1
|
Zhang Y, Liu E, Gao H, He Q, Chen A, Pang Y, Zhang X, Bai S, Zeng J, Guo J. Natural products for the treatment of hypertrophic scars: Preclinical and clinical studies. Heliyon 2024; 10:e37059. [PMID: 39296083 PMCID: PMC11408005 DOI: 10.1016/j.heliyon.2024.e37059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Hypertrophic scarring (HS) is a complication of wound healing that causes physiological and psychological distress in patients. However, the possible mechanism underlying HS is not fully understood, and there is no gold standard for its treatment. Natural products are more effective, economical, convenient, and safe than existing drugs, and they have a wide application prospect. However, there is a lack of literature on this topic, so we reviewed in vivo, in vitro, and clinical studies and screened natural products showing beneficial effects on HS that can become potential therapeutic agents for HS to fill in the gaps in the field. In addition, we discussed the drug delivery systems related to these natural products and their mechanisms in the treatment of HS. Generally speaking, natural products inhibit inflammation, myofibroblast activation, angiogenesis, and collagen accumulation by targeting interleukins, tumor necrosis factor-α, vascular endothelial growth factors, platelet-derived growth factors, and matrix metalloproteinases, so as to play an anti-HS effects of natural products are attributed to their anti-inflammatory, anti-proliferative, anti-angiogenesis, and pro-apoptotic (enhancing apoptosis and autophagy) roles, thus treating HS. We also screened the potential therapeutic targets of these natural compounds for HS through network pharmacology and constructed a protein-protein interaction (PPI) network, which may provide clues for the pharmacological mechanism of natural products in treating this disease and the development and application of drugs.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - E Liu
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | | | - Qingying He
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Anjing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Yaobing Pang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Xueer Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Sixian Bai
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| |
Collapse
|
2
|
Kang Y, Liu K, Chen Z, Guo J, Xiang K, Wu X, Jiang T, Chen J, Yan C, Jiang G, Wang Y, Zhang M, Xiang X, Dai H, Yang X. Healing with precision: A multi-functional hydrogel-bioactive glass dressing boosts infected wound recovery and enhances neurogenesis in the wound bed. J Control Release 2024; 370:210-229. [PMID: 38648955 DOI: 10.1016/j.jconrel.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Chronic skin wounds, especially infected ones, pose a significant clinical challenge due to their increasing incidence and poor outcomes. The deteriorative microenvironment in such wounds, characterized by reduced extracellular matrix, impaired angiogenesis, insufficient neurogenesis, and persistent bacterial infection, has prompted the exploration of novel therapeutic strategies. In this study, we developed an injectable multifunctional hydrogel (GEL/BG@Cu + Mg) incorporating Gelatin-Tannic acid/ N-hydroxysuccinimide functionalized polyethylene glycol and Bioactive glass doped with copper and magnesium ions to accelerate the healing of infected wounds. The GEL/BG@Cu + Mg hydrogel composite demonstrates good biocompatibility, degradability, and rapid formation of a protective barrier to stop bleeding. Synergistic bactericidal effects are achieved through the photothermal properties of BG@Cu + Mg and sustained copper ions release, with the latter further promoting angiogenesis. Furthermore, the hydrogel enhances neurogenesis by stimulating axons and Schwann cells in the wound bed through the beneficial effects of magnesium ions. Our results demonstrate that the designed novel multifunctional hydrogel holds tremendous promise for treating infected wounds and allowing regenerative neurogenesis at the wound site, which provides a viable alternative for further improving clinical outcomes.
Collapse
Affiliation(s)
- Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaituo Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yufeng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuejiao Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Zheng J, Yang B, Liu S, Xu Z, Ding Z, Mo M. Applications of Exosomal miRNAs from Mesenchymal Stem Cells as Skin Boosters. Biomolecules 2024; 14:459. [PMID: 38672475 PMCID: PMC11048182 DOI: 10.3390/biom14040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The skin is the outer layer of the human body, and it is crucial in defending against injuries and damage. The regenerative capacity of aging and damaged skin caused by exposure to external stimuli is significantly impaired. Currently, the rise in average life expectancy and the modern population's aesthetic standards have sparked a desire for stem-cell-based therapies that can address skin health conditions. In recent years, mesenchymal stem cells (MSCs) as therapeutic agents have provided a promising and effective alternative for managing skin regeneration and rejuvenation, attributing to their healing capacities that can be applied to damaged and aged skin. However, it has been established that the therapeutic effects of MSC may be primarily mediated by paracrine mechanisms, particularly the release of exosomes (Exos). Exosomes are nanoscale extracellular vesicles (EVs) that have lipid bilayer and membrane structures and can be naturally released by different types of cells. They influence the physiological and pathological processes of recipient cells by transferring a variety of bioactive molecules, including lipids, proteins, and nucleic acids such as messenger RNAs (mRNAs) and microRNAs (miRNAs) between cells, thus playing an important role in intercellular communication and activating signaling pathways in target cells. Among them, miRNAs, a type of endogenous regulatory non-coding RNA, are often incorporated into exosomes as important signaling molecules regulating protein biosynthesis. Emerging evidence suggests that exosomal miRNAs from MSC play a key role in skin regeneration and rejuvenation by targeting multiple genes and regulating various biological processes, such as participating in inflammatory responses, cell migration, proliferation, and apoptosis. In this review, we summarize the recent studies and observations on how MSC-derived exosomal miRNAs contribute to the regeneration and rejuvenation of skin tissue, with particular attention to the applications of bioengineering methods for manipulating the miRNA content of exosome cargo to improve their therapeutic potential. This review can provide new clues for the diagnosis and treatment of skin damage and aging, as well as assist investigators in exploring innovative therapeutic strategies for treating a multitude of skin problems with the aim of delaying skin aging, promoting skin regeneration, and maintaining healthy skin.
Collapse
Affiliation(s)
- Jinmei Zheng
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Beibei Yang
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Siqi Liu
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Zhenfeng Xu
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Zhimeng Ding
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
| | - Miaohua Mo
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China; (J.Z.); (B.Y.); (S.L.); (Z.X.); (Z.D.)
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
4
|
Jia Y, Shi J, Ding B, Zhao L, Xu K, Hu C, Xu W, Zhu A, Yang H, Wang X, Yao F. Photoactive Poly-L-Lysine gel with resveratrol-magnesium metal polyphenol network: A promising strategy for preventing tracheal anastomotic complications following surgery. Mater Today Bio 2024; 24:100938. [PMID: 38260033 PMCID: PMC10801330 DOI: 10.1016/j.mtbio.2023.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Postoperative complications at the anastomosis site following tracheal resection are a prevalent and substantial concern. However, most existing solutions primarily focus on managing symptoms, with limited attention given to proactively preventing the underlying pathological processes. To address this challenge, we conducted a drug screening focusing on clinically-relevant polyphenolic compounds, given the growing interest in polyphenolic compounds for their potential role in tissue repair during wound healing. This screening led to the identification of resveratrol as the most promising candidate for mitigating tracheal complications, as it exhibited the most significant efficacy in enhancing the expression of vascular endothelial growth factor (VEGF) while concurrently suppressing the pivotal fibrosis factor: transforming growth factor-beta 1 (TGF-β1), showcasing its robust potential in addressing these issues. Building upon this discovery, we further developed an innovative photosensitive poly-L-lysine gel integrated with a resveratrol-magnesium metal polyphenol network (MPN), named Res-Mg/PL-MA. This design allows for the enables sustained release of resveratrol and synergistically enhances the expression of VEGF and also promotes resistance to tensile forces, aided by magnesium ions, in an anastomotic tracheal fistula animal models. Moreover, the combination of resveratrol and poly-L-lysine hydrogel effectively inhibits bacteria, reduces local expression of key inflammatory factors, and induces polarization of macrophages toward an anti-inflammatory phenotype, as well as inhibits TGF-β1, consequently decreasing collagen production levels in an animal model of post-tracheal resection. In summary, our novel Res-Mg/PL-MA hydrogel, through antibacterial, anti-inflammatory, and pro-vascularization mechanisms, effectively prevents complications at tracheal anastomosis, offering significant promise for translational applications in patients undergoing tracheal surgeries.
Collapse
Affiliation(s)
- Yunxuan Jia
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jingfeng Shi
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Fuyang City, Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang, 236015, China
| | - Bowen Ding
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Liang Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Weijiao Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Anshun Zhu
- Wenzhou Medical University, Wenzhou, 325015, China
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Wenzhou Medical University, Wenzhou, 325015, China
| |
Collapse
|
5
|
Zhao S, Liu H, Wang H, He X, Tang J, Qi S, Yang R, Xie J. Inhibition of phosphatidylinositol 3-kinase catalytic subunit alpha by miR-203a-3p reduces hypertrophic scar formation via phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway. BURNS & TRAUMA 2024; 12:tkad048. [PMID: 38179473 PMCID: PMC10762504 DOI: 10.1093/burnst/tkad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 01/06/2024]
Abstract
Background Hypertrophic scar (HS) is a common fibroproliferative skin disease that currently has no truly effective therapy. Given the importance of phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) in hypertrophic scar formation, the development of therapeutic strategies for endogenous inhibitors against PIK3CA is of great interest. Here, we explored the molecular mechanisms underlying the protective effects of miR-203a-3p (PIK3CA inhibitor) against excessive scar. Methods Bioinformatic analysis, immunohistochemistry, immunofluorescence, miRNA screening and fluorescence in situ hybridization assays were used to identify the possible pathways and target molecules mediating HS formation. A series of in vitro and in vivo experiments were used to clarify the role of PIK3CA and miR-203a-3p in HS. Mechanistically, transcriptomic sequencing, immunoblotting, dual-luciferase assay and rescue experiments were executed. Results Herein, we found that PIK3CA and the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway were upregulated in scar tissues and positively correlated with fibrosis. We then identified miR-203a-3p as the most suitable endogenous inhibitor of PIK3CA. miR-203a-3p suppressed the proliferation, migration, collagen synthesis and contractility as well as the transdifferentiation of fibroblasts into myofibroblasts in vitro, and improved the morphology and histology of scars in vivo. Mechanistically, miR-203a-3p attenuated fibrosis by inactivating the PI3K/AKT/mTOR pathway by directly targeting PIK3CA. Conclusions PIK3CA and the PI3K/AKT/mTOR pathway are actively involved in scar fibrosis and miR-203a-3p might serve as a potential strategy for hypertrophic scar therapy through targeting PIK3CA and inactivating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Shixin Zhao
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Hengdeng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Hanwen Wang
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Xuefeng He
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Jinming Tang
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Shaohai Qi
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| |
Collapse
|
6
|
Meetam T, Angspatt A, Aramwit P. Evidence of Potential Natural Products for the Management of Hypertrophic Scars. J Evid Based Integr Med 2024; 29:2515690X241271948. [PMID: 39196306 PMCID: PMC11359448 DOI: 10.1177/2515690x241271948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/29/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
Hypertrophic scarring is an aberrant wound-healing response to reestablish dermal integrity after an injury and can cause significant abnormalities in physical, aesthetic, functional, and psychological symptoms, impacting the patient's quality of life. There is currently no gold standard for preventing and treating hypertrophic scars. Therefore, many researchers have attempted to search for antihypertrophic scar agents with greater efficacy and fewer side effects. Natural therapeutics are becoming attractive as potential alternative anti-scarring agents because of their high efficacy, safety, biocompatibility, low cost, and easy accessibility. This review demonstrates various kinds of natural product-based therapeutics, including onion, vitamin E, Gotu kola, green tea, resveratrol, emodin, curcumin, and others, in terms of their mechanisms of action, evidence of efficacy and safety, advantages, and disadvantages when used as anti-scarring agents. We reviewed the literature based on data from in vitro, in vivo, and clinical trials. A total of 23 clinical trials were identified in this review; most clinical trials were ranked as having uncertain results (level of evidence 2b; n = 16). Although these natural products showed beneficial effects in both in vitro and in vivo studies of potential anti-scarring agents, there was limited clinical evidence to support their efficacy due to the limited quality of the studies, with individual flaws including small sample sizes, poor randomization, and blinding, and short follow-up durations. More robust and well-designed clinical trials with large-scale and prolonged follow-up durations are required to clarify the benefits and risks of these agents.
Collapse
Affiliation(s)
- Thunyaluk Meetam
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- Sirindhorn College of Public Health Trang, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute, Trang, Thailand
| | - Apichai Angspatt
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok,
Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
7
|
He T, Bai X, Li Y, Zhang D, Xu Z, Yang X, Hu D, Han J. Insufficient SIRT1 in macrophages promotes oxidative stress and inflammation during scarring. J Mol Med (Berl) 2023; 101:1397-1407. [PMID: 37707556 DOI: 10.1007/s00109-023-02364-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Macrophage is a critical regulator in wound healing and scar formation, and SIRT1 is related to macrophage activation and polarization, while the specific mechanism is still unclear. To explore the specific effects of SIRT1 in scarring, we established a skin incision mouse model and LPS-induced inflammation cell model. The expression of SIRT1 in tissue and macrophage was detected, and the level of SIRT1 was changed to observe the downstream effects. LPS-induced macrophages with or without SIRT1 deficiency were used for TMT-based quantitative proteomic analysis. SIRT1 was suppressed in scar while increased in macrophages of scar tissue. And macrophages were proven to be necessary for wound healing. In the early stage of wound healing, knockout of SIRT1 in macrophage could greatly strengthen inflammation and finally promote scarring. NADH-related activities and oxidoreductase activities were differentially expressed in TMT-based quantitative proteomic analysis. We confirmed that ROS production and NOX2 level were elevated after LPS stimulation while the Nrf2 pathway and the downstream proteins, such as Nqo-1 and HO-1, were suppressed. In contrast, the suppression of SIRT1 strengthened this trend. The NF-κB pathway was remarkably activated compared with the control group. Insufficient increase of SIRT1 in macrophage leads to over activated oxidative stress and activates NF-κB pathways, which then promotes inflammation in wound healing and scarring. Further increasing SIRT1 in macrophages could be a promising method to alleviate scarring. KEY MESSAGES: SIRT1 was suppressed in scar while increased in macrophages of scar tissue. Inhibition of SIRT1 in macrophage leads to further activated oxidative stress. SIRT1 is negatively related to oxidative stress in macrophage. The elevation of SIRT1 in macrophage is insufficient during scarring.
Collapse
Affiliation(s)
- Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Dongliang Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Zhigang Xu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
8
|
Chen J, Yu W, Xiao C, Su N, Han Y, Zhai L, Hou C. Exosome from adipose-derived mesenchymal stem cells attenuates scar formation through microRNA-181a/SIRT1 axis. Arch Biochem Biophys 2023; 746:109733. [PMID: 37652148 DOI: 10.1016/j.abb.2023.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Pathological scarring is the greatest challenge after injury. Exosome from adipose-derived mesenchymal stem cells has been reported effective to improve hypertrophic scar. This study focused on the possible mechanisms during this process. Exosomes from adipose-derived mesenchymal stem cells were extracted first. Hypertrophic scar tissue and paired normal skin tissue were collected from patients. Mice skin incision model and fibroblasts model were established. TGF-β1 was used to stimulate fibroblasts to myofibroblasts transdifferentiation. It was found that exosomes injection could decrease collagen sediment after wound healing. During which, the expression of microRNA-181a decreased. Further, we found that expression of microRNA-181a in scar tissue was higher than in normal skin. Then hypertrophic scar-derived fibroblasts were used for in vitro study. It was found that similar to the use of exosomes, microRNA-181a inhibitor decreased the expression of collagen and α-SMA. While microRNA-181a mimics suppressed the effects of exosomes. During fibroblast to myofibroblast trans-differentiation, level of microRNA-181a well as levels of scar-related molecules also decreased with the use of exosomes and vice versa. SIRT1 was confirmed one of the downstream targets of microRNA-181a. Suppression of SIRT1 led to diminished effects of exosomes in hypertrophic scar derived fibroblasts. In mice skin incision model, injection of SIRT1 inhibitor led to increased collagen synthesis. In conclusion, exosomes from Adipose-derived mesenchymal stem cells are promising to antagonize scarring through the regulation of microRNA-181a/SIRT1 axis.
Collapse
Affiliation(s)
- Jie Chen
- Department of Plastic Surgery, The Second Affiliated Hospital of Xi'an Medical College, China; Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, China
| | - Wenjuan Yu
- Department of Plastic Surgery, The Second Affiliated Hospital of Xi'an Medical College, China
| | - Chao Xiao
- Department of Plastic Surgery, The Second Affiliated Hospital of Xi'an Medical College, China
| | - Na Su
- Department of Plastic Surgery, The Second Affiliated Hospital of Xi'an Medical College, China
| | - Yubo Han
- Department of Plastic Surgery, The Second Affiliated Hospital of Xi'an Medical College, China
| | - Liang Zhai
- Department of Plastic Surgery, The Second Affiliated Hospital of Xi'an Medical College, China
| | - Chen Hou
- Shaanxi Provincial People's Hospital, China.
| |
Collapse
|
9
|
Xia W, Wang Q, Lin S, Wang Y, Zhang J, Wang H, Yang X, Hu Y, Liang H, Lu Y, Zhu Z, Liu D. A high-salt diet promotes hypertrophic scarring through TRPC3-mediated mitochondrial Ca 2+ homeostasis dysfunction. Heliyon 2023; 9:e18629. [PMID: 37588604 PMCID: PMC10425910 DOI: 10.1016/j.heliyon.2023.e18629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Diet High in salt content have been associated with cardiovascular disease and chronic inflammation. We recently demonstrated that transient receptor potential canonical 3 (TRPC3) channels regulate myofibroblast transdifferentiation in hypertrophic scars. Here, we examined how high salt activation of TRPC3 participates in hypertrophic scarring during wound healing. In vitro, we confirmed that high salt increased the TRPC3 protein expression and the marker of myofibroblast alpha smooth muscle actin (α-SMA) in wild-type mice (WT) primary cultured dermal fibroblasts but not Trpc3-/- mice. Activation of TRPC3 by high salt elevated cytosolic Ca2+ influx and mitochondrial Ca2+ uptake in dermal fibroblasts in a TRPC3-dependent manner. High salt activation of TRPC3 enhanced mitochondrial respiratory dysfunction and excessive ROS production by inhibiting pyruvate dehydrogenase action, that activated ROS-triggered Ca2+ influx and the Rho kinase/MLC pathway in WT mice but not Trpc3-/- mice. In vivo, a persistent high-salt diet promoted myofibroblast transdifferentiation and collagen deposition in a TRPC3-dependent manner. Therefore, this study demonstrates that high salt enhances myofibroblast transdifferentiation and promotes hypertrophic scar formation through enhanced mitochondrial Ca2+ homeostasis, which activates the ROS-mediated pMLC/pMYPT1 pathway. TRPC3 deficiency antagonizes high salt diet-induced hypertrophic scarring. TRPC3 may be a novel target for hypertrophic scarring during wound healing.
Collapse
Affiliation(s)
- Weijie Xia
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Qianran Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Shaoyang Lin
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Yuanyuan Wang
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Junbo Zhang
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Hailin Wang
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Yuangang Lu
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| |
Collapse
|
10
|
Chen Y, Huang J, Liu J, Zhu H, Li X, Wen J, Tian M, Ren J, Zhou L, Yang Q. Sirt1 Overexpression Inhibits Fibrous Scar Formation and Improves Functional Recovery After Cerebral Ischemic Injury Through the Deacetylation of 14-3-3ζ. Mol Neurobiol 2023:10.1007/s12035-023-03378-9. [PMID: 37162725 DOI: 10.1007/s12035-023-03378-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Cerebral ischemic stroke is one of the leading causes of human death. The fibrous scar is one of major factors influencing repair in central nervous system (CNS) injury. Silencing information regulator 2-related enzyme 1 (Sirt1) can regulate peripheral tissue and organ fibrosis. However, it is unclear how the fibrous scar forms and is regulated and it is unknown whether and how Sirt1 regulates the formation of the fibrous scar after cerebral ischemic stroke. Therefore, in the present study, we examined the effects of Sirt1 on the formation of the fibrotic scar after middle cerebral artery occlusion/reperfusion (MCAO/R) injury in vivo and on the transforming growth factor β1 (TGF-β1)-induced meningeal fibroblast fibrotic response in vitro, and we explored the molecular mechanisms underlying the Sirt1-regulated fibrosis process in vitro. We found that MCAO/R injury induced fibrotic scar formation in the ischemic area, which was accompanied by the downregulation of Sirt1 expression. The overexpression of Sirt1 reduced the infarct volume, improved Nissl body structure and reduced neurons injury, attenuated formation of fibrotic scar, upregulated growth associated protein43 (GAP43) and synaptophysin (SYP) expression, and promoted neurological function recovery. Similarly, Sirt1 expression was also downregulated in the TGF-β1-induced fibrosis model. Sirt1 overexpression inhibited fibroblast migration, proliferation, transdifferentiation into myofibroblasts, and secretion of extracellular matrix(ECM) by regulating the deacetylation of lysine at K49 and K120 sites of 14-3-3ζ in vitro. Therefore, we believe that Sirt1 could regulate fibrous scar formation and improve neurological function after cerebral ischemic stroke through regulating deacetylation of 14-3-3ζ.
Collapse
Affiliation(s)
- Yue Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiagui Huang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie Liu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huimin Zhu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun Wen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mingfen Tian
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiangxia Ren
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
11
|
Gilbert MM, Mathes SC, Mahajan AS, Rohan CA, Travers JB, Thyagarajan A. The role of sirtuins in dermal fibroblast function. Front Med (Lausanne) 2023; 10:1021908. [PMID: 36993812 PMCID: PMC10040577 DOI: 10.3389/fmed.2023.1021908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
The sirtuins are a family of seven proteins that perform a variety of dermatological functions and help maintain both the structure and function of the skin. More specifically, the sirtuins have been shown to be altered in multiple dermal cell types including dermal fibroblasts. The functions of dermal fibroblasts are extensive, and include playing a significant role in wound healing as well as helping to maintain the integrity of the skin. As dermal fibroblasts age, they can undergo a state of permanent cell cycle arrest, known as cellular senescence. This senescent process can occur as a result of various stressors, including oxidative stress, ultraviolet radiation -induced stress, and replicative stress. In recent years, there has been a growing interest in both enhancing the cutaneous fibroblast’s ability to facilitate wound healing and altering fibroblast cellular senescence. Thus, in this review, we examine the relationship between sirtuin signaling and dermal fibroblasts to understand how this family of proteins may modulate skin conditions ranging from the wound healing process to photocarcinogenesis associated with fibroblast senescence. Additionally, we offer supporting data from experiments examining the relationship between fibroblast senescence and sirtuin levels in an oxidative stress model indicating that senescent dermal fibroblasts exhibit diminished sirtuin levels. Furthermore, we survey the research on the role of sirtuins in specific dermatological disease states that where dermal fibroblast function has been implicated. Finally, we conclude with outlining potential clinical applications of sirtuins in dermatology. In sum, we find that the literature on the involvement of sirtuins in dermal fibroblasts is limited, with research still in its early stages. Nevertheless, intriguing preliminary findings merit additional investigation into the clinical implications of sirtuins in dermatology.
Collapse
Affiliation(s)
- Michael M. Gilbert
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- *Correspondence: Michael M. Gilbert,
| | | | - Avinash S. Mahajan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Anita Thyagarajan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Anita Thyagarajan,
| |
Collapse
|
12
|
Jia Y, Shao JH, Zhang KW, Zou ML, Teng YY, Tian F, Chen MN, Chen WW, Yuan ZD, Wu JJ, Yuan FL. Emerging Effects of Resveratrol on Wound Healing: A Comprehensive Review. Molecules 2022; 27:molecules27196736. [PMID: 36235270 PMCID: PMC9570564 DOI: 10.3390/molecules27196736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
Resveratrol (RSV) is a natural extract that has been extensively studied for its significant anti-inflammatory and antioxidant effects, which are closely associated with a variety of injurious diseases and even cosmetic medicine. In this review, we have researched and summarized the role of resveratrol and its different forms of action in wound healing, exploring its role and mechanisms in promoting wound healing through different modes of action such as hydrogels, fibrous scaffolds and parallel ratio medical devices with their anti-inflammatory, antioxidant, antibacterial and anti-ageing properties and functions in various cells that may play a role in wound healing. This will provide a direction for further understanding of the mechanism of action of resveratrol in wound healing for future research.
Collapse
Affiliation(s)
- Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Jia-Hao Shao
- Wuxi Clinical Medicine Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Ying-Ying Teng
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Fan Tian
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Meng-Nan Chen
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Wei-Wei Chen
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Zheng-Dong Yuan
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Jun-Jie Wu
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Feng-Lai Yuan
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
- Correspondence: ; Tel./Fax: +86-510-82603332
| |
Collapse
|
13
|
Amjadian S, Moradi S, Mohammadi P. The emerging therapeutic targets for scar management: genetic and epigenetic landscapes. Skin Pharmacol Physiol 2022; 35:247-265. [PMID: 35696989 PMCID: PMC9533440 DOI: 10.1159/000524990] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Background Wound healing is a complex process including hemostasis, inflammation, proliferation, and remodeling during which an orchestrated array of biological and molecular events occurs to promote skin regeneration. Abnormalities in each step of the wound healing process lead to reparative rather than regenerative responses, thereby driving the formation of cutaneous scar. Patients suffering from scars represent serious health problems such as contractures, functional and esthetic concerns as well as painful, thick, and itchy complications, which generally decrease the quality of life and impose high medical costs. Therefore, therapies reducing cutaneous scarring are necessary to improve patients' rehabilitation. Summary Current approaches to remove scars, including surgical and nonsurgical methods, are not efficient enough, which is in principle due to our limited knowledge about underlying mechanisms of pathological as well as the physiological wound healing process. Thus, therapeutic interventions focused on basic science including genetic and epigenetic knowledge are recently taken into consideration as promising approaches for scar management since they have the potential to provide targeted therapies and improve the conventional treatments as well as present opportunities for combination therapy. In this review, we highlight the recent advances in skin regenerative medicine through genetic and epigenetic approaches to achieve novel insights for the development of safe, efficient, and reproducible therapies and discuss promising approaches for scar management. Key Message Genetic and epigenetic regulatory switches are promising targets for scar management, provided the associated challenges are to be addressed.
Collapse
Affiliation(s)
- Sara Amjadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parvaneh Mohammadi
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- *Parvaneh Mohammadi,
| |
Collapse
|
14
|
Kim S, Lee SE, Yi S, Jun S, Yi YS, Nagar H, Kim CS, Shin C, Yeo MK, Kang YE, Oh SH. Tauroursodeoxycholic Acid Decreases Keloid Formation by Reducing Endoplasmic Reticulum Stress as Implicated in the Pathogenesis of Keloid. Int J Mol Sci 2021; 22:ijms221910765. [PMID: 34639105 PMCID: PMC8509846 DOI: 10.3390/ijms221910765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022] Open
Abstract
Keloids are a common form of pathologic wound healing and are characterized by an excessive production of extracellular matrix. This study examined the major contributing mechanism of human keloid pathogenesis using transcriptomic analysis. We identified the upregulation of mitochondrial oxidative stress response, protein processing in the endoplasmic reticulum, and TGF-β signaling in human keloid tissue samples compared to controls, based on ingenuity pathway and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Electron microscopic examinations revealed an increased number of dysmorphic mitochondria and expanded endoplasmic reticulum (ER) in human keloid tissue samples than that in controls. Western blot analysis performed using human tissues suggested noticeably higher ER stress signaling in keloids than in normal tissues. Treatment with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, significantly decreased scar formation in rabbit models, compared to normal saline and steroid injections. In summary, our findings demonstrate the contributions of mitochondrial dysfunction and dysregulated ER stress signaling in human keloid formation and the potential of TUDCA in the treatment of keloids.
Collapse
Affiliation(s)
- Sunje Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.K.); (C.S.)
| | - Seong Eun Lee
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.E.L.); (S.Y.)
| | - Shinae Yi
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.E.L.); (S.Y.)
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea; (S.J.); (Y.-S.Y.)
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Yoon-Sun Yi
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea; (S.J.); (Y.-S.Y.)
| | - Harsha Nagar
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (H.N.); (C.-S.K.)
| | - Cuk-Seong Kim
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (H.N.); (C.-S.K.)
| | - Chungmin Shin
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.K.); (C.S.)
| | - Min-Kyung Yeo
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Yea Eun Kang
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.E.L.); (S.Y.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (Y.E.K.); (S.-H.O.); Tel.: +82-42-280-7148 (Y.E.K.); +82-42-280-7387 (S.-H.O.); Fax: +82-42-280-7168 (Y.E.K.); +82-42-280-7384 (S.-H.O.)
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.K.); (C.S.)
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (Y.E.K.); (S.-H.O.); Tel.: +82-42-280-7148 (Y.E.K.); +82-42-280-7387 (S.-H.O.); Fax: +82-42-280-7168 (Y.E.K.); +82-42-280-7384 (S.-H.O.)
| |
Collapse
|
15
|
An excellent antibacterial and high self-adhesive hydrogel can promote wound fully healing driven by its shrinkage under NIR. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112395. [PMID: 34579914 DOI: 10.1016/j.msec.2021.112395] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
The lacks of antibacterial properties, low adhesion and delayed wound healing of the hydrogel wound dressings limit their applications in wound treatment. To resolve these, a novel hydrogel composed of polydopamine (PDA), Ag and graphene oxide (GO) is fabricated for wound dressing via the chemical crosslinking of N-isopropylacrylamide (NIPAM) and N,N'-methylene bisacrylamide (BIS). The prepared hydrogel containing PDA@Ag5GO1 (Ag5GO1 denotes the mass ratio between Ag and GO is 5:1) exhibits effective antibacterial properties and high inhibition rate against E. coli and S. aureus. It shows high adhesion ability to various substrate materials, implying a simpler method to the wound obtained by self-fixing rather than suturing. More important, it can produce strong contractility under the irradiation of near-infrared light (NIR), exerting a centripetal force that helps accelerate wound healing. Thus, the hydrogel containing a high concentration PDA@Ag5GO1 irradiated by NIR can completely repair the wound defect (1.0 × 1.0 cm2) within 15 days, the wound healing rate can reach 100%, which was far higher than other groups. Taken together, the new hydrogel with excellent antibacterial, high adhesion and strong contractility will subvert the traditional treatment methods on wound defect, extending its new application range in wound dressing.
Collapse
|
16
|
Zullo A, Mancini FP, Schleip R, Wearing S, Klingler W. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity. Wound Repair Regen 2021; 29:650-666. [PMID: 34077595 DOI: 10.1111/wrr.12943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Fibrotic diseases are still a serious concern for public health, due to their high prevalence, complex etiology and lack of successful treatments. Fibrosis consists of excessive accumulation of extracellular matrix components. As a result, the structure and function of tissues are impaired, thus potentially leading to organ failure and death in several chronic diseases. Myofibroblasts represent the principal cellular mediators of fibrosis, due to their extracellular matrix producing activity, and originate from different types of precursor cells, such as mesenchymal cells, epithelial cells and fibroblasts. Profibrotic activation of myofibroblasts can be triggered by a variety of mechanisms, including the transforming growth factor-β signalling pathway, which is a major factor driving fibrosis. Interestingly, preclinical and clinical studies showed that fibrotic degeneration can stop and even reverse by using specific antifibrotic treatments. Increasing scientific evidence is being accumulated about the role of sirtuins in modulating the molecular pathways responsible for the onset and development of fibrotic diseases. Sirtuins are NAD+ -dependent protein deacetylases that play a crucial role in several molecular pathways within the cells, many of which at the crossroad between health and disease. In this context, we will report the current knowledge supporting the role of sirtuins in the balance between healthy and diseased myofibroblast activity. In particular, we will address the signalling pathways and the molecular targets that trigger the differentiation and profibrotic activation of myofibroblasts and can be modulated by sirtuins.
Collapse
Affiliation(s)
- Alberto Zullo
- Department of Sciences and Technologies, Benevento, Italy.,CEINGE Advanced Biotechnologies s.c.a.r.l. Naples, Italy
| | | | - Robert Schleip
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Fascia Research Group, Department of Neurosurgery, Ulm University, Germany.,Diploma University of Applied Sciences, Bad Sooden-Allendorf, Germany
| | - Scott Wearing
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Werner Klingler
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Fascia Research Group, Department of Neurosurgery, Ulm University, Germany.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Anaesthesiology, SRH Hospital Sigmaringen, Germany
| |
Collapse
|
17
|
Hecker A, Schellnegger M, Hofmann E, Luze H, Nischwitz SP, Kamolz LP, Kotzbeck P. The impact of resveratrol on skin wound healing, scarring, and aging. Int Wound J 2021; 19:9-28. [PMID: 33949795 PMCID: PMC8684849 DOI: 10.1111/iwj.13601] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Resveratrol is a well‐known antioxidant that harbours many health beneficial properties. Multiple studies associated the antioxidant, anti‐inflammatory, and cell protective effects of resveratrol. These diverse effects of resveratrol are also potentially involved in cutaneous wound healing, scarring, and (photo‐)aging of the skin. Hence, this review highlighted the most relevant studies involving resveratrol in wound healing, scarring, and photo‐aging of the skin. A systematic review was performed and the database PubMed was searched for suitable publications. Only original articles in English that investigated the effects of resveratrol in wound healing, scarring, and (photo‐)aging of the skin were analysed. The literature search yielded a total of 826 studies, but only 41 studies met the inclusion criteria. The included studies showed promising results that resveratrol might be a feasible treatment approach to support wound healing, counteract excessive scarring, and even prevent photo‐aging of the skin. Resveratrol represents an interesting and promising novel therapy regime but to confirm resveratrol‐associated effects, more evidence based in vitro and in vivo studies are needed.
Collapse
Affiliation(s)
- Andrzej Hecker
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Marlies Schellnegger
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Elisabeth Hofmann
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Hanna Luze
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Sebastian Philipp Nischwitz
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Lars-Peter Kamolz
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Petra Kotzbeck
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
18
|
Lin PT, Xue XD, Zhao ZD, Lu JY, Xie PL. Necrostatin-1, RIP1/RIP3 inhibitor, relieves transforming growth factor β-induced wound-healing process in formation of hypertrophic scars. J Cosmet Dermatol 2020; 20:2612-2618. [PMID: 33237588 DOI: 10.1111/jocd.13860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Hypertrophic scars (HS) are common pathologic processes emerged during wound-healing process. The receptor-interacting protein kinase (RIP) might participate in keloid formation. AIMS This study aimed to investigate Necrostatin-1 (Nec-1), a RIP1/RIP3 inhibitor, in the formation of hypertrophic scar. METHODS Human hypertrophic scar fibroblasts (HSF) were extracted from patients with hypertrophic scar. Transforming growth factor-β1 (TGF-β1) was performed to induce wound-healing process including cell proliferation (CCK-8, Flow cytometry, and Western blot), migration (Transwell assay, Western blot), collagen production (Western blot), and extracellular matrix dysfunction (Western blotting and immunofluorescence). RESULTS Our results reported that Nec-1 inhibited TGF-β1-induced cell proliferation and promoted G0/G1 phase arrest in HSF. In addition, Nec-1 attenuated TGF-β1-induced cell migration and inhibited the expression of MMP2 and MMP9 in TGF-β1-induced HSF. Besides, Nec-1 also reduced TGF-β1-induced collagen production and α-smooth muscle actin expression in HSF. CONCLUSIONS The present data in this study showed the potential role of Nec-1 as a novel treatment for HS.
Collapse
Affiliation(s)
- Pei-Ting Lin
- Department of Plastic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Xiao-Dong Xue
- Department of Plastic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Zhong-Dong Zhao
- Department of Plastic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Jun-Yang Lu
- Department of Plastic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Pei-Lin Xie
- Department of Plastic Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
19
|
Lewis CJ, Stevenson A, Fear MW, Wood FM. A review of epigenetic regulation in wound healing: Implications for the future of wound care. Wound Repair Regen 2020; 28:710-718. [DOI: 10.1111/wrr.12838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/25/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Christopher J. Lewis
- State Adult Burn Service of Western Australia Fiona Stanley Hospital Perth Western Australia Australia
| | - Andrew Stevenson
- State Adult Burn Service of Western Australia Fiona Stanley Hospital Perth Western Australia Australia
| | - Mark W. Fear
- State Adult Burn Service of Western Australia Fiona Stanley Hospital Perth Western Australia Australia
| | - Fiona M. Wood
- State Adult Burn Service of Western Australia Fiona Stanley Hospital Perth Western Australia Australia
| |
Collapse
|
20
|
Pang K, Li B, Tang Z, Yang W, Hao L, Shi Z, Zhang J, Cai L, Li R, Liu Y, Lv Q, Ding J, Han C. Resveratrol inhibits hypertrophic scars formation by activating autophagy via the miR-4654/Rheb axis. Mol Med Rep 2020; 22:3440-3452. [PMID: 32945452 PMCID: PMC7453609 DOI: 10.3892/mmr.2020.11407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Hypertrophic scars (HSs) are a type of pathological scar which are induced by surgery, burn injuries or trauma during the healing process. Due to the high recurrence rates and strong invasive properties, HSs have become a major clinical issue. Resveratrol has been identified as a potential agent to suppress scar formation; however, the underlying mechanism of action remains unclear. Therefore, the present study aimed to investigate the effect of resveratrol on HS-derived fibroblasts (HSFBs) in vitro. MTT assay was performed to evaluate cell viability following the resveratrol treatment. Western blot and RT-qPCR analysis was used to identify the expression levels and the relationship among autophagic markers, miR-4654 and resveratrol treatment. Finally, GFP-LC3 stable HSFBs cells were generated to further assess the effect of resveratrol. The results revealed that resveratrol significantly induced cell death in a dose-dependent manner and induced autophagy by downregulating the expression levels of Rheb in HSFBs. Notably, microRNA-4654 (miR-4654) was significantly decreased in the HSFBs and re-upregulated by resveratrol treatment dose-dependently. Through the bioinformatic analysis and luciferase assay, miR-4654 was identified to directly target Rheb. Transfection studies showed that miR-4654 negative correlated with Rheb expression, suggesting that the autophagic process may be altered by the miR-4654/Rheb axis under the control of resveratrol. In conclusion, the results of the present study suggested that resveratrol may promote autophagy by upregulating miR-4654, which in turn may suppress Rheb expression via directly binding to the 3′-untranslated region of Rheb. These findings provided a novel insight into the development of potential therapeutic targets for HSs.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Bibo Li
- Department of Urology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Zhiming Tang
- Department of Dermatology, Xuzhou Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Wen Yang
- Department of Renal Disease, Shandong First Medical University, Tai'an, Shandong 271016, P.R. China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Jianjun Zhang
- Department of Urology, Suqian People's Hospital of Nanjing Drum-Tower Hospital Group, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Longjun Cai
- Department of Urology, Suqian People's Hospital of Nanjing Drum-Tower Hospital Group, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Rui Li
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Ying Liu
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Qian Lv
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Jicun Ding
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
21
|
Yan L, Liu G, Zhao B, Pang B, Wu W, Ai C, Zhao X, Wang X, Jiang C, Shao D, Liu Q, Li M, Wang L, Shi J. Novel Biomedical Functions of Surfactin A from Bacillus subtilis in Wound Healing Promotion and Scar Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6987-6997. [PMID: 32412748 DOI: 10.1021/acs.jafc.0c01658] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surfactin produced by Bacillus subtilis is a powerful biosurfactant in food, cosmetics, and pesticide industries. However, its suitability in wound healing applications is uncertain. In this article, we determined the effects of surfactin A from B. subtilis on wound healing, angiogenesis, cell migration, inflammatory response, and scar formation. The results indicated that 80.65 ± 2.03% of surfactin A-treated wounds were closed, whereas 44.30 ± 4.26% of the vehicle-treated wound areas remained open on day 7 (P < 0.05). In mechanisms, it upregulated the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), accelerated keratinocyte migration through mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways, and regulated the secretion of proinflammatory cytokines and macrophage phenotypic switch. More attractive, surfactin A showed a seductive capability to inhibit scar tissue formation by affecting the expression of α-smooth muscle actin (α-SMA) and transforming growth factor (TGF-β). Overall, the study revealed a new function and potential of surfactin A as an affordable and efficient wound healing drug.
Collapse
Affiliation(s)
- Lu Yan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Bin Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Wanqin Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Chongyang Ai
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Xixi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Qianlong Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Meixuan Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Lei Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| |
Collapse
|
22
|
Wen S, Zhang J, Yang B, Elias PM, Man MQ. Role of Resveratrol in Regulating Cutaneous Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2416837. [PMID: 32382280 PMCID: PMC7180429 DOI: 10.1155/2020/2416837] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023]
Abstract
Protective role of the skin is against external insults and maintenance of electrolyte homeostasis of the body. Cutaneous dysfunction can account for the development of both cutaneous and systemic disorders. Thus, improvements in cutaneous functions can benefit a number of extracutaneous and cutaneous functions. Resveratrol, a natural ingredient, displays multiple benefits for various systems/organs, including the skin. The benefits of resveratrol for cutaneous functions include stimulation of keratinocyte differentiation and antimicrobial peptide expression, inhibition of keratinocyte proliferation and cutaneous inflammation, UV protection, anticancer, antiaging, and inhibition of melanogenesis. The mechanisms of action of resveratrol include activation of sirtuin 1 and nuclear factor erythroid 2-related factor 2, and inhibition of mitogen-activated protein kinase signaling. Evidence suggests that topical resveratrol could be a valuable alternative not only for daily skin care, but also for the prevention and treatment of various cutaneous disorders. This review summarizes the benefits of resveratrol for cutaneous functions.
Collapse
Affiliation(s)
- Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiechen Zhang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Peter M. Elias
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
23
|
Zhao CC, Zhu L, Wu Z, Yang R, Xu N, Liang L. Resveratrol-loaded peptide-hydrogels inhibit scar formation in wound healing through suppressing inflammation. Regen Biomater 2020; 7:99-107. [PMID: 32440361 PMCID: PMC7233605 DOI: 10.1093/rb/rbz041] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Scar formation seriously affects the repair of damaged skin especially in adults and the excessive inflammation has been considered as the reason. The self-assembled peptide-hydrogels are ideal biomaterials for skin wound healing due to their similar nanostructure to natural extracellular matrix, hydration environment and serving as drug delivery systems. In our study, resveratrol, a polyphenol compound with anti-inflammatory effect, is loaded into peptide-hydrogel (Fmoc-FFGGRGD) to form a wound dressing (Pep/RES). Resveratrol is slowly released from the hydrogel in situ, and the release amount is controlled by the loading amount. The in vitro cell experiments demonstrate that the Pep/RES has no cytotoxicity and can inhibit the production of pro-inflammatory cytokines of macrophages. The Pep/RES hydrogels are used as wound dressings in rat skin damage model. The results suggest that the Pep/RES dressing can accelerate wound healing rate, exhibit well-organized collagen deposition, reduce inflammation and eventually prevent scar formation. The Pep/RES hydrogels supply a potential product to develop new skin wound dressings for the therapy of skin damage.
Collapse
Affiliation(s)
- Chen-Chen Zhao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lian Zhu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zheng Wu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Rui Yang
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Na Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Liang Liang
- The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang 443003 China
| |
Collapse
|
24
|
Lingzhi Z, Meirong L, Xiaobing F. Biological approaches for hypertrophic scars. Int Wound J 2019; 17:405-418. [PMID: 31860941 DOI: 10.1111/iwj.13286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Scar formation is usually the pathological consequence of skin trauma. And hypertrophic scars (HSs) frequently occur in people after being injured deeply. HSs are unusually considered as the result of tissue contraction and excessive extracellular matrix component deposition. Myofibroblasts, as the effector cells, mainly differentiated from fibroblasts, play the crucial role in the pathophysiology of HSs. A number of growth factors, inflammatory cytokines involved in the process of HS occurrence. Currently, with in-depth exploration and clinical research of HSs, various creative and effective treatments budded. In here, we summarize the progress in the molecular mechanism of HSs, and review the available biotherapeutic methods for their pathophysiological characteristics. Additionally, we further prospected that the comprehensive therapy may be more suitable for HS treatment.
Collapse
Affiliation(s)
- Zhong Lingzhi
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Li Meirong
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China.,Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital Hainan Branch, Sanya, China
| | - Fu Xiaobing
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Yang F, Chen E, Yang Y, Han F, Han S, Wu G, Zhang M, Zhang J, Han J, Su L, Hu D. The Akt/FoxO/p27 Kip1 axis contributes to the anti-proliferation of pentoxifylline in hypertrophic scars. J Cell Mol Med 2019; 23:6164-6172. [PMID: 31270945 PMCID: PMC6714140 DOI: 10.1111/jcmm.14498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic scars (HS) are characterized by the excessive production and deposition of extracellular matrix (ECM) proteins. Pentoxifylline (PTX), a xanthine derived antioxidant, inhibits the proliferation, inflammation and ECM accumulation of HS. In this study, we aimed to explore the effect of PTX on HS and further clarify the mechanism of PTX‐induced anti‐proliferation. We found that PTX could significantly attenuate proliferation of HS fibroblasts and fibrosis in an animal HS model. PTX inhibited the proliferation of HSFs in a dose‐ and time‐dependent manner, and this growth inhibition was mainly mediated by cell cycle arrest. Transcriptome sequencing showed that PTX affects HS formation through the PI3K/Akt/FoxO1 signalling pathway to activate p27Kip1. PTX down‐regulated p‐Akt and up‐regulated p‐FoxO1 in TGF‐β1 stimulated fibroblasts at the protein level, and simultaneously, the expression of p27Kip1 was activated. In a mouse model of HS, PTX treatment resulted in the ordering of collagen fibres. The results revealed that PTX regulates TGFβ1‐induced fibroblast activation and inhibits excessive scar formation. Therefore, PTX is a promising agent for the treatment of HS formation.
Collapse
Affiliation(s)
- Fangfang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Min Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
26
|
Christovam AC, Theodoro V, Mendonça FAS, Esquisatto MAM, dos Santos GMT, do Amaral MEC. Activators of SIRT1 in wound repair: an animal model study. Arch Dermatol Res 2019; 311:193-201. [DOI: 10.1007/s00403-019-01901-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
|
27
|
Lu YY, Lu CC, Yu WW, Zhang L, Wang QR, Zhang CL, Wu CH. Keloid risk in patients with atopic dermatitis: a nationwide retrospective cohort study in Taiwan. BMJ Open 2018; 8:e022865. [PMID: 30021755 PMCID: PMC6059319 DOI: 10.1136/bmjopen-2018-022865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The pathogenesis of keloid is largely unknown. Because keloid and atopic dermatitis have overlapping pathophysiological mechanisms, we aimed to evaluate keloid risk in patients with atopic dermatitis. STUDY DESIGN Population-based retrospective cohort study. SETTING The Taiwan National Health Insurance Research Database was used to analyse data for people who had been diagnosed with atopic dermatitis. PARTICIPANTS We identified 8371 patients with newly diagnosed atopic dermatitis during 1996-2010. An additional 33 484 controls without atopic dermatitis were randomly identified and frequency matched at a one-to-four ratio. PRIMARY AND SECONDARY OUTCOME MEASURE The association between atopic dermatitis and keloid risk was estimated using Cox proportional hazard regression models. RESULTS After adjustment for covariates, the atopic dermatitis patients have a 3.19-fold greater risk of developing keloid compared with the non-atopic dermatitis group (3.19vs1.07 per 1000 person-years, respectively). During the study period, 163 patients with atopic dermatitis and 532 patients without atopic dermatitis developed keloid. Notably, keloid risk increased with severity of atopic dermatitis, particularly in patients with moderate to severe atopic dermatitis. CONCLUSIONS Our results indicate that patients with atopic dermatitis had a higher than normal risk of developing keloid and suggest that atopic dermatitis may be an independent risk factor for keloid.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Cosmetic Applications and Management Department, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Ching Lu
- Department of Orthopedics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Wen Yu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Li Zhang
- Department of Neurosurgery, Zhangjiagang First People’s Hospital, Zhangjiagang, China
| | - Qing-Rui Wang
- Department of Neurosurgery, Qinghe County Central Hospital, Qinghe, China
| | - Cong-Liang Zhang
- Department of Cardiology, Hebei Quyang Renji Hospital, Quyang, China
| | - Chieh-Hsin Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Premature activation of aging-associated molecular mechanisms is emerging as an important contributor to many diseases, including scleroderma. Among central regulators of the aging process are a group of histone deacetylases called sirtuins (SIRTs). Recent findings implicate these molecules as pathophysiological players in scleroderma skin and lung fibrosis. The goal of this article is to review recent studies on the involvement of SIRTs in scleroderma from the perspective of aging-related molecular mechanisms. RECENT FINDINGS Despite a degree of controversy in this rapidly developing field, the majority of data suggest that SIRT levels are decreased in tissues from patients with scleroderma compared to healthy controls as well as in animal models of scleroderma. Molecular studies reveal several mechanisms through which declining SIRT levels contribute to fibrosis, with the most attention given to modulation of the TGF-β signaling pathway. Activation of SIRTs in cell culture and in animal models elicits antifibrotic effects. Declining SIRT levels and activity are emerging as pathophysiological contributors to scleroderma. Restoration of SIRTs may be therapeutic in patients with scleroderma.
Collapse
|
29
|
Qiang L, Sample A, Liu H, Wu X, He YY. Epidermal SIRT1 regulates inflammation, cell migration, and wound healing. Sci Rep 2017; 7:14110. [PMID: 29074993 PMCID: PMC5658409 DOI: 10.1038/s41598-017-14371-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/09/2017] [Indexed: 01/12/2023] Open
Abstract
Sirtuins (SIRT1-7) are NAD-dependent proteins with the enzymatic activity of deacetylases and ADP ribosyltransferases. SIRT1 is the proto member of the proteins in the mammalian sirtuin family and plays multiple roles in aging and disease. Using mice with epidermis-specific SIRT1 deletion, we show that SIRT1 is required for efficient wound healing. SIRT1 deficiency in the epidermis inhibited the regeneration of both the epidermis and the dermal stroma. SIRT1 loss altered the production of many cytokines, inhibited the recruitment of macrophages, neutrophils, and mast cells, the recruitment and activation of fibroblasts, and angiogenesis in the granulation tissue. In keratinocytes, SIRT1 knockdown inhibited EMT, cell migration, and TGF-β signaling. For the first time, using skin-specific mouse model, we demonstrate that epidermal SIRT1 plays a crucial role in wound repair. These findings are novel in understanding how wound healing is regulated. Our findings provide in vivo and in vitro evidence that SIRT1 in the epidermis regulates cell migration, redox response, inflammation, epidermis re-epithelialization, granulation formation, and proper wound healing in mice.
Collapse
Affiliation(s)
- Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA. .,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ashley Sample
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.,Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Han Liu
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoyang Wu
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.,Ben May Department of Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA. .,Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
30
|
Garcia-Peterson LM, Wilking-Busch MJ, Ndiaye MA, Philippe CGA, Setaluri V, Ahmad N. Sirtuins in Skin and Skin Cancers. Skin Pharmacol Physiol 2017; 30:216-224. [PMID: 28704830 PMCID: PMC5568696 DOI: 10.1159/000477417] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
The sirtuins are a family of proteins that comprise class III of the histone deacetylases. These NAD+-dependent proteins have been found to be intricately involved in a variety of important and skin-relevant cellular functions and processes, including aging, UV damage response, oxidative stress, and wound repair. In addition, recent research is unraveling the role of sirtuins in a variety of skin diseases, including melanoma and nonmelanoma skin cancers. In this review, we provide a discussion on the potential roles and implications of different sirtuins in skin-specific cellular processes, which may have relevance to skin health and skin diseases. Based on the available literature, the sirtuins appear to be important targets in the management of a variety of skin diseases from cosmetic (e.g., skin aging) to fatal conditions (e.g., melanoma).
Collapse
Affiliation(s)
| | | | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Mokos ZB, Jović A, Grgurević L, Dumić-Čule I, Kostović K, Čeović R, Marinović B. Current Therapeutic Approach to Hypertrophic Scars. Front Med (Lausanne) 2017; 4:83. [PMID: 28676850 PMCID: PMC5476971 DOI: 10.3389/fmed.2017.00083] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023] Open
Abstract
Abnormal scarring and its accompanying esthetic, functional, and psychological sequelae still pose significant challe nges. To date, there is no satisfactory prevention or treatment option for hypertrophic scars (HSs), which is mostly due to not completely comprehending the mechanisms underlying their formation. That is why the apprehension of regular and controlled physiological processes of scar formation is of utmost importance when facing hypertrophic scarring, its pathophysiology, prevention, and therapeutic approach. When treating HSs and choosing the best treatment and prevention modality, physicians can choose from a plethora of therapeutic options and many commercially available products, among which currently there is no efficient option that can successfully overcome impaired skin healing. This article reviews current therapeutic approach and emerging therapeutic strategies for the management of HSs, which should be individualized, based on an evaluation of the scar itself, patients’ expectations, and practical, evidence-based guidelines. Clinicians are encouraged to combine various prevention and treatment modalities where combination therapy that includes steroid injections, 5-fluorouracil, and pulsed-dye laser seems to be the most effective. On the other hand, the current therapeutic options are usually empirical and their results are unreliable and unpredictable. Therefore, there is an unmet need for an effective, targeted therapy and prevention, which would be based on an action or a modulation of a particular factor with clarified mechanism of action that has a beneficial effect on wound healing. As the extracellular matrix has a crucial role in cellular and extracellular events that lead to pathological scarring, targeting its components mostly by regulating bone morphogenetic proteins may throw up new therapeutic approach for reduction or prevention of HSs with functionally and cosmetically acceptable outcome.
Collapse
Affiliation(s)
- Zrinka Bukvić Mokos
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anamaria Jović
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Lovorka Grgurević
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivo Dumić-Čule
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Krešimir Kostović
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Romana Čeović
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Branka Marinović
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
32
|
Li Y, Zhang W, Gao J, Liu J, Wang H, Li J, Yang X, He T, Guan H, Zheng Z, Han S, Dong M, Han J, Shi J, Hu D. Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway. Stem Cell Res Ther 2016; 7:102. [PMID: 27484727 PMCID: PMC4970202 DOI: 10.1186/s13287-016-0356-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/06/2016] [Accepted: 06/29/2016] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Hypertrophic scars (HS) generally occur after injury to the deep layers of the dermis, resulting in functional deficiency for patients. Growing evidence has been identified that the supernatant of adipose tissue-derived stem cells (ADSCs) significantly ameliorates fibrosis of different tissues, but limited attention has been paid to its efficacy on attenuating skin fibrosis. In this study, we explored the effect and possible mechanism of ADSC-conditioned medium (ADSC-CM) on HS. METHOD Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting were used to detect the expression of collagen I (Col1), collagen III (Col3), and α-smooth muscle actin (α-SMA) after fibroblasts and cultured HS tissues were stimulated with ADSC-CM and p38 inhibitor/activator. Immunofluorescence staining was performed to test the expression of α-SMA. Masson's trichrome staining, hematoxylin and eosin (H&E) staining, and immunohistochemistry staining were carried out to assess the histological and pathological change of collagen in the BALB/c mouse excisional model. All data were analyzed by using SPSS17.0 software. Statistical analysis was performed by Student's t tests. RESULTS The in vitro and ex vivo study revealed ADSC-CM decreased the expression of Col1, Col3, and α-SMA. Together, thinner and orderly arranged collagen was manifested in HS tissues cultured with ADSC-CM. Dramatically, the assessed morphology showed an accelerated healing rate, less collagen deposition, and col1- and col3-positive cells in the ADSC-CM treated group. Importantly, the protein level of p-p38 was downregulated in a concentration-dependent manner in HS-derived fibroblasts with ADSC-CM treatment, which further decreased the expression of p-p38 after the application of its inhibitor, SB203580. SB203580 led to an obvious decline in the expression of Col1, Col3, and α-SMA in fibroblasts and cultured HS tissues and presented more ordered arrangement and thinner collagen fibers in BALB/c mice. Lastly, anisomycin, an agonist of p38, upregulated the expression of fibrotic proteins and revealed more disordered structure and denser collagen fibers. CONCLUSION This study demonstrated that ADSC-CM could decrease collagen deposition and scar formation in in vitro, ex vivo and in vivo experiments. The regulation of the p38/MAPK signaling pathway played an important role in the process. The application of ADSC-CM may provide a novel therapeutic strategy for HS treatment, and the anti-scarring effect can be achieved by inhibition of the p38/MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jianxin Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jun Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Maolong Dong
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China.
| |
Collapse
|
33
|
Bai XZ, Liu JQ, Yang LL, Fan L, He T, Su LL, Shi JH, Tang CW, Zheng Z, Hu DH. Identification of sirtuin 1 as a promising therapeutic target for hypertrophic scars. Br J Pharmacol 2016; 173:1589-601. [PMID: 26891034 DOI: 10.1111/bph.13460] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/31/2016] [Accepted: 02/14/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Sirtuin1 (SIRT1), the founding member of mammalian class III histone deacetylases, is reported to be a drug target involved in fibrotic diseases. However, whether it is an effective drug target in hypertrophic scar treatment is still not known. EXPERIMENTAL APPROACH In the present study, we observed that SIRT1 localized to both the epidermis and the dermis of skin tissues by immunohistochemistry. After knock-down of SIRT1 by shRNA or up-regulating SIRT1 by resveratrol, the expression of α-SMA, Col1 and Col3 in fibroblasts were detected by western blots. A mouse excision wound healing model was used to observe the changes in collagen fibre associated with the different expression levels of SIRT1. KEY RESULTS SIRT1 expression was inhibited in hypertrophic scar tissue. The down-regulation of SIRT1 resulted in an increased expression of α-SMA, Col1 and Col3 in hypertrophic scar-derived fibroblasts. In contrast, the up-regulation of SIRT1 not only inhibited the expression of α-SMA, Col1 and Col3 in hypertrophic scar-derived fibroblasts but also blocked the activation of TGFβ1-induced normal skin-derived fibroblasts. In the mouse model of wound healing, the deletion of SIRT1 resulted in denser collagen fibres and a more disordered structure, whereas resveratrol treatment led to a more organized and thinner collagen fibre, which was similar to that observed during normal wound healing. CONCLUSIONS AND IMPLICATIONS The results revealed that SIRT1 negatively regulates TGFβ1-induced fibroblast activation and inhibits excessive scar formation and is, therefore, a promising drug target for hypertrophic scar formation.
Collapse
Affiliation(s)
- Xiao-Zhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jia-Qi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Long-Long Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lei Fan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin-Lin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ji-Hong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chao-Wu Tang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Da-Hai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|