Sandor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, H-1092, Budapest, Hungary
| | - Aquilino Lantero
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Dominique Massotte
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000, Strasbourg, France
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Drakopoulos A, Koszegi Z, Lanoiselée Y, Hübner H, Gmeiner P, Calebiro D, Decker M. Investigation of Inactive-State κ Opioid Receptor Homodimerization via Single-Molecule Microscopy Using New Antagonistic Fluorescent Probes. J Med Chem 2020; 63:3596-3609. [DOI: 10.1021/acs.jmedchem.9b02011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonios Drakopoulos
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Gentzsch C, Seier K, Drakopoulos A, Jobin M, Lanoiselée Y, Koszegi Z, Maurel D, Sounier R, Hübner H, Gmeiner P, Granier S, Calebiro D, Decker M. Selective and Wash‐Resistant Fluorescent Dihydrocodeinone Derivatives Allow Single‐Molecule Imaging of μ‐Opioid Receptor Dimerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christian Gentzsch
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Kerstin Seier
- Institute of Pharmacology and ToxicologyJulius Maximilian University of Würzburg Versbacher Strasse 9 97078 Würzburg Germany
| | - Antonios Drakopoulos
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Marie‐Lise Jobin
- Institute of Pharmacology and ToxicologyJulius Maximilian University of Würzburg Versbacher Strasse 9 97078 Würzburg Germany
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of Birmingham IBR Tower, Level 2, Edgbaston Birmingham B152TT UK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of Birmingham IBR Tower, Level 2, Edgbaston Birmingham B152TT UK
| | - Damien Maurel
- ARPEGE (Pharmacology Screening Interactome) platform facilityInstitut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM 141, rue de la Cardonille 34094 Montpellier Cedex 05 France
| | - Rémy Sounier
- Institut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM 141, rue de la Cardonille 34094 Montpellier Cedex 05 France
| | - Harald Hübner
- Medicinal ChemistryDepartment of Chemistry and PharmacyFriedrich-Alexander University of Erlangen-Nuremberg 91058 Erlangen Germany
| | - Peter Gmeiner
- Medicinal ChemistryDepartment of Chemistry and PharmacyFriedrich-Alexander University of Erlangen-Nuremberg 91058 Erlangen Germany
| | - Sébastien Granier
- Institut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM 141, rue de la Cardonille 34094 Montpellier Cedex 05 France
| | - Davide Calebiro
- Institute of Pharmacology and ToxicologyJulius Maximilian University of Würzburg Versbacher Strasse 9 97078 Würzburg Germany
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of Birmingham IBR Tower, Level 2, Edgbaston Birmingham B152TT UK
| | - Michael Decker
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
11
|
de Oliveira HU, Dos Santos RS, Malta IHS, Pinho JP, Almeida AFS, Sorgi CA, Peti APF, Xavier GS, Reis LMD, Faccioli LH, Cruz JDS, Ferreira E, Galdino G. Investigation of the Involvement of the Endocannabinoid System in TENS-Induced Antinociception. THE JOURNAL OF PAIN 2019; 21:820-835. [PMID: 31785404 DOI: 10.1016/j.jpain.2019.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/16/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023]
Abstract
Transcutaneous electrical nerve stimulation (TENS) promotes antinociception by activating the descending pain modulation pathway and consequently releasing endogenous analgesic substances. In addition, recent studies have shown that the endocannabinoid system controls pain. Thus, the present study investigated the involvement of the endocannabinoid system in TENS-induced antinociception of cancer pain using a cancer pain model induced by intraplantar (i.pl.) injections of Ehrlich tumor cells in male Swiss mice. Low- and high-frequency TENS was applied for 20 minutes to the mice's paws, and to investigate the involvement of the endocannabinoid system were used the N-(peperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pitazole-3-carboixamide (AM251), a cannabinoid CB1 receptor antagonist and (5Z,8Z,11Z,14Z)-5,8,11,14-eicosatetraenyl-methylester phosphonofluoridic acid (MAFP), an inhibitor of the endocannabinoid metabolizing enzyme fatty acid amide hydrolase, injected by via i.pl., intrathecal (i.t.), and intradorsolateral periaqueductal gray matter (i.dl.PAG). Furthermore, liquid chromatography-tandem mass spectrometry, western blot, and immunofluorescence assays were used to evaluate the endocannabinoid anandamide levels, cannabinoid CB1 receptor protein levels, and cannabinoid CB1 receptor immunoreactivity, respectively. Low- and high-frequency TENS reduced the mechanical allodynia induced by Ehrlich tumor cells and this effect was reversed by AM251 and potentiated by MAFP at the peripheral and central levels. In addition, TENS increased the endocannabinoid anandamide levels and the cannabinoid CB1 receptor protein levels and immunoreactivity in the paw, spinal cord, and dorsolateral periaqueductal gray matter. These results suggest that low- and high-frequency TENS is effective in controlling cancer pain, and the endocannabinoid system is involved in this effect at both the peripheral and central levels. PERSPECTIVE: TENS is a nonpharmacological strategy that may be used to control cancer pain. Identification of a new mechanism involved in its analgesic effect could lead to the development of clinical studies as well as an increase in its application, lessening the need for pharmacological treatments.
Collapse
Affiliation(s)
| | | | | | - José Phellipe Pinho
- Department of Physiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Carlos Arterio Sorgi
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo Brazil
| | - Ana Paula Ferranti Peti
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo Brazil
| | | | | | - Lúcia Helena Faccioli
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo Brazil
| | - Jader Dos Santos Cruz
- Department of Physiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Enio Ferreira
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Giovane Galdino
- Sciences of Motricity Institute, Federal University of Alfenas, Alfenas, Brazil.
| |
Collapse
|
12
|
Ehrlich AT, Kieffer BL, Darcq E. Current strategies toward safer mu opioid receptor drugs for pain management. Expert Opin Ther Targets 2019; 23:315-326. [PMID: 30802415 DOI: 10.1080/14728222.2019.1586882] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Pain relief remains a major public health challenge. The most efficient available painkillers are opioids targeting the mu opioid receptor (MOR). MORs are expressed in the areas of the brain [including pain and respiratory centers] that are important for processing reward and aversion. Thus, MOR activation efficiently alleviates severe pain, but the concomitant reward and respiratory depressant effects pose a threat; patients taking opioids potentially develop opioid addiction and high risk for overdose. Areas covered: Ongoing efforts to generate safer opioid analgesics are reviewed here. The design of biased compounds that trigger MOR induced G protein over β-arrestin signaling, peripheral opioids, drugs targeting MORs in heteromers and drugs enhancing endogenous opioid activity are discussed. Expert opinion: There is evidence that throttling MOR signaling may lead to an era of opioids that are truly efficient painkillers with lower side effects and risk of overdose. However, few of the drugs derived from the advanced approaches outlined here, are getting approval by regulatory committees for use in clinical settings. Thus, there is an urgent need to (i) better clarify mechanisms underlying the hazardous physiological effects of MOR activation, and (ii) fully validate the safety of these new MOR-based therapies.
Collapse
Affiliation(s)
- Aliza T Ehrlich
- a Department of Psychiatry , McGill University, Douglas Hospital Research Center , Montréal , QC , Canada
| | - Brigitte L Kieffer
- a Department of Psychiatry , McGill University, Douglas Hospital Research Center , Montréal , QC , Canada
| | - Emmanuel Darcq
- a Department of Psychiatry , McGill University, Douglas Hospital Research Center , Montréal , QC , Canada
| |
Collapse
|
13
|
Spencer S, Neuhofer D, Chioma VC, Garcia-Keller C, Schwartz DJ, Allen N, Scofield MD, Ortiz-Ithier T, Kalivas PW. A Model of Δ 9-Tetrahydrocannabinol Self-administration and Reinstatement That Alters Synaptic Plasticity in Nucleus Accumbens. Biol Psychiatry 2018; 84:601-610. [PMID: 29861097 PMCID: PMC6162175 DOI: 10.1016/j.biopsych.2018.04.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cannabis is the most widely used illicit drug, but knowledge of the neurological consequences of cannabis use is deficient. Two primary components of cannabis are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). We established a THC+CBD model of self-administration and reinstated drug seeking to determine if, similar to other addictive drugs, cannabis produces enduring synaptic changes in nucleus accumbens core (NAcore) thought to contribute vulnerability to drug reinstatement. METHODS Sprague Dawley rats were trained to self-administer THC+CBD (n = 165) or were used as vehicle self-administering control animals (n = 24). Reinstatement was initiated by context, cues, drug priming, and stress (yohimbine injection). Enduring neuroadaptations produced by THC+CBD self-administration were assayed using four measures: dendritic spine morphology, long-term depression, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate ratios, and behavioral pharmacology. RESULTS We described a novel rodent model of cannabis relapse involving intravenous THC+CBD self-administration and drug seeking induced by conditioned context, cues, and stress. Cued reinstatement of THC+CBD seeking depended on a sequence of events implicated in relapse to other addictive drugs, as reinstatement was prevented by daily treatment with N-acetylcysteine or acute intra-NAcore pretreatment with a neuronal nitric oxide synthase or matrix metalloprotease-9 inhibitor, all of which normalize impaired glutamate homeostasis. The capacity to induce N-methyl-D-aspartate long-term depression in NAcore medium spiny neurons was abolished and dendritic spine density was reduced, but alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate ratio was unaltered in THC+CBD-trained animals, akin to opioids, but not to psychostimulants. CONCLUSIONS We report enduring consequences of THC+CBD use on critical relapse circuitry and synaptic physiology in NAcore following rat self-administration and provide the first report of cue- and stress-induced reinstatement with this model.
Collapse
Affiliation(s)
- Sade Spencer
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.
| | - Daniela Neuhofer
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Vivian C Chioma
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Constanza Garcia-Keller
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Danielle J Schwartz
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Nicholas Allen
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Michael D Scofield
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina; Department of Anesthesiology, Medical University of South Carolina, Charleston, South Carolina
| | - Tara Ortiz-Ithier
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina; Department of Physiology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Peter W Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
14
|
Lattanzi R, Rief S, Schmidhammer H, Negri L, Spetea M. In vitro and in vivo Pharmacological Activities of 14- O-Phenylpropyloxymorphone, a Potent Mixed Mu/Delta/Kappa-Opioid Receptor Agonist With Reduced Constipation in Mice. Front Pharmacol 2018; 9:1002. [PMID: 30233377 PMCID: PMC6127270 DOI: 10.3389/fphar.2018.01002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Pain, particularly chronic pain, is still an unsolved medical condition. Central goals in pain control are to provide analgesia of adequate efficacy and to reduce complications associated with the currently available drugs. Opioids are the mainstay for the treatment of moderate to severe pain. However, opioid pain medications also cause detrimental side effects, thus highlighting the need of innovative and safer analgesics. Opioids mediate their actions via the activation of opioid receptors, with the mu-opioid receptor as the primary target for analgesia, but also for side effects. One long-standing focus of drug discovery is the pursuit for new opioids exhibiting a favorable dissociation between analgesia and adverse effects. In this study, we describe the in vitro and in vivo pharmacological profiles of the 14-O-phenylpropyl substituted analog of the mu-opioid agonist 14-O-methyloxymorphone (14-OMO). The consequence of the substitution of the 14-O-methyl in 14-OMO with a 14-O-phenylpropyl group on in vitro binding and functional activity, and in vivo behavioral properties (nociception and gastrointestinal motility) was investigated. In binding studies, 14-O-phenylpropyloxymorphone (POMO) displayed very high affinity at mu-, delta-, and kappa-opioid receptors (Ki values in nM, mu:delta:kappa = 0.073:0.13:0.30) in rodent brain membranes, with complete loss of mu-receptor selectivity compared to 14-OMO. In guinea-pig ileum and mouse vas deferens bioassays, POMO was a highly efficacious and full agonist, being more potent than 14-OMO. In the [35S]GTPγS binding assays with membranes from CHO cells expressing human opioid receptors, POMO was a potent mu/delta-receptor full agonist and a kappa-receptor partial agonist. In vivo, POMO was highly effective in acute thermal nociception (hot-plate test, AD50 = 0.7 nmol/kg) in mice after subcutaneous administration, with over 70- and 9000-fold increased potency than 14-OMO and morphine, respectively. POMO-induced antinociception is mediated through the activation of the mu-opioid receptor, and it does not involve delta- and kappa-opioid receptors. In the charcoal test, POMO produced fourfold less inhibition of the gastrointestinal transit than 14-OMO and morphine. In summary, POMO emerges as a new potent mixed mu/delta/kappa-opioid receptor agonist with reduced liability to cause constipation at antinociceptive doses.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| | - Silvia Rief
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Lucia Negri
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
|
16
|
Roeckel LA, Massotte D, Olmstead MC, Befort K. CB1 Agonism Alters Addiction-Related Behaviors in Mice Lacking Mu or Delta Opioid Receptors. Front Psychiatry 2018; 9:630. [PMID: 30542301 PMCID: PMC6277797 DOI: 10.3389/fpsyt.2018.00630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
Opioids are powerful analgesics but the clinical utility of these compounds is reduced by aversive outcomes, including the development of affective and substance use disorders. Opioid systems do not function in isolation so understanding how these interact with other neuropharmacological systems could lead to novel therapeutics that minimize withdrawal, tolerance, and emotional dysregulation. The cannabinoid system is an obvious candidate as anatomical, pharmacological, and behavioral studies point to opioid-cannabinoid interactions in the mediation of these processes. The aim of our study is to uncover the role of specific cannabinoid and opioid receptors in addiction-related behaviors, specifically nociception, withdrawal, anxiety, and depression. To do so, we tested the effects of a selective CB1 agonist, arachidonyl-2-chloroethylamide (ACEA), on mouse behavior in tail immersion, naloxone-precipitated withdrawal, light-dark, and splash tests. We examined cannabinoid-opioid interactions in these tests by comparing responses of wildtype (WT) mice to mutant lines lacking either Mu or Delta opioid receptors. ACEA, both acute or repeated injections, had no effect on nociceptive thresholds in WT or Mu knockout (KO) mice suggesting that analgesic properties of CB1 agonists may be restricted to chronic pain conditions. The opioid antagonist, naloxone, induced similar levels of withdrawal in all three genotypes following ACEA treatment, confirming an opioidergic contribution to cannabinoid withdrawal. Anxiety-like responses in the light-dark test were similar across WT and KO lines; neither acute nor repeated ACEA injections modified this behavior. Similarly, administration of the Delta opioid receptor antagonist, naltrindole, alone or in combination with ACEA, did not alter responses of WT mice in the light-dark test. Thus, there may be a dissociation in the effect of pharmacological blockade vs. genetic deletion of Delta opioid receptors on anxiety-like behavior in mice. Finally, our study revealed a biphasic effect of ACEA on depressive-like behavior in the splash test, with a prodepressive state induced by acute exposure, followed by a shift to an anti-depressive state with repeated injections. The initial pro-depressive effect of ACEA was absent in Mu KO mice. In sum, our findings confirm interactions between opioid and cannabinoid systems in withdrawal and reveal reduced depressive-like symptoms with repeated CB1 receptor activation.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, Université de Strasbourg Faculté de Psychologie, Strasbourg, France
| | - Dominique Massotte
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), Strasbourg, France
| | - Mary C Olmstead
- Department of Psychology, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, Université de Strasbourg Faculté de Psychologie, Strasbourg, France
| |
Collapse
|
17
|
Imam MZ, Kuo A, Ghassabian S, Smith MT. Progress in understanding mechanisms of opioid-induced gastrointestinal adverse effects and respiratory depression. Neuropharmacology 2017; 131:238-255. [PMID: 29273520 DOI: 10.1016/j.neuropharm.2017.12.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
Opioids evoke analgesia through activation of opioid receptors (predominantly the μ opioid receptor) in the central nervous system. Opioid receptors are abundant in multiple regions of the central nervous system and the peripheral nervous system including enteric neurons. Opioid-related adverse effects such as constipation, nausea, and vomiting pose challenges for compliance and continuation of the therapy for chronic pain management. In the post-operative setting opioid-induced depression of respiration can be fatal. These critical limitations warrant a better understanding of their underpinning cellular and molecular mechanisms to inform the design of novel opioid analgesic molecules that are devoid of these unwanted side-effects. Research efforts on opioid receptor signalling in the past decade suggest that differential signalling pathways and downstream molecules preferentially mediate distinct pharmacological effects. Additionally, interaction among opioid receptors and, between opioid receptor and non-opioid receptors to form signalling complexes shows that opioid-induced receptor signalling is potentially more complicated than previously thought. This complexity provides an opportunity to identify and probe relationships between selective signalling pathway specificity and in vivo production of opioid-related adverse effects. In this review, we focus on current knowledge of the mechanisms thought to transduce opioid-induced gastrointestinal adverse effects (constipation, nausea, vomiting) and respiratory depression.
Collapse
Affiliation(s)
- Mohammad Zafar Imam
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sussan Ghassabian
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
18
|
Hughes PA, Costello SP, Bryant RV, Andrews JM. Opioidergic effects on enteric and sensory nerves in the lower GI tract: basic mechanisms and clinical implications. Am J Physiol Gastrointest Liver Physiol 2016; 311:G501-13. [PMID: 27469369 DOI: 10.1152/ajpgi.00442.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/21/2016] [Indexed: 01/31/2023]
Abstract
Opioids are one of the most prescribed drug classes for treating acute pain. However, chronic use is often associated with tolerance as well as debilitating side effects, including nausea and dependence, which are mediated by the central nervous system, as well as constipation emerging from effects on the enteric nervous system. These gastrointestinal (GI) side effects limit the usefulness of opioids in treating pain in many patients. Understanding the mechanism(s) of action of opioids on the nervous system that shows clinical benefit as well as those that have unwanted effects is critical for the improvement of opioid drugs. The opioidergic system comprises three classical receptors (μ, δ, κ) and a nonclassical receptor (nociceptin), and each of these receptors is expressed to varying extents by the enteric and intestinal extrinsic sensory afferent nerves. The purpose of this review is to discuss the role that the opioidergic system has on enteric and extrinsic afferent nerves in the lower GI tract in health and diseases of the lower GI tract, particularly inflammatory bowel disease and irritable bowel syndrome, and the implications of opioid treatment on clinical outcomes. Consideration is also given to emerging developments in our understanding of the immune system as a novel source of endogenous opioids and the mechanisms underlying opioid tolerance, including the potential influence of opioid receptor splice variants and heteromeric complexes.
Collapse
Affiliation(s)
- Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Disease, Department of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia;
| | - Samuel P Costello
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Robert V Bryant
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and
| | - Jane M Andrews
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and
| |
Collapse
|
19
|
Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience 2016; 338:160-182. [PMID: 27346146 DOI: 10.1016/j.neuroscience.2016.06.029] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
Opioids produce strong analgesia but their use is limited by a paradoxical hypersensitivity named opioid-induced hyperalgesia (OIH) that may be associated to analgesic tolerance. In the last decades, a significant number of preclinical studies have investigated the factors that modulate OIH development as well as the cellular and molecular mechanisms underlying OIH. Several factors have been shown to influence OIH including the genetic background and sex differences of experimental animals as well as the opioid regimen. Mu opioid receptor (MOR) variants and interactions of MOR with different proteins were shown important. Furthermore, at the cellular level, both neurons and glia play a major role in OIH development. Several neuronal processes contribute to OIH, like activation of neuroexcitatory mechanisms, long-term potentiation (LTP) and descending pain facilitation. Increased nociception is also mediated by neuroinflammation induced by the activation of microglia and astrocytes. Neurons and glial cells exert synergistic effects, which contribute to OIH. The molecular actors identified include the Toll-like receptor 4 and the anti-opioid systems as well as some other excitatory molecules, receptors, channels, chemokines, pro-inflammatory cytokines or lipids. This review summarizes the intracellular and intercellular pathways involved in OIH and highlights some mechanisms that may be challenged to limit OIH in the future.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Glenn-Marie Le Coz
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Claire Gavériaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
20
|
Mudgal A, Kumar K, Mollereau C, Pasha S. NPYFa, A Chimeric Peptide of Met-Enkephalin, and NPFF Induces Tolerance-Free Analgesia. Chem Biol Drug Des 2016; 87:885-94. [DOI: 10.1111/cbdd.12721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/30/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Annu Mudgal
- Peptide Synthesis Laboratory; CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB); New Delhi India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IGIB Campus; New Delhi India
| | - Krishan Kumar
- Peptide Synthesis Laboratory; CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB); New Delhi India
- Department of Chemistry; Motilal Nehru College; University of Delhi; Delhi 110021 India
| | - Catherine Mollereau
- Institut de Pharmacologie et Biologie Structurale; Toulouse Cedex France
- Laboratoire Anthropologie Moléculaire et Imagerie de Synthèse; Toulouse Cedex France
| | - Santosh Pasha
- Peptide Synthesis Laboratory; CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB); New Delhi India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IGIB Campus; New Delhi India
| |
Collapse
|
21
|
Mudgal A, Pasha S. Role of opioid receptor heterodimerization in pain modulation and tolerance development. World J Pharmacol 2015; 4:144-159. [DOI: 10.5497/wjp.v4.i1.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/09/2014] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
Protein to protein interactions leading to homo/heteromerization of receptor is well documented in literature. These interactions leading to dimeric/oligomers formation of receptors are known to modulate their function, particularly in case of G-protein coupled receptors. The opioid receptor heteromers having changed pharmacological properties than the constituent protomers provides preferences for novel drug targets that could lead to potential analgesic activity devoid of tolerance and physical dependence. Heterodimerization of opioid receptors appears to generate novel binding properties with improved specificity and lack of side effects. Further the molecules which can interact simultaneously to both the protomers of the heteromer, or to both the binding sites (orthosteric and allosteric) of a receptor protein could be potential therapeutic molecules. This review highlights the recent advancements in exploring the plausible role of heteromerization of opioid receptors in induction of tolerance free antinociception.
Collapse
|
22
|
Befort K. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies. Front Pharmacol 2015; 6:6. [PMID: 25698968 PMCID: PMC4318341 DOI: 10.3389/fphar.2015.00006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins, and dynorphins). The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids), enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2. These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction. Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry. Extending classical pharmacology, research using genetically modified mice has provided important progress in the identification of the specific contribution of each component of these endogenous systems in vivo on reward process. This review will summarize available genetic tools and our present knowledge on the consequences of gene knockout on reinforced behaviors in both systems, with a focus on their potential interactions. A better understanding of opioid-cannabinoid interactions may provide novel strategies for therapies in addicted individuals.
Collapse
Affiliation(s)
- Katia Befort
- CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives - UMR7364, Faculté de Psychologie, Neuropôle de Strasbourg - Université de Strasbourg, Strasbourg France
| |
Collapse
|
23
|
Christie MJ, Connor M, Traynor JR. Themed section. Br J Pharmacol 2014; 172:247-50. [PMID: 25537825 DOI: 10.1111/bph.13028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- M J Christie
- Discipline of Pharmacology, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
24
|
Allouche S, Noble F, Marie N. Opioid receptor desensitization: mechanisms and its link to tolerance. Front Pharmacol 2014; 5:280. [PMID: 25566076 PMCID: PMC4270172 DOI: 10.3389/fphar.2014.00280] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/02/2014] [Indexed: 02/04/2023] Open
Abstract
Opioid receptors (OR) are part of the class A of G-protein coupled receptors and the target of the opiates, the most powerful analgesic molecules used in clinic. During a protracted use, a tolerance to analgesic effect develops resulting in a reduction of the effectiveness. So understanding mechanisms of tolerance is a great challenge and may help to find new strategies to tackle this side effect. This review will summarize receptor-related mechanisms that could underlie tolerance especially receptor desensitization. We will focus on the latest data obtained on molecular mechanisms involved in opioid receptor desensitization: phosphorylation, receptor uncoupling, internalization, and post-endocytic fate of the receptor.
Collapse
Affiliation(s)
- Stéphane Allouche
- Laboratoire de Signalisation, Électrophysiologie et Imagerie des Lésions D'ischémie-Reperfusion Myocardique, Université de Caen, UPRES EA 4650, IFR 146 ICORE Caen, France
| | - Florence Noble
- Centre National de la Recherche Scientifique, ERL 3649 Paris, France ; Institut National de la Santé et de la Recherche Médicale, UMR-S 1124 Paris, France ; Université Paris Descartes, Neuroplasticité et Thérapies des Addictions Paris, France
| | - Nicolas Marie
- Centre National de la Recherche Scientifique, ERL 3649 Paris, France ; Institut National de la Santé et de la Recherche Médicale, UMR-S 1124 Paris, France ; Université Paris Descartes, Neuroplasticité et Thérapies des Addictions Paris, France
| |
Collapse
|
25
|
Thompson GL, Canals M, Poole DP. Biological redundancy of endogenous GPCR ligands in the gut and the potential for endogenous functional selectivity. Front Pharmacol 2014; 5:262. [PMID: 25506328 PMCID: PMC4246669 DOI: 10.3389/fphar.2014.00262] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/12/2014] [Indexed: 01/27/2023] Open
Abstract
This review focuses on the existence and function of multiple endogenous agonists of the somatostatin and opioid receptors with an emphasis on their expression in the gastrointestinal tract. These agonists generally arise from the proteolytic cleavage of prepropeptides during peptide maturation or from degradation of peptides by extracellular or intracellular endopeptidases. In other examples, endogenous peptide agonists for the same G protein-coupled receptors can be products of distinct genes but contain high sequence homology. This apparent biological redundancy has recently been challenged by the realization that different ligands may engender distinct receptor conformations linked to different intracellular signaling profiles and, as such the existence of distinct ligands may underlie mechanisms to finely tune physiological responses. We propose that further characterization of signaling pathways activated by these endogenous ligands will provide invaluable insight into the mechanisms governing biased agonism. Moreover, these ligands may prove useful in the design of novel therapeutic tools to target distinct signaling pathways, thereby favoring desirable effects and limiting detrimental on-target effects. Finally we will discuss the limitations of this area of research and we will highlight the difficulties that need to be addressed when examining endogenous bias in tissues and in animals.
Collapse
Affiliation(s)
- Georgina L Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Parkville, VIC, Australia
| | - Meritxell Canals
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Parkville, VIC, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Parkville, VIC, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
26
|
Erbs E, Faget L, Veinante P, Kieffer BL, Massotte D. In vivo neuronal co-expression of mu and delta opioid receptors uncovers new therapeutic perspectives. ACTA ACUST UNITED AC 2014; 1. [PMID: 25938125 DOI: 10.14800/rci.210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Opioid receptors belong to the G protein coupled receptor family. They modulate brain function at all levels of neural integration and therefore impact on autonomous, sensory, emotional and cognitive processing. In vivo functional interaction between mu and delta opioid receptors are known to take place though it is still debated whether interactions occur at circuitry, cellular or molecular level. Also, the notion of receptor crosstalk via mu-delta heteromers is well documented in vitro but in vivo evidence remains scarce. To identify neurons in which receptor interactions could take place, we designed a unique double mutant knock-in mouse line that expresses functional red-fluorescent mu receptors and green-fluorescent delta receptors. We mapped mu and delta receptor distribution and co-localization throughout the nervous system and created the first interactive brain atlas with concomitant mu-delta visualization at subcellular resolution (http://mordor.ics-mci.fr/). Mu and delta receptors co-localize in neurons from subcortical networks but are mainly detected in separate neurons in the forebrain. Also, co-immunoprecipitation experiments indicated physical proximity in the hippocampus, a prerequisite to mu-delta heteromerization. Altogether, data suggest that mu-delta functional interactions take place at systems level for high-order emotional and cognitive processing whereas mu-delta may interact at cellular level in brain networks essential for survival, which has potential implications for innovative drug design in pain control, drug addiction and eating disorders.
Collapse
Affiliation(s)
- Eric Erbs
- Dept of Neurogenetics and Translational Medicine, IGBMC, F-67404 Illkirch, France
| | - Lauren Faget
- Dept of Neurogenetics and Translational Medicine, IGBMC, F-67404 Illkirch, France
| | - Pierre Veinante
- Institut des Neurosciences Cellulaires et Intégratives, UPR 3212, F-67000 Strasbourg, France
| | - Brigitte L Kieffer
- Dept of Neurogenetics and Translational Medicine, IGBMC, F-67404 Illkirch, France ; Douglas Research Centre, Dept Psychiatry, Faculty of Medicine, McGill University, H4H 1R3 Montréal, Canada
| | - Dominique Massotte
- Dept of Neurogenetics and Translational Medicine, IGBMC, F-67404 Illkirch, France ; Institut des Neurosciences Cellulaires et Intégratives, UPR 3212, F-67000 Strasbourg, France
| |
Collapse
|
27
|
Carayon K, Moulédous L, Combedazou A, Mazères S, Haanappel E, Salomé L, Mollereau C. Heterologous regulation of Mu-opioid (MOP) receptor mobility in the membrane of SH-SY5Y cells. J Biol Chem 2014; 289:28697-706. [PMID: 25183007 DOI: 10.1074/jbc.m114.588558] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dynamic organization of G protein-coupled receptors in the plasma membrane is suspected of playing a role in their function. The regulation of the diffusion mode of the mu-opioid (MOP) receptor was previously shown to be agonist-specific. Here we investigate the regulation of MOP receptor diffusion by heterologous activation of other G protein-coupled receptors and characterize the dynamic properties of the MOP receptor within the heterodimer MOP/neuropeptide FF (NPFF2) receptor. The data show that the dynamics and signaling of the MOP receptor in SH-SY5Y cells are modified by the activation of α2-adrenergic and NPFF2 receptors, but not by the activation of receptors not described to interact with the opioid receptor. By combining, for the first time, fluorescence recovery after photobleaching at variable radius experiments with bimolecular fluorescence complementation, we show that the MOP/NPFF2 heterodimer adopts a specific diffusion behavior that corresponds to a mix of the dynamic properties of both MOP and NPFF2 receptors. Altogether, the data suggest that heterologous regulation is accompanied by a specific organization of receptors in the membrane.
Collapse
Affiliation(s)
- Kévin Carayon
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| | - Lionel Moulédous
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| | - Anne Combedazou
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| | - Serge Mazères
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| | - Evert Haanappel
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| | - Laurence Salomé
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| | - Catherine Mollereau
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS/Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|