1
|
Tian C, Deng S, Yang M, Bai B, Pan Y, Xie G, Zhao D, Wei L. Indole-3-carbinol and its main derivative 3,3'-diindolylmethane: Regulatory roles and therapeutic potential in liver diseases. Biomed Pharmacother 2024; 180:117525. [PMID: 39388997 DOI: 10.1016/j.biopha.2024.117525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Indole-3-carbinol (I3C), a compound found in cruciferous vegetables, has shown significant efficacy in treating both cancerous and non-cancerous diseases. Its primary derivative, 3,3'-diindolylmethane (DIM), formed during digestion, also exhibits similar therapeutic benefits. In liver disorders, I3C and DIM exhibit dual roles by inhibiting and promoting hepatocellular carcinoma (HCC) and providing relief for nonmalignant liver diseases, such as acute liver injury (ALI), hepatic fibrosis, nonalcoholic fatty liver disease (NAFLD), and alcohol-related liver disease (ALD). Mechanistically, I3C and DIM modulate various pathophysiological processes, including cell proliferation, apoptosis, oxidative stress, and lipogenesis. This review aims to enhance researchers' understanding of the regulatory roles of I3C and DIM in these liver diseases and explore the potential of plant-derived substances in liver disease treatment.
Collapse
Affiliation(s)
- Chao Tian
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Shizhou Deng
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Research and Development Department, Guangdong Longsee Biomedical Corporation, Guangzhou 510700, China
| | - Ming Yang
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Baochen Bai
- Department of Cardiology, Peking University People's hospital, Beijing 100044, China
| | - Yi Pan
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Gangqiao Xie
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongliang Zhao
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Lai Wei
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China.
| |
Collapse
|
2
|
Wang ZY, Gao ST, Gou XJ, Qiu FR, Feng Q. IL-1 receptor-associated kinase family proteins: An overview of their role in liver disease. Eur J Pharmacol 2024; 978:176773. [PMID: 38936453 DOI: 10.1016/j.ejphar.2024.176773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
The interleukin-1 receptor-associated kinase (IRAK) family is a group of serine-threonine kinases that regulates various cellular processes via toll-like receptor (TLR)/interleukin-1 receptor (IL1R)-mediated signaling. The IRAK family comprises four members, including IRAK1, IRAK2, IRAK3, and IRAK4, which play an important role in the expression of various inflammatory genes, thereby contributing to the inflammatory response. IRAKs are key proteins in chronic and acute liver diseases, and recent evidence has implicated IRAK family proteins (IRAK1, IRAK3, and IRAK4) in the progression of liver-related disorders, including alcoholic liver disease, non-alcoholic steatohepatitis, hepatitis virus infection, acute liver failure, liver ischemia-reperfusion injury, and hepatocellular carcinoma. In this article, we provide a comprehensive review of the role of IRAK family proteins and their associated inflammatory signaling pathways in the pathogenesis of liver diseases. The purpose of this study is to explore whether IRAK family proteins can serve as the main target for the treatment of liver related diseases.
Collapse
Affiliation(s)
- Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Si-Ting Gao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Jun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Fu-Rong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China.
| |
Collapse
|
3
|
Qin Y, Chen J, Xu K, Lu Y, Xu F, Shi J. Triad3A involved in the regulation of endotoxin tolerance and mycobactericidal activity through the NFκB-nitric oxide pathway. Immun Inflamm Dis 2023; 11:e925. [PMID: 37506157 PMCID: PMC10363814 DOI: 10.1002/iid3.925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/18/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Sepsis is characterized by an endotoxin tolerance phenotype that occurs in the stage of infection. Persistent bacterial infection can lead to immune cell exhaustion. Triad3A, an E3 ubiquitin ligase, negatively regulates its activation by TLR4. However, the effect of Triad3A on endotoxin tolerance and bactericidal ability in the state of endotoxin tolerance remains unclear. METHODS Using single dose LPS and repeated LPS stimulated macrophage cell lines at indicated times, we investigated miR-191, Tirad3A, TRAF3, TLR4, p-P65, TNF-α, IL-1β, and iNOS expression, the effect of miR-191 on Triad3A and TRAF3, gene loss-of-function analyses, the effect of Triad3A on TLR4, p-P65, cytokine, and mycobactericidal activity in endotoxin tolerant cells infected with Mycobacterium marinum. RESULTS Here we found that Triad3A is involved in regulating endotoxin tolerance. Our result also displayed that miR-191 expression is downregulated in macrophages in the state of endotoxin tolerance. miR-191 can directly bind to Triad3A and TRAF3. Additionally, knockdown of Triad3A can reverse the effect of decreasing TNF-α and IL-1β in endotoxin tolerant macrophages. Furthermore, we demonstrated that the TLR4-NF-κB-NO pathway was associated with Triad3A and responsible for the killing of intracellular mycobacteria in a tuberculosis sepsis model. CONCLUSIONS These results provide new insight into the mechanisms of Triad3A induced tolerogenic phenotype in macrophages, which can help the better comprehension of the pathogenesis involved in septic shock with infection of Mycobacterium tuberculosis, and suggest that Triad3A may be a potential drug target for the treatment of severe septic tuberculosis.
Collapse
Affiliation(s)
- Yongwei Qin
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu, China
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Jinliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Kuang Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Yang Lu
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Feifan Xu
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Wang R, Chopra N, Nho K, Maloney B, Obukhov AG, Nelson PT, Counts SE, Lahiri DK. Human microRNA (miR-20b-5p) modulates Alzheimer's disease pathways and neuronal function, and a specific polymorphism close to the MIR20B gene influences Alzheimer's biomarkers. Mol Psychiatry 2022; 27:1256-1273. [PMID: 35087196 PMCID: PMC9054681 DOI: 10.1038/s41380-021-01351-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss of cognitive, executive, and other mental functions, and is the most common form of age-related dementia. Amyloid-β peptide (Aβ) contributes to the etiology and progression of the disease. Aβ is derived from the amyloid-β precursor protein (APP). Multiple microRNA (miRNA) species are also implicated in AD. We report that human hsa-miR20b-5p (miR-20b), produced from the MIR20B gene on Chromosome X, may play complex roles in AD pathogenesis, including Aβ regulation. Specifically, miR-20b-5p miRNA levels were altered in association with disease progression in three regions of the human brain: temporal neocortex, cerebellum, and posterior cingulate cortex. In cultured human neuronal cells, miR-20b-5p treatment interfered with calcium homeostasis, neurite outgrowth, and branchpoints. A single-nucleotide polymorphism (SNP) upstream of the MIR20B gene (rs13897515) associated with differences in levels of cerebrospinal fluid (CSF) Aβ1-42 and thickness of the entorhinal cortex. We located a miR-20b-5p binding site in the APP mRNA 3'-untranslated region (UTR), and treatment with miR-20b-5p reduced APP mRNA and protein levels. Network analysis of protein-protein interactions and gene coexpression revealed other important potential miR-20b-5p targets among AD-related proteins/genes. MiR-20b-5p, a miRNA that downregulated APP, was paradoxically associated with an increased risk for AD. However, miR-20b-5p also reduced, and the blockade of APP by siRNA likewise reduced calcium influx. As APP plays vital roles in neuronal health and does not exist solely to be the source of "pathogenic" Aβ, the molecular etiology of AD is likely to not just be a disease of "excess" but a disruption of delicate homeostasis.
Collapse
Affiliation(s)
- Ruizhi Wang
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nipun Chopra
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- DePauw University, Greencastle, IN, 46135, USA
| | - Kwangsik Nho
- Radiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bryan Maloney
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexander G Obukhov
- Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Kentucky Alzheimer's Disease Research Center, Lexington, KY, 40536, USA
| | - Scott E Counts
- Departments of Translational Neuroscience & Family Medicine, Michigan State University, Grand Rapids, and Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, USA
| | - Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Yuan JN, Hong Y, Ma ZL, Pang RP, Lei QQ, Lv XF, Zhou JG, Huang H, Zhang TT. MiR-302a Limits Vascular Inflammation by Suppressing Nuclear Factor-κ B Pathway in Endothelial Cells. Front Cell Dev Biol 2021; 9:682574. [PMID: 34409030 PMCID: PMC8365611 DOI: 10.3389/fcell.2021.682574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
The inflammatory response of endothelial cells accelerates various vascular diseases. MicroRNAs (miRNAs) participate in diverse cellular processes during inflammation. In the present study, we found that miR-302a is an effective suppressor of vascular inflammation in endothelial cells. It was revealed that miR-302a exhibited a lower level in a lipopolysaccharide (LPS)-induced mouse model and in patients with vascular inflammatory disease. Genetic haploinsufficiency of miR-302 aggravated the LPS-induced vascular inflammatory response in mice, and overexpression of miR-302a attenuated vascular inflammation in mice. Furthermore, overexpression of miR-302a inhibited the synthesis and secretion of adhesion factors in endothelial cells, and suppressed the adhesion of monocytes to endothelium. In the study of molecular mechanism, we found that miR-302a relieved vascular inflammation mainly by regulating the nuclear factor kappa-B (NF-κB) pathway in endothelial cells. The results showed that interleukin-1 receptor-associated kinase4 (IRAK4) and zinc finger protein 91 (ZFP91) were the binding targets of miR-302a. MiR-302a prevented the nuclear translocation of NF-κB by inhibiting phosphorylation of IκB kinase complex β (IKKβ) and inhibitors of κBα (IκBα) via targeting IRAK4. In addition, miR-302a downregulated the expression of NF-κB by directly binding with ZFP91. These findings indicate that miR-302a negatively regulates inflammatory responses in the endothelium via the NF-κB pathway and it may be a novel target for relieving vascular inflammation.
Collapse
Affiliation(s)
- Jia-Ni Yuan
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Hong
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Lin Ma
- Department of Physiology, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rui-Ping Pang
- Department of Physiology, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qing-Qing Lei
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Fei Lv
- Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ting-Ting Zhang
- Program of Cardiovascular Research, The Eighth Affiliated Hospital, Zhongshan School Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, and Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
6
|
Wu X, Liu J, Chen C, Huang Z, Zang Y, Chen J, Dong L, Zhang J, Ding Z. 3,3'-Diindolylmethane alleviates acute atopic dermatitis by regulating T cell differentiation in a mouse model. Mol Immunol 2020; 130:104-112. [PMID: 33309306 DOI: 10.1016/j.molimm.2020.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/24/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Atopic dermatitis is a severe, chronic relapsing inflammatory disease of the skin with family clustering. It is characterized into acute phase, which is dominated by T helper 2-type immune responses, and chronic phase, which is dominated by T helper 1-type immune responses. Studies have shown that 3,3'-diindolylmethane not only has antitumor effects but also can relieve symptoms of inflammatory diseases by inhibiting the nuclear factor-κB signaling pathway and regulating T cell differentiation. To study the effect of 3,3'-diindolylmethane on atopic dermatitis and the underlying mechanism, a mouse model of acute atopic dermatitis was established using 2,4-dinitrofluorobenzene. After intraperitoneal injection of 3,3'-diindolylmethane, skin erythema and edema in mice were significantly alleviated. Furthermore, 3,3'-diindolylmethane reduced immune activation, probably by inhibiting the secretion of thymic stromal lymphopoietin by keratinocytes. 3,3'-Diindolylmethane also promoted the differentiation of regulatory T cells and inhibited the activation of T helper 2 and T helper 17 cells to reduce atopic dermatitis-related immune responses. However, it showed no significant effect on the differentiation of T helper 1 cells. These results indicate that 3,3'-diindolylmethane has a significant inhibitory effect on T helper 2 cells in the acute phase of atopic dermatitis. Our findings may provide not only more insights into the pathological mechanism of AD, but also a new candidate medicine for it.
Collapse
Affiliation(s)
- Xianxian Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Jinxuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Chaoqin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China; Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China; Changzhou High-Tech Research Institute of Nanjing University, Changzhou, 213164, China.
| |
Collapse
|
7
|
Fernandez-Colorado CP, Cammayo PLT, Flores RA, Nguyen BT, Kim WH, Kim S, Lillehoj HS, Min W. Anti-inflammatory activity of diindolylmethane alleviates Riemerella anatipestifer infection in ducks. PLoS One 2020; 15:e0242198. [PMID: 33175869 PMCID: PMC7657562 DOI: 10.1371/journal.pone.0242198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022] Open
Abstract
3,3’-Diindolylmethane (DIM) is found in cruciferous vegetables and is used to treat various inflammatory diseases because of its potential anti-inflammatory effects. To investigate effects of DIM in Riemerella anatipestifer-infected ducks which induce upregulation of inflammatory cytokines, ducks were treated orally with DIM at dose of 200 mg/kg/day and infected the following day with R. anatipestifer. Infected and DIM-treated ducks exhibited 14% increased survival rate and significantly decreased bacterial burden compared to infected untreated ducks. Next, the effect on the expression level of inflammatory cytokines (interleukin [IL]-17A, IL-17F, IL-6, IL-1β) of both in vitro and in vivo DIM-treated groups was monitored by quantitative reverse-transcription PCR (qRT-PCR). Generally, the expression levels of the cytokines were significantly reduced in DIM-treated splenic lymphocytes stimulated with killed R. anatipestifer compared to stimulated untreated splenic lymphocytes. Similarly, the expression levels of the cytokines were significantly reduced in the spleens and livers of DIM-treated R. anatipestifer–infected ducks compared to infected untreated ducks. This study demonstrated the ameliorative effects of DIM in ducks infected with R. anatipestifer. Thus, DIM can potentially be used to prevent and/or treat R. anatipestifer infection via inhibition of inflammatory cytokine expression.
Collapse
Affiliation(s)
- Cherry P. Fernandez-Colorado
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna, Philippines
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Paula Leona T. Cammayo
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Rochelle A. Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Binh T. Nguyen
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo H. Kim
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
- * E-mail:
| |
Collapse
|
8
|
Kumari A, Bhawal S, Kapila S, Yadav H, Kapila R. Health-promoting role of dietary bioactive compounds through epigenetic modulations: a novel prophylactic and therapeutic approach. Crit Rev Food Sci Nutr 2020; 62:619-639. [PMID: 33081489 DOI: 10.1080/10408398.2020.1825286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epigenome is an overall epigenetic state of an organism, which is as important as that of the genome for normal development and functioning of an individual. Epigenetics involves heritable but reversible changes in gene expression through alterations in DNA methylation, histone modifications and regulation of non-coding RNAs in cells, without any change in the DNA sequence. Epigenetic changes are owned by various environmental factors including pollution, microbiota and diet, which have profound effects on epigenetic modifiers. The bioactive compounds present in the diet mainly include curcumin, resveratrol, catechins, quercetin, genistein, sulforaphane, epigallocatechin-3-gallate, alkaloids, vitamins, and peptides. Bioactive compounds released during fermentation by the action of microbes also have a significant effect on the host epigenome. Besides, recent studies have explored the new insights in vitamin's functions through epigenetic regulation. These bioactive compounds exert synergistic, preventive and therapeutic effects when combined as well as when used with chemotherapeutic agents. Therefore, these compounds have potential of therapeutic agents that could be used as "Epidrug" to treat many inflammatory diseases and various cancers where chemotherapy results have many side effects. In this review, the effect of diet derived bioactive compounds through epigenetic modulations on in vitro and in vivo models is discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Shalaka Bhawal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
9
|
Heng J, Wu D, Lu S, Zhao Y. miR-106a Targets Anoctamin 1 (ANO1) to Regulate Lipopolysaccharide (LPS)-Induced Inflammatory Response in Macrophages. Med Sci Monit 2020; 26:e922479. [PMID: 33037174 PMCID: PMC7556292 DOI: 10.12659/msm.922479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Sepsis is an organ dysfunction characterized by systemic inflammatory response. Micro(mi)ribonucleic acids take part in the regulation of the inflammatory response in many conditions. However, the role and mechanism of miR-106a and anoctamin 1 (ANO1) in the inflammatory response in sepsis remain largely unknown. Material/Methods The serum samples were collected from 31 sepsis patients and healthy volunteers. Lipopolysaccharide (LPS)-treated RAW264.7 cells were used for the study in vitro. The inflammatory response was investigated via interleukin-6 and tumor necrosis factor-alpha levels using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay. The expression abundances of miR-106a and ANO1 were detected via qRT-PCR or western blot. The target association between miR-106a and ANO1 was explored using dual-luciferase reporter analysis. Results The inflammatory response was trigged in sepsis and LPS-treated RAW264.7 cells. miR-106a expression was enhanced and ANO1 declined in sepsis and LPS-treated RAW264.7 cells. Overexpression of ANO1 suppressed the inflammatory response and knockdown of ANO1 promoted the inflammatory response in RAW264.7 cells. ANO1 was directly targeted via miR-106a, and miR-106a reversed ANO1-mediated inflammatory inhibition in LPS-treated RAW264.7 cells. Conclusions MiR-106a regulated LPS-induced inflammatory response by targeting ANO1 in RAW264.7 cells, indicating the potential value of miR-106a for treatment of inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Junfeng Heng
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Dingye Wu
- Department of Intensive Care Unit, Wuxi People's Hospital, Wuxi, Jiangsu, China (mainland)
| | - Shiqi Lu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Yiming Zhao
- Department of Intensive Care Unit, Wuxi People's Hospital, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
10
|
Pan K, Wang Y, Pan P, Xu G, Mo L, Cao L, Wu C, Shen X. The regulatory role of microRNA-mRNA co-expression in hepatitis B virus-associated acute liver failure. Ann Hepatol 2020; 18:883-892. [PMID: 31521462 DOI: 10.1016/j.aohep.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/16/2019] [Accepted: 06/25/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Acute liver failure (ALF) is a dramatic disorder requiring intensive care. MicroRNAs (miRNAs) have been identified to play important roles in ALF. This study was performed to identify miRNA-mRNA co-expression network after ALF to investigate the molecule mechanism underlying the pathogenesis of ALF. MATERIALS AND METHODS The microarray dataset GSE62030 and GSE62029 were downloaded from Gene Expression Omnibus database. Overlapping differentially expressed miRNAs (DEmiRNAs) and genes (DEGs) were identified in liver tissues from patients with hepatitis B virus (HBV)-associated ALF in comparison with normal tissues from donors. Gene enrichment analysis was performed. Key pathways associated with the DEGs were identified. The miRNA-mRNA regulatory network was constructed. RESULTS Total 42 DEmiRNAs and 523 DEGs were identified in liver tissues from patients with HBV-associated ALF. Gene ontology and pathways enrichment analysis showed upregulated DEGs were related to immune responses, inflammation, and infection, and downregulated DEGs were associated with amino acids, secondary metabolites and xenobiotics metabolism. In miRNA-mRNA co-expression network, DEGs were regulated by at least one DEmiRNA and transcription factor. Further analysis showed DEmiRNAs, including has-miR-55-5p, has-miR-193b-5p, has-miR-200b-3p, and has-miR-3175 were associated with amino acid metabolism, drug metabolism and detoxication, and signaling pathways including mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT, Ras, and Rap1. CONCLUSIONS These miRNA-mRNA pairs and changed profiles were associated with and might be responsible for the impairment of detoxification and metabolism induced by HBV-associated ALF.
Collapse
Affiliation(s)
- Kanda Pan
- Department of Intensive Care Unit (ICU), The First People's Hospital of Xiaoshan District, Hangzhou, Xiaoshan District, Hangzhou, China
| | - Yunchao Wang
- Department of Intensive Care Unit (ICU), The First People's Hospital of Xiaoshan District, Hangzhou, Xiaoshan District, Hangzhou, China
| | - Ping Pan
- Department of General Medicine, The First People's Hospital of Xiaoshan District, Hangzhou, Xiaoshan District, Hangzhou, China
| | - Guanhua Xu
- Department of Intensive Care Unit (ICU), The First People's Hospital of Xiaoshan District, Hangzhou, Xiaoshan District, Hangzhou, China
| | - Lujiao Mo
- Department of Intensive Care Unit (ICU), The First People's Hospital of Xiaoshan District, Hangzhou, Xiaoshan District, Hangzhou, China
| | - Lijia Cao
- Department of Intensive Care Unit (ICU), The First People's Hospital of Xiaoshan District, Hangzhou, Xiaoshan District, Hangzhou, China
| | - Channi Wu
- Department of Gastroenterology, Zhejiang Xiaoshan Hospital, Xiaoshan District, Hangzhou, China.
| | - Xiaoyuan Shen
- Department of Intensive Care Unit (ICU), The First People's Hospital of Xiaoshan District, Hangzhou, Xiaoshan District, Hangzhou, China
| |
Collapse
|
11
|
Munakarmi S, Chand L, Shin HB, Jang KY, Jeong YJ. Indole-3-Carbinol Derivative DIM Mitigates Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Inflammatory Response, Apoptosis and Regulating Oxidative Stress. Int J Mol Sci 2020; 21:E2048. [PMID: 32192079 PMCID: PMC7139345 DOI: 10.3390/ijms21062048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
3,3'-Diindolylmethane (DIM), a metabolic product of indole-3-carbinol extracted from cruciferous vegetables exhibits anti-inflammatory and anti-cancer properties. Earlier, the product has been demonstrated to possess anti-fibrotic properties; however, its protective effects on liver injury have not been clearly elucidated. In this study, we postulated the effects and molecular mechanisms of action of DIM on carbon tetrachloride (CCl4)-induced liver injury in mice. Acute liver injury was induced by a single intraperitoneal administration of CCl4 (1 ml/kg) into mice. DIM was injected via subcutaneous route for three days at various doses (2.5, 5 and 10 mg/kg) before CCl4 injection. Mice were sacrificed and serum was collected for quantification of serum transaminases. The liver was collected and weighed. Treatment with DIM significantly reduced serum transaminases levels (AST and ALT), tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS). CCl4- induced apoptosis was inhibited by DIM treatment by the reduction in the levels of cleaved caspase-3 and Bcl2 associated X protein (Bax). DIM treated mice significantly restored Cytochrome P450 2E1, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression in CCl4 treated mice. In addition, DIM downregulated overexpression of hepatic nuclear factor kappa B (NF-κB) and inhibited CCl4 mediated apoptosis. Our results suggest that the protective effects of DIM against CCl4- induced liver injury are due to the inhibition of ROS, reduction of pro-inflammatory mediators and apoptosis.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju 54907, Korea; (S.M.); (L.C.)
| | - Lokendra Chand
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju 54907, Korea; (S.M.); (L.C.)
| | - Hyun Beak Shin
- Department of Surgery, Chonbuk National University Hospital, Jeonju 54907, Korea;
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Hospital, Jeonju 54907, Korea;
| | - Yeon Jun Jeong
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju 54907, Korea; (S.M.); (L.C.)
- Department of Surgery, Chonbuk National University Hospital, Jeonju 54907, Korea;
| |
Collapse
|
12
|
He J, Huang T, Zhao L. 3,3'‑Diindolylmethane mitigates lipopolysaccharide‑induced acute kidney injury in mice by inhibiting NOX‑mediated oxidative stress and the apoptosis of renal tubular epithelial cells. Mol Med Rep 2019; 19:5115-5122. [PMID: 31059037 PMCID: PMC6522920 DOI: 10.3892/mmr.2019.10178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
3,3′-Diindolylmethane (DIM) is a naturally derived indole compound found in the Brassica family of vegetables. DIM has several beneficial effects, including anti-cancer, anti-inflammatory and anti-angiogenic functions. However, the effects of DIM on acute kidney injury (AKI) stimulated by lipopolysaccharide (LPS) are poorly studied. In this present study, male BALB/c mouse models of AKI were established using intraperitoneal injections of 10 mg/kg LPS. DIM (40 mg/kg) was administered intraperitoneally 24 and 2 h before LPS exposure. The results indicated that DIM significantly mitigated histopathological changes in the kidneys and improved the levels of blood urea nitrogen and serum creatinine. DIM also suppressed the LPS-induced production of reactive oxygen species and cell apoptosis. Furthermore, DIM treatment significantly decreased the expression of NADPH oxidase 2 (NOX2) and NOX4 in LPS-treated mice. Therefore, DIM may exert its renoprotective actions by inhibiting NOX-mediated oxidative stress and the apoptosis of renal tubular epithelial cells.
Collapse
Affiliation(s)
- Jin He
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tao Huang
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lin Zhao
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
13
|
Xia ZE, Xi JL, Shi L. 3,3'-Diindolylmethane ameliorates renal fibrosis through the inhibition of renal fibroblast activation in vivo and in vitro. Ren Fail 2018; 40:447-454. [PMID: 30101622 PMCID: PMC6095015 DOI: 10.1080/0886022x.2018.1490322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
3,3'-Diindolylmethane (DIM), a natural acid condensation extracted from cruciferous plants, exhibits anti-fibrotic effects in hepatic and cardiac fibrosis models. The effects of DIM on renal fibrosis, however, are unclear. This study aimed to explore the protective effects of DIM on renal fibrosis. Unilateral ureteral obstruction (UUO) and transforming growth factor (TGF)-β1-stimulated normal rat kidney (NRK)-49F fibroblast cell mouse models were established. The models were then treated with DIM for the assessment of its anti-fibrotic effects and mechanisms. Results of HE and Masson staining showed that DIM reduced kidney injury and production of interstitial collagens fibrosis. CTS also inhibited expression of fibronectin, collagen-1 but retain E-cadherin in the UUO model. Furthermore, DIM suppressed local fibroblast activation, as evidenced by the suppressed expression of the myofibroblast markers α-SMA and vimentin in vivo and in vitro. In addition, DIM significantly inhibited the TGF-β1-induced proliferation of NRK49F cells in a time- and dose-dependent manner. DIM decreased Smad2/3 phosphorylation but increased Smad7 expression. Results suggested that DIM inhibits TGF-β/Smad2/3 signaling to attenuate renal interstitial fibrosis via inhibiting local fibroblast activation. This mechanism is likely related to Smad7 induction.
Collapse
Affiliation(s)
- Zun-En Xia
- a Department of Clinical Laboratory , Renmin Hospital of Wuhan University , Wuhan , China
| | - Juan-Li Xi
- b Department of Gastroenterology , Wuhan Third Hospital , Wuhan , China
| | - Lei Shi
- c Department of Oncology , Renmin Hospital of Wuhan University , Wuhan , China
| |
Collapse
|
14
|
Luo Q, Yang A, Cao Q, Guan H. 3,3'-Diindolylmethane protects cardiomyocytes from LPS-induced inflammatory response and apoptosis. BMC Pharmacol Toxicol 2018; 19:71. [PMID: 30413180 PMCID: PMC6230279 DOI: 10.1186/s40360-018-0262-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/24/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND 3,3'-Diindolylmethane (DIM) has been extensively studied as a potential therapeutic drug with free radical scavenging, antioxidant and anti-angiogenic effects. However, whether DIM has similar effects on cardiomyocytes remains unknown. Here we evaluated DIM's influence on inflammation and apoptosis of H9C2 cardiomyocytes induced by LPS and to explore the possible mechanism of the effects. METHODS H9C2 cells were incubated with DIM (10, 20 and 30 μM) with or without LPS for 24 h. The cytotoxicity of DIM was detected by CCK-8. The levels of tumour necrosis factor (TNF)-α and interleukin (IL)-6 were then measured using RT-qPCR and ELISA. Cell apoptosis rate and reactive oxygen species (ROS) content after DIM treatment were measured by flow cytometry. Expressions of NFκB, P-NFκB, IκBa, P-IκBa, Bax and Bcl-2 after DIM treatment were detected by western blot. The rate of NFκB nuclear translocation after DIM treatment was determined by immunocytochemical analysis. RESULTS LPS stimulation promoted TNF-α and IL-6 mRNA expression. After treatment with various concentrations of DIM (10, 20 and 30 μM), TNF-α and IL-6 mRNA expression was clearly impaired, especially in the LPS + DIM30(μM) group. ELISA was used to measure TNF-α and IL-6 concentrations in cellular supernatant, and the result was verified to be consistent with RT-qPCR. Additionally, DIM treatment significantly blocked LPS-induced oxidative stress and inhibited LPS-induced apoptosis in H9C2 cardiomyocytes according to the results detected by flow cytometry. Moreover, compared with LPS alone, DIM significantly inhibited the LPS-induced phosphorylation of NFκB (p-NFκB) and Bax expression and increased Bcl-2 expression. CONCLUSIONS DIM may have a protective effect for H9C2 cardiomyocytes against LPS-induced inflammatory response and apoptosis. DIM may be a new insight into the treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060 People’s Republic of China
| | - Ankang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060 People’s Republic of China
| | - Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060 People’s Republic of China
| | - Hongjing Guan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060 People’s Republic of China
| |
Collapse
|
15
|
Li M, Wang S, Li X, Jiang L, Wang X, Kou R, Wang Q, Xu L, Zhao N, Xie K. Diallyl sulfide protects against lipopolysaccharide/d-galactosamine-induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice. Food Chem Toxicol 2018; 120:500-509. [DOI: 10.1016/j.fct.2018.07.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/11/2018] [Accepted: 07/28/2018] [Indexed: 12/12/2022]
|
16
|
Zhao H, Han Q, Lu N, Xu D, Tian Z, Zhang J. HMBOX1 in hepatocytes attenuates LPS/D-GalN-induced liver injury by inhibiting macrophage infiltration and activation. Mol Immunol 2018; 101:303-311. [PMID: 30032072 DOI: 10.1016/j.molimm.2018.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
Abstract
The HMBOX1 (Homeobox Containing 1) gene was first isolated from the human pancreatic cDNA libraries and is widely expressed in many tissues. Previously, we detected high expression of HMBOX1 in the liver, but its function was unclear. In this study, hepatocyte-specific HMBOX1 knockout mice (Hm△hep mice) were generated and used to characterize the function of HMBOX1 in the LPS/D-GalN-induced acute liver failure model. HMBOX1-knockout exhibits exacerbated liver injury induced by LPS/D-GalN, accompanied with high levels of inflammatory cytokines both in the liver and in circulation. Further investigation demonstrated that HMBOX1 negatively regulates NF-κB signal transduction. Therefore, HMBOX1-knockout in hepatocytes promotes CCL2 expression through the activation of NF-κB signaling, which enhanced the infiltration of macrophages into the liver. In addition, the decrease of HMBOX1 in hepatocytes promotes the activation of macrophages, upregulating CD80 and MHCⅡ, as well as inflammatory factors TNF-α and IL-6. Importantly, overexpression of HMBOX1 rescued liver injury in Hm△hep mice. These findings indicate that HMBOX1 in hepatocytes acts as a key immunosuppressive factor for inflammation and plays a critical protective role in LPS/D-GalN-induced liver injury.
Collapse
Affiliation(s)
- Hengli Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Nan Lu
- Diagnostic Institute, Medical School, Shandong University, China
| | - Dongqing Xu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China.
| |
Collapse
|
17
|
Lin X, Cui M, Xu D, Hong D, Xia Y, Xu C, Li R, Zhang X, Lou Y, He Q, Lv P, Chen Y. Liver-specific deletion of Eva1a/Tmem166 aggravates acute liver injury by impairing autophagy. Cell Death Dis 2018; 9:768. [PMID: 29991758 PMCID: PMC6039435 DOI: 10.1038/s41419-018-0800-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Acute liver failure (ALF) is an inflammation-mediated hepatocellular injury process associated with cellular autophagy. However, the mechanism by which autophagy regulates ALF remains undefined. Herein, we demonstrated that Eva1a (eva-1 homolog A)/Tmem166 (transmembrane protein 166), an autophagy-related gene, can protect mice from ALF induced by d-galactosamine (D-GalN)/lipopolysaccharide (LPS) via autophagy. Our findings indicate that a hepatocyte-specific deletion of Eva1a aggravated hepatic injury in ALF mice, as evidenced by increased levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), myeloperoxidase (MPO), and inflammatory cytokines (e.g., TNFα and IL-6), which was associated with disordered liver architecture exhibited by Eva1a−/− mouse livers with ALF. Moreover, we found that the decreased autophagy in Eva1a−/− mouse liver resulted in the substantial accumulation of swollen mitochondria in ALF, resulting in a lack of ATP generation, and consequently hepatocyte apoptosis or death. The administration of Adeno-Associated Virus Eva1a (AAV-Eva1a) or antophagy-inducer rapamycin increased autophagy and provided protection against liver injury in Eva1a−/− mice with ALF, suggesting that defective autophagy is a significant mechanism of ALF in mice. Collectively, for the first time, we have demonstrated that Eva1a-mediated autophagy ameliorated liver injury in mice with ALF by attenuating inflammatory responses and apoptosis, indicating a potential therapeutic application for ALF.
Collapse
Affiliation(s)
- Xin Lin
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, 100191, Beijing, China
| | - Dong Xu
- Department of Clinical Laboratory, Peking University First Hospital, 100034, Beijing, China
| | - Dubeiqi Hong
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Yan Xia
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Chentong Xu
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Riyong Li
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Xuan Zhang
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Yaxin Lou
- Medical and Healthy Analytical Center, Peking University, 100191, Beijing, China
| | - Qihua He
- Medical and Healthy Analytical Center, Peking University, 100191, Beijing, China
| | - Ping Lv
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Science; Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, 100191, Beijing, China.
| |
Collapse
|
18
|
Finkin-Groner E, Finkin S, Zeeli S, Weinstock M. Indoline derivatives mitigate liver damage in a mouse model of acute liver injury. Pharmacol Rep 2017. [PMID: 28628850 DOI: 10.1016/j.pharep.2017.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Exposure of mice to D-galactosamine (GalN) and lipopolysaccharide (LPS) induces acute liver failure through elevation of TNF-α, which causes liver damage resembling that in humans. The current study evaluated in this model the effect of two indoline derivatives, which have anti-inflammatory activity in macrophages. METHODS AN1297 and AN1284 (0.025-0.75mg/kg) or dexamethasone (3mg/kg), were injected subcutaneously, 15min before intraperitoneal injection of GalN (800mg) plus LPS (50μg) in male Balb/C mice. After 6h, their livers were evaluated histologically by staining with hematoxylin and eosin for tissue damage and by cleaved caspase 3 for apoptosis. Activity of liver enzymes, alanine transaminase (ALT) and aspartate aminotransferase (AST) and levels of TNF-α and IL-6 were measured in plasma, and those of TNF-α and IL-6, in the liver. RESULTS AN1297 (0.075-0.75mg/kg) and AN1284 (0.25-0.75mg/kg) maximally reduced ALT by 51% and 80%, respectively. Only AN1284 (0.25 and 0.75mg/kg) reduced AST by 41% and 48%. AN1297 and AN1284 (0.25mg/kg) decreased activation of caspase 3 (a sign of apoptosis) by 80% and plasma TNF-α by 75%. AN1297 and AN1284 (0.075mg/kg) prevented the rise in TNF-α and IL-6 in the liver. AN1284 (0.25mg/kg) reduced mortality from 90% to 20% (p<0.01) and AN1297, to 60% (p=0.121). Both indoline derivatives inhibited the phosphorylation of MAPK p38 and DNA binding of the transcription factor, AP-1. CONCLUSION While both compounds are highly potent anti-inflammatory agents, AN1284 is more effective in mitigating the underlying causes of GalN/LPS-induced acute liver failure in mice.
Collapse
Affiliation(s)
- Efrat Finkin-Groner
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shlomi Finkin
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shani Zeeli
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Marta Weinstock
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
19
|
Herbal Compound "Jiedu Huayu" Reduces Liver Injury in Rats via Regulation of IL-2, TLR4, and PCNA Expression Levels. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9819350. [PMID: 28197212 PMCID: PMC5288544 DOI: 10.1155/2017/9819350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/21/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Aim of the Study. To investigate the preventative effects of Jiedu Huayu (JDHY) on D-galactosamine (D-GalN) and lipopolysaccharide-induced acute liver failure (ALF) and to evaluate the possible mechanisms of action. Materials and Methods. ALF was induced in Wistar rats by administrating D-GalN (900 mg/kg) and lipopolysaccharide (10 μg/kg). After treatment with JDHY granules, the levels of blood alanine aminotransferase, aspartate aminotransferase, total bilirubin, and prothrombin time were determined. Proliferating cell nuclear antigen was detected by immunohistochemistry staining. The expression of interleukin-2 (IL-2) and toll-like receptor 4 (TLR4) was examined by fluorescence quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. Results. JDHY treatment dramatically improved liver function and increased survival rates in an ALF model in rats. We observed a decrease in IL-2 and TLR4 expression following treatment with JDHY in liver cells from ALF rats using qRT-PCR and Western blot analysis. Conclusion. We hypothesize that the therapeutic potential of JDHY for treating ALF is due to its modulatory effect on the suppression of inflammation and by promoting hepatocyte regeneration. Our results contribute towards validation of the traditional use of JDHY in the treatment of liver disease.
Collapse
|
20
|
MiR-106a: Promising biomarker for cancer. Bioorg Med Chem Lett 2016; 26:5373-5377. [PMID: 27780637 DOI: 10.1016/j.bmcl.2016.10.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/23/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs), which are characterized by highly conserved and small non-coding RNAs, have been a hot spot regarding biological processes such as cellular proliferation, apoptosis and metabolism as well as cellular differentiation, signal transduction and carcinogenesis. MiRNA-106a (miR-106a), a member of the miR-17 family, has been validated to be aberrantly regulated in the diversity of tumors. The purpose of this review is supposed to deliver an intricate overview of miR-106a, including its role in cell proliferation, apoptosis, cell cycle, invasion and metastasis, involvement in drug resistance as well as its interactions with the target proteins and signaling pathways involved.
Collapse
|
21
|
Kim SM. Cellular and Molecular Mechanisms of 3,3'-Diindolylmethane in Gastrointestinal Cancer. Int J Mol Sci 2016; 17:ijms17071155. [PMID: 27447608 PMCID: PMC4964527 DOI: 10.3390/ijms17071155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022] Open
Abstract
Studies in humans have shown that 3,3′-diindolylmethane (DIM), which is found in cruciferous vegetables, such as cabbage and broccoli, is effective in the attenuation of gastrointestinal cancers. This review presents the latest findings on the use, targets, and modes of action of DIM for the treatment of human gastrointestinal cancers. DIM acts upon several cellular and molecular processes in gastrointestinal cancer cells, including apoptosis, autophagy, invasion, cell cycle regulation, metastasis, angiogenesis, and endoplasmic reticulum (ER) stress. In addition, DIM increases the efficacy of other drugs or therapeutic chemicals when used in combinatorial treatment for gastrointestinal cancer. The studies to date offer strong evidence to support the use of DIM as an anticancer and therapeutic agent for gastrointestinal cancer. Therefore, this review provides a comprehensive understanding of the preventive and therapeutic properties of DIM in addition to its different perspective on the safety of DIM in clinical applications for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Soo Mi Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 561-180, Korea.
| |
Collapse
|
22
|
Elliott DM, Nagarkatti M, Nagarkatti PS. 3,39-Diindolylmethane Ameliorates Staphylococcal Enterotoxin B–Induced Acute Lung Injury through Alterations in the Expression of MicroRNA that Target Apoptosis and Cell-Cycle Arrest in Activated T Cells. J Pharmacol Exp Ther 2016; 357:177-87. [PMID: 26818958 PMCID: PMC4809322 DOI: 10.1124/jpet.115.226563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/26/2016] [Indexed: 12/20/2022] Open
Abstract
3,39-Diindolylmethane (DIM), a natural indole found in cruciferous vegetables, has significant anti-cancer and anti-inflammatory properties. In this current study, we investigated the effects of DIM on acute lung injury (ALI) induced by exposure to staphylococcal enterotoxin B (SEB). We found that pretreatment of mice with DIM led to attenuation of SEB-induced inflammation in the lungs, vascular leak, and IFN-g secretion. Additionally, DIM could induce cell-cycle arrest and cell death in SEB-activated T cells in a concentration-dependent manner. Interestingly, microRNA (miRNA) microarray analysis uncovered an altered miRNA profile in lung-infiltrating mononuclear cells after DIM treatment of SEB-exposed mice. Moreover, computational analysis of miRNA gene targets and regulation networks indicated that DIM alters miRNA in the cell death and cell-cycle progression pathways. Specifically, DIM treatment significantly downregulated several miRNA and a correlative increase associated gene targets. Furthermore, overexpression and inhibition studies demonstrated that DIM-induced cell death, at least in part, used miR-222. Collectively, these studies demonstrate for the first time that DIM treatment attenuates SEB-induced ALI and may do so through the induction of microRNAs that promote apoptosis and cell-cycle arrest in SEB-activated T cells.
Collapse
|
23
|
Ahmad A, Li Y, Sarkar FH. The bounty of nature for changing the cancer landscape. Mol Nutr Food Res 2016; 60:1251-63. [PMID: 26799714 DOI: 10.1002/mnfr.201500867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 12/18/2022]
Abstract
The landscape of cancer has changed considerably in past several years, due mainly to aggressive screening, accumulation of data from basic and epidemiological studies, and the advances in translational research. Natural anticancer agents have always been a part and parcel of cancer research. The initial focus on natural anticancer agents was in context of their cancer chemopreventive properties but their ability to selectively target oncogenic signaling pathways has also been recognized. In light of the rapid advancements in our understanding of the role of microRNAs, cancer stem cells, and epigenetic events in cancer initiation and progression, a number of natural anticancer agents are showing promise in vitro, in vivo as well as in preclinical studies. Moreover, parent structures of natural agents are being extensively modified with the hope of improving efficacy, specificity, and bioavailability. In this article, we focus on two natural agents, 3,3'-diindolylmethane and garcinol, along with 3,4-difluorobenzo curcumin, a synthetic analog of natural agent curcumin. We showcase how these anticancer agents are changing cancer landscape by modulating novel microRNAs, epigenetic factors, and cancer stem cell markers. These activities are relevant and being appreciated for overcoming drug resistance and inhibition of metastases, the two overarching clinical challenges in modern medicine.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - Yiwei Li
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - Fazlul H Sarkar
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|