1
|
Dai Y, Bao L, Huang J, Zhang M, Yu J, Zhang Y, Li F, Yu B, Gong S, Kou J. Endothelial NMMHC IIA dissociation from PAR1 activates the CREB3/ARF4 signaling in thrombin-mediated intracerebral hemorrhage. J Adv Res 2024:S2090-1232(24)00500-9. [PMID: 39521432 DOI: 10.1016/j.jare.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION There is an urgent need for cerebroprotective interventions to improve the suboptimal outcomes with intracerebral hemorrhage (ICH). Despite the important role of nonmuscle myosin heavy chain IIA (NMMHC IIA) in the blood-brain barrier (BBB), its function in ICH remains unclear. OBJECTIVES The objective of this study is to explore how NMMHC IIA functions in ICH and to evaluate the effectiveness of targeting NMMHC IIA as a treatment for ICH. METHODS We firstly examined the protein expression of NMMHC IIA in clinical patients and animal models with ICH. The function of NNMMHC IIA was then corroborated by using overexpress or knockdown NMMHC IIA specifically in ECs mice and pBMECs. In addition, we explored protein interacts with NMMHC IIA and signaling pathways after ICH by LC-MS/MS and transcriptomics analysis with an emphasis on the function of PAR1 and the CREB3/ARF4 signaling pathway, and validated them in three kind of animal models. To support the clinical translation of our results, we targeted NMMHC IIA to bicalutamide selected from a library of marketed drugs and examined to validate its ameliorative effect on ICH. RESULTS We observed an upregulation of endothelial NMMHC IIA in the brain following the onset of ICH in both patients and mice, while inhibited NMMHC ⅡA improved ICH induced by thrombin, warfarin or tissue plasminogen activator (tPA) after ischemic stroke. Mechanistically, the head domain of NMMHC IIA interacted with protease-activated receptor 1 (PAR1) at the 380-430 aa region and subsequently dissociated and activated the CREB3/ARF4 signaling pathway. We found that bicalutamide and blebbistatin could bind to NMMHC IIA and effectively protect mice from thrombin-mediated ICH. CONCLUSION The findings indicated that NMMHC IIA dissociated from PAR1 and activated CREB3/ARF4 pathway, which aggravated BBB damage induced by thrombin. This suggested that NMMHC IIA was a novel potential therapeutic target for BBB-related diseases.
Collapse
Affiliation(s)
- Yujie Dai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Liangying Bao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Juan Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Miling Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Junhe Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Fang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Shuaishuai Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| |
Collapse
|
2
|
Yue Z, Zhang Y, Zhang W, Zheng N, Wen J, Ren L, Rong X, Bai L, Wang R, Zhao S, Liu E, Wang W. Kaempferol alleviates myocardial ischemia injury by reducing oxidative stress via the HDAC3-mediated Nrf2 signaling pathway. J Adv Res 2024:S2090-1232(24)00491-0. [PMID: 39505146 DOI: 10.1016/j.jare.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION Kaempferol (KAE) is a flavonoid found in various plants. Recent studies showed that high dietary intake of KAE was associated with a lower risk of myocardial infarction; however, the cardioprotective mechanism of KAE remains unknown. OBJECTIVES To determine the effect of KAE on cardiac injury in isoproterenol (ISO)-induced rats and cobalt chloride (CoCl2)-treated cardiomyocytes, and the underlying mechanisms. METHODS Male rats were pretreated with different doses of KAE for 14 days, and then injected with ISO to induce myocardial ischemia injury. We also established a model of myocardial cell injury using rat H9c2 cardiomyocytes stimulated with CoCl2. RESULTS We found that KAE pretreatment significantly alleviated myocardial injury and improved cardiac function in ISO-injected rats. In addition, KAE reduced oxidative stress in rats with myocardial ischemia by decreasing malondialdehyde concentration and increasing superoxide dismutase activity, and protection of the myocardial mitochondrial structure. KAE also attenuated CoCl2-induced injuryof H9c2 cardiomyocytes via suppression ofoxidative stress. With regard to the mechanism, we found that KAE down-regulated HDAC3 expression and up-regulated Nrf2 expression in ISO-induced rats and CoCl2-stimulated cardiomyocytes. Incubation of cardiomyocytes with HDAC3-selective inhibitor RGFP966 augmented the protective effect of KAE and reduced oxidative stress. By contrast, HDAC3 overexpression by adenovirus attenuated the effect of KAE on oxidative stress compared with KAE treatment group. HDAC3 also regulated Nrf2 expression in the cardiomyocytes with RGFP966 or an adenovirus overexpressing HDAC3; but Nrf2 inhibition reduced the effect of KAE on ROS generation in CoCl2-induced cardiomyocytes. Immunoprecipitation assay showed that HDAC3 interacted with Nrf2 in cardiomyocytes. Further studies found that KAE increased the acetylation level of Nrf2, while HDAC3 overexpression decreased the acetylation of Nrf2 compared with KAE treatment group. CONCLUSION Our data show that KAE ameliorates cardiac injury by reducing oxidative stress via the HDAC3-mediated Nrf2 signaling pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Zejun Yue
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yirong Zhang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Zhang
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Nanbo Zheng
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jiazeng Wen
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lingxuan Ren
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - XiaoYu Rong
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Bai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Rong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihai Zhao
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Enqi Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Weirong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
3
|
Zhu S, Liu Y, Bu W, Liu Y, Chen W, Liu F. Potential mechanistic linkages of Naoluotong granules on the remission of atherosclerosis by multidimensional analysis. Heliyon 2024; 10:e37957. [PMID: 39386883 PMCID: PMC11462233 DOI: 10.1016/j.heliyon.2024.e37957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Background Naoluotong granules (NLTGs) are a medicinal formula derived from traditional Chinese medicine, which have been demonstrated to be effective in slowing down the progression of atherosclerosis (AS) through clinical practice and animal experiments. By means of multidimensional analysis, the relevant mechanism of NLTGs in delaying the progression of atherosclerosis was studied, which is conducive to its widespread adoption. Materials and methods In this study, data from network pharmacology and GEO database were comprehensively analysed to identify differentially expressed core cluster genes (DECCGs). Subsequently, multilevel analyses were applied to investigate the potential mechanistic linkages and causal associations of NLTGs in delaying atherosclerosis. Results Eight DECCGs positively correlated with atherosclerosis risk were identified, with Polygonatum sibiricum (Huangjing), Hirudo nipponica (Shuizhi), and Ligusticum chuanxiong (Chuanxiong) as the core drug pairs. Senkyunone, Wallichilide, and Aurantiamide were the core components. The prediction model using principal components (PC) demonstrated high accuracy and clinical relevance. The mechanisms were strongly associated with the PI3K-Akt signaling pathway, as well as the polarization of Macrophages M0 and the balanced regulation of M1/M2 types. Ultimately, elevated expression of CTSB was causally associated with increased risk of cerebral atherosclerosis (OR = 1.313; 95 % CI = 1.024-1.685; P = 0.032). Conclusions Employing multidimensional analysis, we identified core pairs, components, and targets of NLTGs. Our multilevel analysis of DECCGs enabled the construction of a clinical prediction model, highlighting CTSB as a risk target for AS. Additionally, we unveiled NLTGs' mechanisms closely tied to the polarization and regulation of macrophage, facilitating subsequent research and application.
Collapse
Affiliation(s)
- Shidian Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanlin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Wenyu Bu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanzi Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wandi Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fuming Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| |
Collapse
|
4
|
Kakarla R, Vinjavarapu LA, Krishnamurthy S. Diet and Nutraceuticals for treatment and prevention of primary and secondary stroke: Emphasis on nutritional antiplatelet and antithrombotic agents. Neurochem Int 2024; 179:105823. [PMID: 39084351 DOI: 10.1016/j.neuint.2024.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Ischemic stroke is a devastating disease that causes morbidity and mortality. Malnutrition following ischemic stroke is common in stroke patients. During the rehabilitation, the death rates of stroke patients are significantly increased due to malnutrition. Nutritional supplements such as protein, vitamins, fish, fish oils, moderate wine or alcohol consumption, nuts, minerals, herbal products, food colorants, marine products, fiber, probiotics and Mediterranean diets have improved neurological functions in stroke patients as well as their quality of life. Platelets and their mediators contribute to the development of clots leading to stroke. Ischemic stroke patients are treated with thrombolytics, antiplatelets, and antithrombotic agents. Several systematic reviews, meta-analyses, and clinical trials recommended that consumption of these nutrients and diets mitigated the vascular, peripheral, and central complications associated with ischemic stroke (Fig. 2). Particularly, these nutraceuticals mitigated the platelet adhesion, activation, and aggregation that intended to reduce the risks of primary and secondary stroke. Although these nutraceuticals mitigate platelet dysfunction, there is a greater risk of bleeding if consumed excessively. Moreover, malnutrition must be evaluated and adequate amounts of nutrients must be provided to stroke patients during intensive care units and rehabilitation periods. In this review, we have summarized the importance of diet and nutraceuticals in ameliorating neurological complications and platelet dysfunction with an emphasis on primary and secondary prevention of ischemic stroke.
Collapse
Affiliation(s)
- Ramakrishna Kakarla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302, India
| | | | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
5
|
Zhou S, Xue W, Tan J. Design, Synthesis, and Antirheumatoid Arthritis Mechanism of TLR4 Inhibitors. ACS OMEGA 2024; 9:36232-36241. [PMID: 39220494 PMCID: PMC11359639 DOI: 10.1021/acsomega.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
A total of 12 carbonyl compounds were synthesized, their lipopolysaccharide induced inhibition, and activity of RAW264.7 cells was evaluated. The most active compound 3k inhibited RAW264.7 cells with IC50 value of 1.02 ± 0.08 μM. Compound 3k significantly inhibited the release of TNF-α, IL-1β, and IL-6 in supernatant for RAW264.7 cells. In vivo collagen-induced arthritis model tests administered orally, compound 3k showed effects similar to those of methotrexate in the positive control group. The preliminary mechanism study showed that compound 3k had an effect on abnormal expression for TLR4, TNF-α, NF-κB protein, and genes related to inflammation signaling pathway in RAW264.7 cells. Meanwhile, compound 3k showed a good affinity for the TLR4 receptor in molecular docking simulation. Therefore, compound 3k may be a promising lead compound for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing
Chemical Industry Vocational College, Chongqing 401228, China
- School
of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- Chongqing
Academy of Traditional Chinese Medicine, Chongqing 400065, China
- Key
Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou 571158, China
- School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jun Tan
- School
of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
6
|
Yuan MH, Zhong WX, Wang YL, Liu YS, Song JW, Guo YR, Zeng B, Guo YP, Guo L. Therapeutic effects and molecular mechanisms of natural products in thrombosis. Phytother Res 2024; 38:2128-2153. [PMID: 38400575 DOI: 10.1002/ptr.8151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.
Collapse
Affiliation(s)
- Ming-Hao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Xiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Lu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Shi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Wen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Rou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Ping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Wang W, Zhou S, Jiang W, Chen G. Design, synthesis and anti-rheumatoid arthritis activity of target TLR4 inhibitors. Bioorg Med Chem 2024; 97:117539. [PMID: 38070351 DOI: 10.1016/j.bmc.2023.117539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/30/2023]
Abstract
A series of 1-(2-oxocyclohexyl)butane-1, 3-dione derivatives were designed and synthesized as TLR4 inhibitors by modifying the core structure of the lead compound ((6, 8-dioxo-1, 2, 3, 4, 6, 7, 8, 8a-octahydronaphthalen-2-yl) carbamate)). In vitro, compound 3p significantly inhibited the proliferation of rat synovial cells, inhibited the proliferation of LPS-induced RAW264.7 cells, and inhibited TLR4 activity, with IC50 values of 1.21 ± 0.09 μM, 0.73 ± 0.05 μM and 0.43 ± 0.03 μM, respectively, which was superior to the positive control methotrexate. In vivo anti-rheumatoid arthritis evaluation, compound 3p can significantly inhibit the inflammatory factors TNF-α, IL-1β and IL-6, so as to achieve the therapeutic purpose. In the preliminary mechanism study, compound 3p has obvious regulatory effects on the abnormal increase of TLR4, JAK2 and STAT3 protein and gene expression related to inflammatory signaling pathway in RAW264.7 cells. In summary, this study aims to develop more effective candidates for rheumatoid arthritis.
Collapse
Affiliation(s)
- Wenbin Wang
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China; Chongqing (Changshou) Green Chemical and Material Industry Technology Research Institute, Chongqing 401228, China
| | - Shiyang Zhou
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China; Chongqing (Changshou) Green Chemical and Material Industry Technology Research Institute, Chongqing 401228, China; Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou 571158, China; Chongqing Academy of Traditional Chinese Medicine, Chongqing 400065, China; Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Wenming Jiang
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China; Chongqing (Changshou) Green Chemical and Material Industry Technology Research Institute, Chongqing 401228, China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
8
|
Chen C, Li J, Wang J, Zhang M, Zhang L, Lin Z. Oxybutynin ameliorates LPS-induced inflammatory response in human bladder epithelial cells. J Biochem Mol Toxicol 2024; 38:e23584. [PMID: 38009396 DOI: 10.1002/jbt.23584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
Urinary tract infection (UTI) mainly results from bacterial infections in the urinary tract and markedly impacts the normal lives of millions of patients worldwide. The infection and damage to urethral epithelial cells is the first and key step of UTI development and is a critical target for treating clinical UTI. Oxybutynin, an agent for treating urinary incontinence, is recently claimed with protective effects on bladder ultrastructure. Our study will assess the impact of Oxybutynin on inflammation in lipopolysaccharide (LPS)-stimulated bladder epithelial cells. Bladder epithelial T24 cells were treated with 1 μg/mL LPS with or without 10 and 20 μM Oxybutynin for 24 h. Increased levels of oxidative stress (OS) biomarkers, such as reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, as well as upregulated inducible nitric oxide synthase and promoted release of nitric oxide, were observed in LPS-managed T24 cells, all of which were signally suppressed by Oxybutynin. Furthermore, severe inflammatory responses, including enhanced release of cytokines, upregulated matrix metallopeptidase-2 (MMP-2) and MMP-9, and raised monocyte chemoattractant protein-1 level, were found in LPS-challenged T24 cells, which were markedly reversed by Oxybutynin. Moreover, the activated toll-1ike receptor 4/nuclear factor-κB pathway observed in LPS-managed T24 cells was repressed by Oxybutynin. Collectively, Oxybutynin mitigated LPS-induced inflammatory response in human bladder epithelial cells.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Pharmacy, The First People's Hospital of Yibin, Yibin, China
| | - Jiangtao Li
- Department of Rheumatology and Immunology, The First People's Hospital of Yibin, Yibin, China
| | - Juan Wang
- Department of Pharmaceutical Engineering, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Mao Zhang
- Department of Pharmacy, The First People's Hospital of Yibin, Yibin, China
| | - Lei Zhang
- Department of Pharmacy, The First People's Hospital of Yibin, Yibin, China
| | - Zhihua Lin
- Department of Pharmaceutical Engineering, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
9
|
Banerjee K, Saha S, Das S, Ghosal S, Ghosh I, Basu A, Jana SS. Expression of nonmuscle myosin IIC is regulated by non-canonical binding activity of miRNAs. iScience 2023; 26:108384. [PMID: 38047082 PMCID: PMC10690570 DOI: 10.1016/j.isci.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
The expression of mechanoresponsive nonmuscle myosin II (NMII)C is found to be inducible during tumor progression, but its mechanism is yet to be explored. Here, we report a group of microRNAs (mmu-miR-200a-5p, mmu-miR-532-3p, mmu-miR-680, and mmu-miR-1901) can significantly repress the expression of nonmuscle myosin IIC (NMIIC). Interestingly, these microRNAs have both canonical and non-canonical binding sites at 3/UTR and coding sequence (CDS) of NMIIC's heavy chain (HC) mRNA. Each of the miRNA downregulates NMHC-IIC to a different degree as assessed by dual-luciferase and immunoblot analyses. When we abolish the complementary base pairing at canonical binding site, mmu-miR-532-3p can still bind at non-canonical binding site and form Argonaute2 (AGO2)-miRNA complex to downregulate the expression of NMIIC. Modulating the expression of NMIIC by miR-532-3p in mouse mammary tumor cells, 4T1, increases its tumorigenic potential both in vitro and in vivo. Together, these studies provide the functional role of miRNA's non-canonical binding mediated NMIIC regulation in tumor cells.
Collapse
Affiliation(s)
- Kumarjeet Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, VA, USA
| | - Shaoli Das
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Suman Ghosal
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Indranil Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Abhimanyu Basu
- Department of General Surgery, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Siddhartha S. Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| |
Collapse
|
10
|
Zhan J, Li R, Ye Y, Zheng J, Wang G, Wu J, Wei X, Zeng M. HDAC3-mediated lncRNA ZFAS1 inhibited IL-13-induced secretion of proinflammatory cytokines in nasal epithelial cells by regulating the miR-7-5p/SIRT1 pathway. Int J Immunogenet 2023; 50:281-290. [PMID: 37700429 DOI: 10.1111/iji.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 07/02/2023] [Indexed: 09/14/2023]
Abstract
Allergic rhinitis (AR) is a disease that is difficult to cure and accompanies the patient's life. Proinflammatory cytokines (GM-CSF and eotaxin) and MUC5AC are key mediators promoting AR progression. Herein, the function of lncRNA ZFAS1 in AR was investigated. Nasal epithelial cells (NECs) were subjected to 50 ng/mL IL-13 for 24 h to construct an AR cell model. The mRNA and protein expressions were assessed using qRT-PCR and western blot. The levels of GM-CSF, eotaxin, IL-1β, IL-6, TNF-α and MUC5AC in cell supernatant were examined by ELISA. The binding relationships between HDAC3, ZFAS1, miR-7-5p and SIRT1 were analysed using dual luciferase reporter or ChIP assays. Herein, our results displayed that ZFAS1 and SIRT1 were lowly expressed in AR, while miR-7-5p and HDAC3 were highly expressed. Functional experiments displayed that ZFAS1 overexpression suppressed IL-13-induced proinflammatory cytokines and mucin production in NECs. The highly expressed HDAC3 in AR inhibited ZFAS1 expression by binding with ZFAS1 promoter. In addition, our experiments revealed that ZFAS1 targeted miR-7-5p, and miR-7-5p targeted SIRT1. As expected, miR-7-5p overexpression or SIRT1 silencing abrogated ZFAS1 upregulation's repression on IL-13-induced proinflammatory cytokines and MUC5AC secretory levels in NECs. ZFAS1 suppressed proinflammatory cytokines, inflammatory cytokines, and MUC5AC secretory levels in AR by regulating the miR-7-5p/SIRT1 axis. Thus, our work suggested that ZFAS1 might serve as a novel target for AR treatment and prevention.
Collapse
Affiliation(s)
- Jiabin Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Rui Li
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Yi Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Jing Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Gang Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Jinli Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Min Zeng
- Medical Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| |
Collapse
|
11
|
Luo Y, Zhou S, Xu T, Wu W, Shang P, Wang S, Pan D, Li D. SENP2-mediated SERCA2a deSUMOylation increases calcium overload in cardiomyocytes to aggravate myocardial ischemia/reperfusion injury. Chin Med J (Engl) 2023; 136:2496-2507. [PMID: 37462038 PMCID: PMC10586866 DOI: 10.1097/cm9.0000000000002757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) is a key protein that maintains myocardial Ca 2+ homeostasis. The present study aimed to investigate the mechanism underlying the SERCA2a-SUMOylation (small ubiquitin-like modifier) process after ischemia/reperfusion injury (I/RI) in vitro and in vivo . METHODS Calcium transient and systolic/diastolic function of cardiomyocytes isolated from Serca2a knockout (KO) and wild-type mice with I/RI were compared. SUMO-relevant protein expression and localization were detected by quantitative real-time PCR (RT-qPCR), Western blotting, and immunofluorescence in vitro and in vivo . Serca2a-SUMOylation, infarct size, and cardiac function of Senp1 or Senp2 overexpressed/suppressed adenovirus infected cardiomyocytes, were detected by immunoprecipitation, triphenyltetrazolium chloride (TTC)-Evans blue staining, and echocardiography respectively. RESULTS The results showed that the changes of Fura-2 fluorescence intensity and contraction amplitude of cardiomyocytes decreased in the I/RI groups and were further reduced in the Serca2a KO + I/RI groups. Senp1 and Senp2 messenger ribose nucleic acid (mRNA) and protein expression levels in vivo and in cardiomyocytes were highest at 6 h and declined at 12 h after I/RI. However, the highest levels in HL-1 cells were recorded at 12 h. Senp2 expression increased in the cytoplasm, unlike that of Senp1. Inhibition of Senp2 protein reversed the I/RI-induced Serca2a-SUMOylation decline, reduced the infarction area, and improved cardiac function, while inhibition of Senp1 protein could not restore the above indicators. CONCLUSION I/RI activated Senp1 and Senp2 protein expression, which promoted Serca2a-deSUMOylation, while inhibition of Senp2 expression reversed Serca2a-SUMOylation and improved cardiac function.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Shuaishuai Zhou
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Tao Xu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Wanling Wu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Pingping Shang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shuai Wang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Dongye Li
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
12
|
Deng RM, Zhou J. The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury. Int Immunopharmacol 2023; 123:110714. [PMID: 37523969 DOI: 10.1016/j.intimp.2023.110714] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Myocardial ischemia has a high incidence and mortality rate, and reperfusion is currently the standard intervention. However, reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MIRI). There are currently no effective clinical treatments for MIRI. The PI3K/Akt signaling pathway is involved in cardiovascular health and disease and plays an important role in reducing myocardial infarct size and restoring cardiac function after MIRI. Activation of the PI3K/Akt pathway provides myocardial protection through synergistic upregulation of antioxidant, anti-inflammatory, and autophagy activities and inhibition of mitochondrial dysfunction and cardiomyocyte apoptosis. Many studies have shown that PI3K/Akt has a significant protective effect against MIRI. Here, we reviewed the molecular regulation of PI3K/Akt in MIRI and summarized the molecular mechanism by which PI3K/Akt affects MIRI, the effects of ischemic preconditioning and ischemic postconditioning, and the role of related drugs or activators targeting PI3K/Akt in MIRI, providing novel insights for the formulation of myocardial protection strategies. This review provides evidence of the role of PI3K/Akt activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Juan Zhou
- Department of thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
13
|
Chen J, Lu P, Liu J, Yang L, Li Y, Chen Y, Wang Y, Wan J, Zhao Y. 20(S)- Protopanaxadiol saponins isolated from Panax notoginseng target the binding of HMGB1 to TLR4 against inflammation in experimental ulcerative colitis. Phytother Res 2023; 37:4690-4705. [PMID: 37424151 DOI: 10.1002/ptr.7938] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023]
Abstract
Ulcerative colitis (UC) has emerged as a global healthcare issue due to high prevalence and unsatisfying therapeutic measures. 20(S)- Protopanaxadiol saponins (PDS) from Panax notoginseng with anti-inflammatory properties is a potential anti-colitis agent. Herein, we explored the effects and mechanisms of PDS administration on experimental murine UC. Dextran sulfate sodium-induced murine UC model was employed to investigate anti-colitis effects of PDS, and associated mechanisms were further verified in HMGB1-exposed THP-1 macrophages. Results indicated that PDS administration exerted ameliorative effects against experimental UC. Moreover, PDS administration remarkably downregulated mRNA expressions and productions of related pro-inflammatory mediators, and reversed elevated expressions of proteins related to NLRP3 inflammasome after colitis induction. Furthermore, administration with PDS also suppressed the expression and translocation of HMGB1, interrupting the downstream TLR4/NF-κB pathway. In vitro, ginsenoside CK and 20(S)-protopanaxadiol, the metabolites of PDS, exhibited greater potential in anti-inflammation, and intervened with the TLR4-binding domain of HMGB1 predictably. Expectedly, ginsenoside CK and 20(S)-protopanaxadiol administrations inhibited the activation of TLR4/NF-κB/NLRP3 inflammasome pathway in HMGB1-exposed THP-1 macrophages. Summarily, PDS administration attenuated inflammatory injury in experimental colitis by blocking the binding of HMGB1 to TLR4, majorly attributed to the antagonistic efficacies of ginsenoside CK and 20(S)-protopanaxadiol.
Collapse
Affiliation(s)
- Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Pengde Lu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Jiayue Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Li Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Yanling Chen
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Jianbo Wan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, Macao SAR, China
| |
Collapse
|
14
|
He CH, Lv JM, Khan GJ, Duan H, Wang W, Zhai KF, Zou GA, Aisa HA. Total flavonoid extract from Dracocephalum moldavica L. improves pulmonary fibrosis by reducing inflammation and inhibiting the hedgehog signaling pathway. Phytother Res 2023. [PMID: 36794391 DOI: 10.1002/ptr.7771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/10/2022] [Accepted: 12/11/2022] [Indexed: 02/17/2023]
Abstract
Dracocephalum Moldavica L. is a traditional herb for improving pharynx and relieving cough. However, the effect on pulmonary fibrosis is not clear. In this study, we explored the impact and molecular mechanism of total flavonoid extract from Dracocephalum moldavica L. (TFDM) on bleomycin-induced pulmonary fibrosis mouse model. Lung function testing, lung inflammation and fibrosis, and the related factors were detected by the lung function analysis system, HE and Masson staining, ELISA, respectively. The expression of proteins was studied through Western Blot, immunohistochemistry, and immunofluorescence while the expression of genes was analyzed by RT-PCR. The results showed that TFDM significantly improved lung function in mice, reduced the content of inflammatory factors, thereby reducing the inflammation. It was found that expression of collagen type I, fibronectin, and α-smooth muscle actin was significantly decreased by TFDM. The results further showed that TFDM interferes with hedgehog signaling pathway by decreasing the expression of Shh, Ptch1, and SMO proteins and thereby inhibiting the generation of downstream target gene Gli1 and thus improving pulmonary fibrosis. Conclusively, these findings suggest that TFDM improve pulmonary fibrosis by reducing inflammation and inhibition of the hedgehog signaling pathway.
Collapse
Affiliation(s)
- Cheng-Hui He
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- Pharmaceutical Preparation Laboratory, Xinjiang Medicine Research Institute, Urumqi, China
- Xinjiang Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Min Lv
- Pharmaceutical Preparation Laboratory, Xinjiang Medicine Research Institute, Urumqi, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Hong Duan
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Wei Wang
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Ke-Feng Zhai
- Pharmaceutical Preparation Laboratory, Xinjiang Medicine Research Institute, Urumqi, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Guo-An Zou
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
15
|
Wu ZX, Chen SS, Lu DY, Xue WN, Sun J, Zheng L, Wang YL, Li C, Li YJ, Liu T. Shenxiong glucose injection inhibits oxidative stress and apoptosis to ameliorate isoproterenol-induced myocardial ischemia in rats and improve the function of HUVECs exposed to CoCl 2. Front Pharmacol 2023; 13:931811. [PMID: 36686658 PMCID: PMC9849394 DOI: 10.3389/fphar.2022.931811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Shenxiong Glucose Injection (SGI) is a traditional Chinese medicine formula composed of ligustrazine hydrochloride and Danshen (Radix et rhizoma Salviae miltiorrhizae; Salvia miltiorrhiza Bunge, Lamiaceae). Our previous studies and others have shown that SGI has excellent therapeutic effects on myocardial ischemia (MI). However, the potential mechanisms of action have yet to be elucidated. This study aimed to explore the molecular mechanism of SGI in MI treatment. Methods: Sprague-Dawley rats were treated with isoproterenol (ISO) to establish the MI model. Electrocardiograms, hemodynamic parameters, echocardiograms, reactive oxygen species (ROS) levels, and serum concentrations of cardiac troponin I (cTnI) and cardiac troponin T (cTnT) were analyzed to explore the protective effect of SGI on MI. In addition, a model of oxidative damage and apoptosis in human umbilical vein endothelial cells (HUVECs) was established using CoCl2. Cell viability, Ca2+ concentration, mitochondrial membrane potential (MMP), apoptosis, intracellular ROS, and cell cycle parameters were detected in the HUVEC model. The expression of apoptosis-related proteins (Bcl-2, Caspase-3, PARP, cytoplasmic and mitochondrial Cyt-c and Bax, and p-ERK1/2) was determined by western blotting, and the expression of cleaved caspase-3 was analyzed by immunofluorescence. Results: SGI significantly reduced ROS production and serum concentrations of cTnI and cTnT, reversed ST-segment elevation, and attenuated the deterioration of left ventricular function in ISO-induced MI rats. In vitro, SGI treatment significantly inhibited intracellular ROS overexpression, Ca2+ influx, MMP disruption, and G2/M arrest in the cell cycle. Additionally, SGI treatment markedly upregulated the expression of anti-apoptotic protein Bcl-2 and downregulated the expression of pro-apoptotic proteins p-ERK1/2, mitochondrial Bax, cytoplasmic Cyt-c, cleaved caspase-3, and PARP. Conclusion: SGI could improve MI by inhibiting the oxidative stress and apoptosis signaling pathways. These findings provide evidence to explain the pharmacological action and underlying molecular mechanisms of SGI in the treatment of MI.
Collapse
Affiliation(s)
- Zhong-Xiu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Shuai-Shuai Chen
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Ding-Yan Lu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Wei-Na Xue
- School of Medicine and Health Management, Guizhou Medical University, Guiyang, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yong-Lin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Chun Li
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yong-Jun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China,*Correspondence: Yong-Jun Li, ; Ting Liu,
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China,*Correspondence: Yong-Jun Li, ; Ting Liu,
| |
Collapse
|
16
|
Qin X, Wang X, Tian M, Dong Z, Wang J, Wang C, Huang Q. The role of Andrographolide in the prevention and treatment of liver diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154537. [PMID: 36610122 DOI: 10.1016/j.phymed.2022.154537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The presence or absence of damage to the liver organ is crucial to a person's health. Nutritional disorders, alcohol consumption, and drug abuse are the main causes of liver disease. Liver transplantation is the last irrevocable option for liver disease and has become a serious economic burden worldwide. Andrographolide (AP) is one of the main active ingredients of Herba Andrographitis. It has several biological activities and has been reported to have protective and therapeutic effects against liver diseases. Earlier literature has been written on AP's role in treating inflammation and other diseases, and there has not been a systematic review on liver diseases. This review is dedicated to sorting out the research results of AP against liver diseases. Pharmacokinetics, toxicity, and nanotechnology to improve bioavailability are discussed. Finally, an outlook and assessment of its future are provided. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. PubMed and web of Science databases were used to search all relevant literature on AP for liver disease up to 2022. RESULTS Studies have shown that AP plays an important role in different liver disease phenotypes, mainly through anti-inflammatory and antioxidant activities. AP regulates HO-1 and inhibits hepatitis virus replication. It affects the NF-κB pathway, downregulates inflammatory factors such as IL-1β, IL-6, and TNF-α, and reduces liver damage. In preventing liver fibrosis, AP inhibits angiogenesis and activation of hepatic stellate cells and reduces oxidative stress involved in the Nrf2 and TGF-β1/Smad pathways. In addition, AP impedes the development of liver cancer by promoting apoptosis and autonomous phagocytosis in a cell-dependent way. Interestingly, miRNAs are involved in the therapeutic process of liver cancer and hepatic fibrosis. The poor solubility of AP limits the development of dosage forms. Therefore, the advent of nanoformulations has improved bioavailability. Although the effect of AP is dose- and time-dependent, the magnitude of its toxicity is not negligible. Some clinical trials have shown that AP has mild side effects. CONCLUSIONS AP, as an effective natural product, has a good effect on the liver disease through multiple pathways and targets. However, the dose reaches a certain level, leading to its toxicity and side effects. For better clinical application of AP, high-quality clinical and toxic intervention mechanisms are needed to validate current studies. In addition, modulation of miRNA-mediated hepatocellular carcinoma and liver fibrosis and synergistic action with drugs may be the future focus of AP. In conclusion, AP can be regarded as an important candidate for treating different liver diseases in the future.
Collapse
Affiliation(s)
- Xiaoyan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Xi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Maoying Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Zhaowei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Jin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Chao Wang
- Sichuan Integrated Traditional Chinese and Western Medicine Hospital, No.51, Section 4, Renmin South Road, Wuhou District, Chengdu, 610042, PR. China.
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China.
| |
Collapse
|
17
|
Estravís M, García-Sánchez A, Martin MJ, Pérez-Pazos J, Isidoro-García M, Dávila I, Sanz C. RNY3 modulates cell proliferation and IL13 mRNA levels in a T lymphocyte model: a possible new epigenetic mechanism of IL-13 regulation. J Physiol Biochem 2023; 79:59-69. [PMID: 36089628 PMCID: PMC9905197 DOI: 10.1007/s13105-022-00920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Allergic asthma is the most common type of asthma. It is characterized by TH2 cell-driven inflammation in which interleukin-13 (IL-13) plays a pivotal role. Cytoplasmic RNAs (Y-RNAs), a variety of non-coding RNAs that are dysregulated in many cancer types, are also differentially expressed in patients with allergic asthma. Their function in the development of the disease is still unknown. We investigated the potential role of RNY3 RNA (hY3) in the TH2 cell inflammatory response using the Jurkat cell line as a model. hY3 expression levels were modulated to mimic the upregulation effect in allergic disease. We evaluated the effect of hY3 over cell stimulation and the expression of the TH2 cytokine IL13. Total RNA was isolated and retrotranscribed, and RNA levels were assessed by qPCR. In Jurkat cells, hY3 levels increased upon stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. When transfecting with high levels of hY3 mimic molecules, cell proliferation rate decreased while IL13 mRNA levels increased upon stimulation compared to stimulated control cells. Our results show the effect of increased hY3 levels on cell proliferation and the levels of IL13 mRNA in Jurkat cells. Also, we showed that hY3 could act over other cells via exosomes. This study opens up new ways to study the potential regulatory function of hY3 over IL-13 production and its implications for asthma development.
Collapse
Affiliation(s)
- Miguel Estravís
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red Cooperativa de Investigación en Salud-RETICS ARADyAL, ISCIII, Madrid, Spain
| | - Asunción García-Sánchez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Red Cooperativa de Investigación en Salud-RETICS ARADyAL, ISCIII, Madrid, Spain.
- Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, Salamanca, Spain.
| | - Maria J Martin
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red Cooperativa de Investigación en Salud-RETICS ARADyAL, ISCIII, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Jacqueline Pérez-Pazos
- Unidad de Farmacogenética y Medicina de Precisión, Servicio de Bioquímica Clínica, Servicio de Alergología, Hospital Universitario de Salamanca, IBSAL, Salamanca, Spain
| | - María Isidoro-García
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red Cooperativa de Investigación en Salud-RETICS ARADyAL, ISCIII, Madrid, Spain
- Servicio de Bioquímica Clínica, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Ignacio Dávila
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red Cooperativa de Investigación en Salud-RETICS ARADyAL, ISCIII, Madrid, Spain
- Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, Salamanca, Spain
- Servicio de Inmunoalergia, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Catalina Sanz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Red Cooperativa de Investigación en Salud-RETICS ARADyAL, ISCIII, Madrid, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
18
|
Zhu SY, Li XN, Zhao Y, Dai XY, Guo JY, Li JL. Lycopene Ameliorate Atrazine-Induced Oxidative Damage in the B Cell Zone via Targeting the miR-27a-3p/Foxo1 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12502-12512. [PMID: 36134885 DOI: 10.1021/acs.jafc.2c05103] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lycopene, a natural bioactive component, has potential to reduce the risk of environmental factors inducing chronic diseases. It is important to explore lycopene's health benefits and its mechanism. The uncontrolled use of atrazine in agriculture causes critical environmental pollution issues worldwide. Exposure to atrazine through water and food chains is a risk to humans. In this study, mice were orally treated with lycopene and/or different concentrations of atrazine for 21 days to explore the influence of atrazine on the spleen and the role of lycopene's protection in atrazine exposure. The work found that atrazine exerted its toxic role in the B cell zone of the spleen by inducing Foxo1 deficiency. Atrazine caused ROS generation and Pink1/Parkin dysfunction via inducing Foxo1 deficiency, which led to apoptosis in the B cell zone. Additionally, the work revealed that lycopene ameliorates atrazine-induced apoptosis in the B cell zone of the spleen via regulating the miR-27a-3p/Foxo1 pathway. The finding also underscored a novel target of lycopene in maintaining homeostasis during B cell maturation.
Collapse
Affiliation(s)
| | | | | | - Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | | | | |
Collapse
|
19
|
Kubatka P, Mazurakova A, Koklesova L, Samec M, Sokol J, Samuel SM, Kudela E, Biringer K, Bugos O, Pec M, Link B, Adamkov M, Smejkal K, Büsselberg D, Golubnitschaja O. Antithrombotic and antiplatelet effects of plant-derived compounds: a great utility potential for primary, secondary, and tertiary care in the framework of 3P medicine. EPMA J 2022; 13:407-431. [PMID: 35990779 PMCID: PMC9376584 DOI: 10.1007/s13167-022-00293-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/29/2022]
Abstract
Thromboembolism is the third leading vascular disease, with a high annual incidence of 1 to 2 cases per 1000 individuals within the general population. The broader term venous thromboembolism generally refers to deep vein thrombosis, pulmonary embolism, and/or a combination of both. Therefore, thromboembolism can affect both - the central and peripheral veins. Arterial thromboembolism causes systemic ischemia by disturbing blood flow and oxygen supply to organs, tissues, and cells causing, therefore, apoptosis and/or necrosis in the affected tissues. Currently applied antithrombotic drugs used, e.g. to protect affected individuals against ischemic stroke, demonstrate significant limitations. For example, platelet inhibitors possess only moderate efficacy. On the other hand, thrombolytics and anticoagulants significantly increase hemorrhage. Contextually, new approaches are extensively under consideration to develop next-generation antithrombotics with improved efficacy and more personalized and targeted application. To this end, phytochemicals show potent antithrombotic efficacy demonstrated in numerous in vitro, ex vivo, and in vivo models as well as in clinical evaluations conducted on healthy individuals and persons at high risk of thrombotic events, such as pregnant women (primary care), cancer, and COVID-19-affected patients (secondary and tertiary care). Here, we hypothesized that specific antithrombotic and antiplatelet effects of plant-derived compounds might be of great clinical utility in primary, secondary, and tertiary care. To increase the efficacy, precise patient stratification based on predictive diagnostics is essential for targeted protection and treatments tailored to the person in the framework of 3P medicine. Contextually, this paper aims at critical review toward the involvement of specific classes of phytochemicals in antiplatelet and anticoagulation adapted to clinical needs. The paper exemplifies selected plant-derived drugs, plant extracts, and whole plant foods/herbs demonstrating their specific antithrombotic, antiplatelet, and fibrinolytic activities relevant for primary, secondary, and tertiary care. One of the examples considered is antithrombotic and antiplatelet protection specifically relevant for COVID-19-affected patient groups.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Juraj Sokol
- Department of Hematology and Transfusion Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, 24144 Doha, Qatar
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, 24144 Doha, Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
20
|
Zhao C, Li XY, Li ZY, Li M, Liu ZD. Moxibustion regulates T-regulatory/T-helper 17 cell balance by modulating the microRNA-221/suppressor of cytokine signaling 3 axis in a mouse model of rheumatoid arthritis. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:453-462. [PMID: 35729047 DOI: 10.1016/j.joim.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) progression is associated with the balance of T-regulatory (Treg) and T-helper 17 (Th17) cells, while the role of microRNAs (miRs) in regulating Treg/Th17 cell balance has not been clarified. This study aimed to assess whether moxibustion could regulate Treg/Th17 cell balance by modulating the miR-221/suppressor of cytokine signaling 3 (SOCS3) axis in the RA mouse model. METHODS A mouse model of collagen-induced arthritis (CIA) was established in male DBA/1J mice. Twenty-two days after CIA induction, the mice received daily treatment with moxibustion for 12 times. Pathological scores were assessed according to the levels of synovial hyperplasia. The expression levels of cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), IL-17 and IL-10 were analyzed in serum by enzyme-linked immunosorbent assay. The cluster of differentiation 4 (CD4+) splenocytes was analyzed by fluorescence-activated cell sorting. The expression levels of RA-related miRs and target genes were subsequently detected, and the target of miR-221 was confirmed by the dual-luciferase reporter assay. RESULTS It was revealed that moxibustion treatment decreased the pathological scores and downregulated the expression levels of IL-1β, IL-6, TNF-α, IFN-γ and IL-17, while upregulated the expression level of IL-10. The Treg/Th17 cell balance was regulated by moxibustion treatment. The expression level of miR-221 was suppressed by moxibustion treatment. Furthermore, SOCS3 was found as the direct target of miR-221, which mediated the function of moxibustion by regulating the Treg/Th17 cell balance. CONCLUSION Moxibustion therapy regulated the Treg/Th17 cell balance by modulating the miR-221/SOCS3 axis in the RA mouse model.
Collapse
Affiliation(s)
- Chuang Zhao
- Department of Acupuncture, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China; Department of Acupuncture, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Xiao-Yan Li
- Department of Acupuncture, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China; Department of Acupuncture, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Zun-Yuan Li
- Department of Acupuncture, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China; Department of Acupuncture, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Miao Li
- Department of Acupuncture, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China; Department of Acupuncture, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Zhi-Dan Liu
- Department of Acupuncture, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China; Department of Acupuncture, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China.
| |
Collapse
|
21
|
miRNAs from Plasma Extracellular Vesicles Are Signatory Noninvasive Prognostic Biomarkers against Atherosclerosis in LDLr-/-Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6887192. [PMID: 36035214 PMCID: PMC9403256 DOI: 10.1155/2022/6887192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Circular microRNAs (miRNAs) have become central in pathophysiological conditions of atherosclerosis (AS). However, the biomarkers for diagnosis and therapeutics against AS are still unclear. The atherosclerosis models in low-density lipoprotein receptor deficiency (LDLr−/−) mice were established with a high-fat diet (HFD). The extraction kit isolated extracellular vesicles from plasma. Total RNAs were extracted from LDLr−/− mice in plasma extracellular vesicles. Significantly varying miRNAs were detected by employing Illumina HiSeq 2000 deep sequencing technology. Target gene predictions of miRNAs were employed by related software that include RNAhybrid, TargetScan, miRanda, and PITA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) further analyzed the intersection points of predicted results. The results showed that the HFD group gradually formed atherosclerotic plaques in thoracic aorta compared with the control group. Out of 17, 8 upregulated and 9 downregulated miRNAs with a significant difference were found in the plasma extracellular vesicles that were further cross-examined by sequencing and bioinformatics analysis. Focal adhesion and Ras signaling pathway were found to be the most closely related pathways through GO and KEGG pathway analyses. The 8 most differentially expressed up- and downregulated miRNAs were further ascertained by TaqMan-based qRT-PCR. TaqMan-based qRT-PCR and in situ hybridization further validated the most differentially expressed miRNAs (miR-378d, miR-181b-5p, miR-146a-5p, miR-421-3p, miR-350-3p, and miR-184-3p) that were consistent with deep sequencing analysis suggesting a promising potential of utility to serve as diagnostic biomarkers against AS. The study gives a comprehensive profile of circular miRNAs in atherosclerosis and may pave the way for identifying biomarkers and novel targets for atherosclerosis.
Collapse
|
22
|
Wong WT, Wu CH, Li LH, Hung DY, Chiu HW, Hsu HT, Ho CL, Chernikov OV, Cheng SM, Yang SP, Chung CH, Hua KF, Wang CF. The leaves of the seasoning plant Litsea cubeba inhibit the NLRP3 inflammasome and ameliorate dextran sulfate sodium-induced colitis in mice. Front Nutr 2022; 9:871325. [PMID: 35967819 PMCID: PMC9363825 DOI: 10.3389/fnut.2022.871325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
The intracellular sensor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome controls caspase-1 activity and the maturation and release of the cytokines interleukin (IL)−1β and IL−18. The NLRP3 inflammasome has attracted the attention of the pharmaceutical industry because it promotes the pathogenesis of many diseases, making it a promising target for drug development. Litsea cubeba (Lour.) is a plant traditionally used as a seasoning in Taiwan and in other Asian countries. In this study, we investigated the inhibitory activity of the leaves of L. cubeba against the NLRP3 inflammasome. We found that the ethanol extract of L. cubeba leaves (MLE) inhibited the NLRP3 inflammasome in macrophages by reducing caspase−1 activation and IL−1β secretion. MLE reduced pyroptosis in macrophages and inhibited the release of NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC). In a mechanistic study, MLE reduced mitochondrial reactive oxygen species (ROS) production and preserved mitochondrial integrity, which led to reduced mitochondrial DNA release into the cytosol. MLE did not reduce the expression levels of NLRP3, IL−1β precursor or TNF-α in lipopolysaccharide (LPS)-activated macrophages. These results indicated that MLE inhibited the NLRP3 inflammasome by suppressing the activation signals of the NLRP3 inflammasome but not by reducing the priming signal induced by LPS. In addition, oral administration of MLE (20−80 mg/kg) ameliorated dextran sulfate sodium (DSS)−induced colitis in a mouse model. Notably, mice that received MLE (1 and 2 g/kg) daily for 7 days did not exhibit visible side effects. Gas chromatography-mass spectrometry (GC-MS) analysis found that α-Terpinyl acetate (27.2%) and 1,8−Cineole (17.7%) were the major compounds in MLE. These results indicated that L. cubeba leaves have the potential to be a nutraceutical for preventing and improving NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - De-Yu Hung
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russia
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chih-Hsin Chung
- Department of Forestry and Natural Resources, National Ilan University, Ilan, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chin-Fah Wang
- Center for General Education, National Ilan University, Ilan, Taiwan
| |
Collapse
|
23
|
Prem PN, Sivakumar B, Boovarahan SR, Kurian GA. Recent advances in potential of Fisetin in the management of myocardial ischemia-reperfusion injury-A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154123. [PMID: 35533608 DOI: 10.1016/j.phymed.2022.154123] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/26/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The primary therapeutic strategy in managing ischemic heart diseases is to restore the perfusion of the myocardial ischemic area by surgical methods that often result in an unavoidable injury called ischemia-reperfusion injury (IR). Fisetin is an effective flavonoid with antioxidant and anti-inflammatory properties, proven to be cardioprotective against IR injury in both in-vitro and invivo models, apart from its promising health benefits against cancer, diabetes, and neurodegenerative ailments. PURPOSE The potential of fisetin in attenuating myocardial IR is inconclusive as the effectiveness of fisetin needs more understanding in terms of its possible target sites and underlying different mechanisms. Considering the surge in recent scientific interests in fisetin as a pharmacological agent, this review not only updates the existing preclinical and clinical studies with fisetin and its underlying mechanisms but also summarizes its possible targets during IR protection. METHODS We performed a literature survey using search engines Pubmed, PMC, Science direct, Google, and research gate published across the years 2006-2021. The relevant studies were extracted from the databases with the combinations of the following keywords and summarized: myocardial ischemia-reperfusion injury, natural products, flavonoid, fisetin, PI3K, JAK-STAT, Nrf2, PKC, JNK, autophagy. RESULTS Fisetin is reported to be effective in attenuating IR injury by delaying the clotting time, preserving the mitochondrial function, reducing oxidative stress, and inhibiting GSK 3β. But it failed to protect diseased cardiomyocytes challenged to IR. As discussed in the current review, fisetin not only acts as a conventional antioxidant and anti-inflammatory agent to exert its biological effect but may also exert modulatory action on the cellular metabolism and adaptation via direct action on various signalling pathways that comprise PI3K, JAK-STAT, Nrf2, PKC, JNK, and autophagy. Moreover, the dosage of fisetin and co-morbidities like diabetes and obesity are found to be detrimental factors for cardioprotection. CONCLUSION For further evaluation and smooth clinical translation of the fisetin molecule in IR treatment, researchers should pay close attention to the potential of fisetin to possibly alter the key cardioprotective pathways and dosage, as the efficacy of fisetin is tissue and cell type-specific and varies with different doses.
Collapse
Affiliation(s)
- Priyanka N Prem
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Bhavana Sivakumar
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Sri Rahavi Boovarahan
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Gino A Kurian
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
24
|
Zhang J, Pan Z, Zhou J, Zhang L, Tang J, Gong S, Li F, Yu B, Zhang Y, Kou J. The myosin II inhibitor, blebbistatin, ameliorates pulmonary endothelial barrier dysfunction in acute lung injury inducedB19 by LPS via NMMHC IIA/Wnt5a/β-catenin pathway. Toxicol Appl Pharmacol 2022; 450:116132. [PMID: 35716767 PMCID: PMC9527152 DOI: 10.1016/j.taap.2022.116132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Acute lung injury (ALI) or its most advanced form, acute respiratory distress syndrome (ARDS), is a severe inflammatory pulmonary process triggered by varieties of pathophysiological factors, among which endothelial barrier disruption plays a critical role in the progression of ALI/ARDS. As an inhibitor of myosin II, blebbistatin inhibits endothelial barrier damage. This study aimed to investigate the effect of blebbistatin on lung endothelial barrier dysfunction in LPS induced acute lung injury and its potential mechanism. Mice were challenged with LPS (5 mg/kg) by intratracheal instillation for 6 h to disrupt the pulmonary endothelial barrier in the model group. Blebbistatin (5 mg/kg, ip) was administrated 1 h before LPS challenge. The results showed that blebbistatin could significantly attenuate LPS-induced lung injury and pulmonary endothelial barrier dysfunction. And we observed that blebbistatin inhibited the activation of NMMHC IIA/Wnt5a/β-catenin pathway in pulmonary endothelium after LPS treatment. In murine lung vascular endothelial cells (MLECs) and human umbilical vein endothelial cells (HUVECs), we further confirmed that Blebbistatin (1 μmol/L) markedly ameliorated endothelial barrier dysfunction in MLECs and HUVECs by modulating NMMHC IIA/Wnt5a/β-catenin pathway. Our data demonstrated that blebbistatin could inhibit the development of pulmonary endothelial barrier dysfunction and ALI via NMMHC IIA/Wnt5a/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jiazhi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziqian Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianhao Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahui Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shuaishuai Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
25
|
Subramani B, Sathiyarajeswaran P. Current update on herbal sources of antithrombotic activity—a comprehensive review. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022; 34:26. [PMID: 35283622 PMCID: PMC8899788 DOI: 10.1186/s43162-021-00090-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/01/2021] [Indexed: 02/08/2023] Open
Abstract
Background Herbs are commonly used to treat cardiovascular diseases in various traditional medicine. On the other hand, herb-drug interactions are most commonly encountered with conventional antiplatelet and anticoagulant drug prescriptions. This review presents a compilation of plants investigated for antiplatelet and anticoagulation recently and enumerates their possible lead compounds responsible for its action for paving further drug discovery and knowledge update. Main body of the abstract Information about the herbs was withdrawn from the PubMed database of the previous 5 years. We also hand-searched the bibliography of relevant articles for the acquisition of additional information. About 72 herbal sources were identified with the effect of antiplatelet activity, antithrombotic activity, and anticoagulant activity. Bioactive compounds and various secondary metabolites responsible for it, such as alkaloids, saponins, flavonoids, coumarins, polyphenols, furan derivatives, iridoid glycosides, sesquiterpenes, aporphine compounds, were reported. Conclusion Newer pharmacological moieties are needed to prevent or reduce the adverse effects of current anti-thrombotic agents and to improve the safety of patients and cost-effectiveness.
Collapse
|
26
|
Ma HF, Zheng F, Su LJ, Zhang DW, Liu YN, Li F, Zhang YY, Gong SS, Kou JP. Metabolomic Profiling of Brain Protective Effect of Edaravone on Cerebral Ischemia-Reperfusion Injury in Mice. Front Pharmacol 2022; 13:814942. [PMID: 35237165 PMCID: PMC8882761 DOI: 10.3389/fphar.2022.814942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
Edaravone (EDA) injection has been extensively applied in clinics for treating stroke. Nevertheless, the metabolite signatures and underlying mechanisms associated with EDA remain unclear, which deserve further elucidation for improving the accurate usage of EDA. Ischemia stroke was simulated by intraluminal occlusion of the right middle cerebral artery for 1 h, followed by reperfusion for 24 h in mice. Brain infarct size, neurological deficits, and lactate dehydrogenase (LDH) levels were improved by EDA. Significantly differential metabolites were screened with untargeted metabolomics by cross-comparisons with pre- and posttreatment of EDA under cerebral ischemia/reperfusion (I/R) injury. The possibly involved pathways, such as valine, leucine, and isoleucine biosynthesis, and phenylalanine, taurine, and hypotaurine metabolisms, were enriched with differential metabolites and relevant regulatory enzymes, respectively. The network of differential metabolites was constructed for the integral exhibition of metabolic characteristics. Targeted analysis of taurine, an important metabolic marker, was performed for further validation. The level of taurine decreased in the MCAO/R group and increased in the EDA group. The inhibition of EDA on cerebral endothelial cell apoptosis was confirmed by TdT-mediated dUTP nick-end labeling (TUNEL) stain. Cysteine sulfinic acid decarboxylase (CSAD), the rate-limiting enzyme of taurine generation, significantly increased along with inhibiting endothelial cell apoptosis after treatment of EDA. Thus, CSAD, as the possible new therapeutic target of EDA, was selected and validated by Western blot and immunofluorescence. Together, this study provided the metabolite signatures and identified CSAD as an unrecognized therapeutic intervention for EDA in the treatment of ischemic stroke via inhibiting brain endothelial cell apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun-ping Kou
- *Correspondence: Shuai-shuai Gong, ; Jun-ping Kou,
| |
Collapse
|
27
|
Lagoutte-Renosi J, Allemand F, Ramseyer C, Yesylevskyy S, Davani S. Molecular modeling in cardiovascular pharmacology: Current state of the art and perspectives. Drug Discov Today 2021; 27:985-1007. [PMID: 34863931 DOI: 10.1016/j.drudis.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023]
Abstract
Molecular modeling in pharmacology is a promising emerging tool for exploring drug interactions with cellular components. Recent advances in molecular simulations, big data analysis, and artificial intelligence (AI) have opened new opportunities for rationalizing drug interactions with their pharmacological targets. Despite the obvious utility and increasing impact of computational approaches, their development is not progressing at the same speed in different fields of pharmacology. Here, we review current in silico techniques used in cardiovascular diseases (CVDs), cardiological drug discovery, and assessment of cardiotoxicity. In silico techniques are paving the way to a new era in cardiovascular medicine, but their use somewhat lags behind that in other fields.
Collapse
Affiliation(s)
- Jennifer Lagoutte-Renosi
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire de Pharmacologie Clinique et Toxicologie-CHU de Besançon, 25000 Besançon, France
| | - Florentin Allemand
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Semen Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France; Department of Physics of Biological Systems, Institute of Physics of The National Academy of Sciences of Ukraine, Nauky Sve. 46, Kyiv, Ukraine; Receptor.ai inc, 16192 Coastal Highway, Lewes, DE, USA
| | - Siamak Davani
- EA 3920 Université Bourgogne Franche-Comté, 25000 Besançon, France; Laboratoire de Pharmacologie Clinique et Toxicologie-CHU de Besançon, 25000 Besançon, France.
| |
Collapse
|
28
|
Xu XN, Jiang Y, Yan LY, Yin SY, Wang YH, Wang SB, Fang LH, Du GH. Aesculin suppresses the NLRP3 inflammasome-mediated pyroptosis via the Akt/GSK3β/NF-κB pathway to mitigate myocardial ischemia/reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153687. [PMID: 34482222 DOI: 10.1016/j.phymed.2021.153687] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Aesculin (AES), an effective component of Cortex fraxini, is a hydroxycoumarin glucoside that has diverse biological properties. The nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing 3 (NLRP3) inflammasome has been heavily interwoven with the development of myocardial ischemia/reperfusion injury (MIRI). Nevertheless, it remains unclear whether AES makes a difference to the changes of the NLRP3 inflammasome in MIRI. PURPOSE We used rats that were subjected to MIRI and neonatal rat cardiomyocytes (NRCMs) that underwent oxygen-glucose deprivation/restoration (OGD/R) process to investigate what impacts AES exerts on MIRI and the NLRP3 inflammasome activation. METHODS The establishment of MIRI model in rats was conducted using the left anterior descending coronary artery ligation for 0.5 h ischemia and then untying the knot for 4 h of reperfusion. After reperfusion, AES were administered intraperitoneally using 10 and 30 mg/kg doses. We evaluated the development of reperfusion ventricular arrhythmias, hemodynamic changes, infarct size, and the biomarkers in myocardial injury. The inflammatory mediators and pyroptosis were also assessed. AES at the concentrations of 1, 3, and 10 μM were imposed on the NRCMs immediately before the restoration process. We also determined the cell viability and cell death in the NRCMs exposed to OGD/R insult. Furthermore, we also analyzed the levels of proteins that affect the NLRP3 inflammasome activation, pyroptosis, and the AKT serine/threonine kinase (Akt)/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor-kappa B (NF-κB) signaling pathway via western blotting. RESULTS We found that AES notably attenuated reperfusion arrhythmias and myocardia damage, improved the hemodynamic function, and ameliorated the inflammatory response and pyroptosis of cardiomyocytes in rats and NRCMs. Additionally, AES reduced the NLRP3 inflammasome activation in rats and NRCMs. AES also enhanced the phosphorylation of Akt and GSK3β, while suppressing the phosphorylation of NF-κB. Moreover, the allosteric Akt inhibitor, MK-2206, abolished the AES-mediated cardioprotection and the NLRP3 inflammasome suppression. CONCLUSIONS These findings indicate that AES effectively protected cardiomyocytes against MIRI by suppressing the NLRP3 inflammasome-mediated pyroptosis, which may relate to the upregulated Akt activation and disruption of the GSK3β/NF-κB pathway.
Collapse
Affiliation(s)
- Xiao-Na Xu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.; Regional inspection fourth branch of Shandong medical products administration, Yantai, Shandong Province, 264010, China
| | - Yu Jiang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liu-Yan Yan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Su-Yue Yin
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Hua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shou-Bao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| | - Lian-Hua Fang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China..
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| |
Collapse
|
29
|
Ginsenoside Rg1 ameliorates blood-brain barrier disruption and traumatic brain injury via attenuating macrophages derived exosomes miR-21 release. Acta Pharm Sin B 2021; 11:3493-3507. [PMID: 34900532 PMCID: PMC8642604 DOI: 10.1016/j.apsb.2021.03.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 02/08/2023] Open
Abstract
During the traumatic brain injury (TBI), improved expression of circulatory miR-21 serves as a diagnostic feature. Low levels of exosome-miR-21 in the brain can effectively improve neuroinflammation and blood–brain barrier (BBB) permeability, reduce nerve apoptosis, restore neural function and ameliorate TBI. We evaluated the role of macrophage derived exosomes-miR-21 (M-Exos-miR-21) in disrupting BBB, deteriorating TBI, and Rg1 interventions. IL-1β-induced macrophages (IIM)-Exos-miR-21 can activate NF-κB signaling pathway and induce the expressions of MMP-1, -3 and -9 and downregulate the levels of tight junction proteins (TJPs) deteriorating the BBB. Rg1 reduced miR-21-5p content in IIM-Exos (RIIM-Exos). The interaction of NMIIA–HSP90 controlled the release of Exos-miR-21, this interaction was restricted by Rg1. Rg1 could inhibit the Exos-miR-21 release in peripheral blood flow to brain, enhancing TIMP3 protein expression, MMPs proteolysis, and restricting TJPs degradation thus protected the BBB integrity. Conclusively, Rg1 can improve the cerebrovascular endothelial injury and hold the therapeutic potential against TBI disease.
Collapse
|
30
|
Lu Z, Ye Y, Liu Y, Yang X, Ding Q, Wang Y, Wu Z, Zhan Y, Gui S, Lin B, Lin B. Aqueous extract of Paeoniae Radix Rubra prevents deep vein thrombosis by ameliorating inflammation through inhibiting GSK3β activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153767. [PMID: 34597905 DOI: 10.1016/j.phymed.2021.153767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Deep vein thrombosis (DVT) is a kind of blood stasis syndrome. Paeoniae Radix Rubra (PRR) has long been widely used for eliminating blood stasis in China, but its effect on DVT has not yet been reported. PURPOSE The present study aimed to assess the potential inhibitory effect of the aqueous extract of PRR (i.e.,PRR dispensing granule, PRRDG) on DVT and explore the underlying mechanism. STUDY DESIGN/METHODS The chemical profile of PRRDG was analyzed by high-performance liquid chromatography. Sprague-Dawley rats were intragastrically treated with PRRDG (0.625, 1.25 and 1.875 g crude drug/kg/d) once daily for 7 consecutive days. On the sixth day, a model of inferior vena cava (IVC) stenosis-induced DVT was established. All rats were sacrificed on the seventh day. Serum was collected for enzyme-linked immunosorbent assay. Thrombus-containing IVC was weighed and further processed for histopathologic examination, immunohistochemical analysis and western blotting. LiCl and LY294002 were adopted to block and increase the activity of glycogen synthase kinase 3β (GSK3β), respectively. RESULTS The chemical profile analysis showed that paeoniflorin, benzoylpaeoniflorin, albiflorin, gallic acid and catechin were the main constituents of PRRDG. LiCl decreased thrombus weight, reduced the number of inflammatory cells in thrombus and vein wall, down-regulated phosphorylated NF-κB p65 (p-p65) protein expression. Similarly, PRRDG decreased thrombus weight and tissue factor (TF) protein expression. PRRDG reduced the protein expression levels of P-selectin, monocyte chemoattractant protein-1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in venous endothelium, serum levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and the number of inflammatory cells in thrombus and vein wall. Moreover, PRRDG down-regulated p-p65 protein expression and up-regulated phosphorylated GSK3β (p-GSK3β) protein expression. LY294002 abrogated the inhibitory effects of PRRDG on thrombus weight, TF protein expression, TNF-α and IL-1β serum levels, inflammatory cells influxes, and p-p65 protein expression. CONCLUSION PRRDG prevents DVT by ameliorating inflammation through inhibiting GSK3β activity.
Collapse
Affiliation(s)
- Ziqi Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangzhou Hipower Pharmaceutical R&D Co., Ltd., Medicine Department, Guangzhou 510006, Guangdong, China
| | - Yuxin Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Youchen Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Xinrong Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Qi Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Yiting Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zhongrui Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Yaxian Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Shuhua Gui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Bingqing Lin
- College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, Guangdong, China.
| | - Baoqin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
31
|
Zhang Y, Ge L, Song G, Zhang R, Li S, Shi H, Zhang H, Li Y, Pan J, Wang L, Han J. Azithromycin alleviates the severity of rheumatoid arthritis by targeting the UPR component GRP78. Br J Pharmacol 2021; 179:1201-1219. [PMID: 34664264 DOI: 10.1111/bph.15714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Azithromycin (AZM) is a macrolide antibiotic with well-described anti-inflammatory properties. This study aimed to substantiate the treatment potential of AZM in rheumatoid arthritis (RA). EXPERIMENTAL APPROACH Gene expression profiles were collected by RNA sequencing, and the effects of AZM were assessed in functional assays. In vitro and in vivo assays were performed to examine the effects of AZM-mediated blockade of glucose-regulated protein 78 (GRP78). Assays to define the anti-inflammatory activity of AZM using fibroblast-like synoviocytes (FLSs) from RA patients and collagen-induced arthritis (CIA) in DBA/1 mice were performed. Identification and characterization of the binding of AZM to GRP78 was performed using drug affinity responsive target stability assays, proteomics and cellular thermal shift assays. AZM-mediated inhibition of GRP78 and the dependence of the antiarthritic activity of AZM on GRP78 were assessed. KEY RESULTS AZM reduced proinflammatory factor production, cell migration, invasion and chemoattraction and enhanced apoptosis, thereby reducing the deleterious inflammatory response of RA FLSs in vitro. AZM ameliorated the severity of CIA lesions as efficiently as the anti-tumour necrosis factor (anti-TNF) biological agent etanercept (ETC). Transcriptional analyses suggested that AZM treatment impairs signalling cascades associated with cholesterol and lipid biosynthetic processes. GRP78 was identified as a novel target of AZM. AZM-mediated activation of the unfolded protein response (UPR) via the inhibition of GRP78 activity is required not only for inducing the expression of C/EBP-homologous protein (ChOP) but also for the activating sterol-regulatory element binding protein (SREBP) and its targeted genes involved in cholesterol and lipid biosynthetic processes. Furthermore, deletion of GRP78 abolished the antiarthritic activity of AZM. CONCLUSION AND IMPLICATIONS These findings confirmed that AZM is a therapeutic drug for RA treatment.
Collapse
Affiliation(s)
- Yongli Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Luna Ge
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ruojia Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shufeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Haojun Shi
- The second clinical medical college, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongchang Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yi Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jihong Pan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Lin Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
32
|
Wu Z, Zhang L, Zhao X, Li Z, Lu H, Bu C, Wang R, Wang X, Cai T, Wu D. Protectin D1 protects against lipopolysaccharide-induced acute lung injury through inhibition of neutrophil infiltration and the formation of neutrophil extracellular traps in lung tissue. Exp Ther Med 2021; 22:1074. [PMID: 34447467 DOI: 10.3892/etm.2021.10508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Protectin D1 (PD1), a DHA-derived lipid mediator, has recently been shown to possess anti-inflammatory and pro-resolving properties. To date, little is known about the effect of PD1 on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. The aim of the present study was to investigate the therapeutic effects of PD1 on LPS-induced ALI and its potential mechanisms of action. ALI was induced via an intraperitoneal injection of LPS, where PD1 (2 ng/mouse) was administered intravenously 30 min after LPS challenge. Mice were sacrificed 24 h after modeling. Lung histopathological changes were assessed using hematoxylin and eosin staining and myeloperoxidase (MPO) activity was tested using immunohistochemistry. Tumor necrosis-α and interleukin-6 levels in the bronchoalveolar lavage fluid (BALF) and serum were measured using ELISA. To detect neutrophil extracellular traps produced by infiltrated neutrophils in the lung tissue, immunofluorescence staining was performed using anti-MPO and anti-histone H3 antibodies. The results indicated that PD1 significantly attenuated histological damage and neutrophil infiltration in lung tissue, reduced the lung wet/dry weight ratio, protein concentration and proinflammatory cytokine levels in BALF and decreased proinflammatory cytokine levels in serum. Moreover, neutrophil citrullinated histone H3 (CitH3) expression was also reduced after PD1 administration. In conclusion, PD1 attenuated LPS-induced ALI in mice via inhibition of neutrophil extracellular trap formation in lung tissue. Therefore, PD1 administration may serve to be a new strategy for treating ALI.
Collapse
Affiliation(s)
- Zhiyang Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Luyao Zhang
- Department of Pathology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xiangyang Zhao
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Zhi Li
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Haining Lu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Chanyuan Bu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Rui Wang
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Xiaofei Wang
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Tiantian Cai
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Dawei Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, P.R. China
| |
Collapse
|
33
|
Zhang M, Li N, Cai R, Gu J, Xie F, Wei H, Lu C, Wu D. Rosmarinic acid protects mice from imiquimod induced psoriasis-like skin lesions by inhibiting the IL-23/Th17 axis via regulating Jak2/Stat3 signaling pathway. Phytother Res 2021; 35:4526-4537. [PMID: 34008239 DOI: 10.1002/ptr.7155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/14/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
IL-23/Th17 (IL-17) axis plays a critical role in psoriasis. Rosmarinic acid (RA) was proved the inhibitory effect of T cell infiltration in the skin. However, whether and how RA has beneficial effects on psoriasis did not really know yet. So lipopolysaccharide (LPS)-induced abnormal proliferation Hacat cell line and Imiquimod (IMQ)-induced psoriasis-like mouse dermatitis were used to assess the pharmacological effects and mechanisms of RA by Psoriasis Area Severity Index (PASI) score, histopathology, flow cytometry, reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. The results showed that RA inhibited LPS-induced aberrant expression of Hacat cell line, and significantly alleviated IMQ-induced skin inflammation. Although RA had no obviously effect on the ratio of epidermal Langerhans cell (LC) and LC migration from the skin to the skin draining lymph nodes, RA inhibited the expression of IL-23 in skin lesions, as well as reduced the differentiation of Th17 cells and producing of IL-17A by down regulating the transcriptor factor RORγt and JAK2/Stat3 signal pathway, comparing to IMQ treated group. The findings suggest that RA inhibits psoriasis-like skin inflammation in vivo and in vitro by reducing the expression of IL-23, inhibiting Th17 dominated inflammation and down regulating the Jak2/Stat3 signal pathway.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510380, China
- Traditional Chinese Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510380, China
| | - Ning Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510380, China
- Traditional Chinese Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510380, China
| | - Ruhang Cai
- Traditional Chinese Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jiangyong Gu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510380, China
- Traditional Chinese Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510380, China
| | - Fuda Xie
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510380, China
- Traditional Chinese Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510380, China
| | - Hong Wei
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510380, China
- Traditional Chinese Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510380, China
| | - Chuanjian Lu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510380, China
- Traditional Chinese Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510380, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, 510120, China
| | - Dinghong Wu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510380, China
- Traditional Chinese Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510380, China
| |
Collapse
|
34
|
Liu W, Song J, Feng X, Yang H, Zhong W. LncRNA XIST is involved in rheumatoid arthritis fibroblast-like synoviocytes by sponging miR-126-3p via the NF-κB pathway. Autoimmunity 2021; 54:326-335. [PMID: 34165008 DOI: 10.1080/08916934.2021.1937608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The role and mechanism of lncRNA XIST (XIST) in the development of rheumatoid arthritis (RA) was explored in this study. RT-qPCRs were performed to detect the expression of XIST and miR-126-3p in synovial tissues and cells. Target gene prediction and luciferase gene reporter assay were used to validate downstream target genes of XIST. MTT assay, EdU staining and Annexin V/PI staining were performed to explore the effects of XIST and miR-126-3p on cell proliferation and apoptosis. Western blotting analysis was used to detect the expression of related proteins. We found that the expression levels of XIST in tissues and cells were significantly higher than that in normal tissues and cells. Down-regulation of XIST could inhibit cell proliferation rate and increase apoptosis rate. Luciferase gene reporter assay showed that miR-126-3p was a downstream target gene of XIST. Overexpression of miR-126-3p significantly inhibited RA-FLS cell proliferation and induced RA-FLS cell apoptosis. In addition, down-regulation of XIST could increase the ratio of caspase-3 and Bax/Bcl-2. In addition, overexpression of miR-126-3p could inhibit the NF-κB signalling pathway by reducing the expression levels of p-p65 and p-IκBα in RA-FLS cells. In conclusion, down-regulation of XIST can inhibit the proliferation of synovial fibroblasts by increasing the expression levels of miR-126-3p/NF-κB, thereby inhibiting the occurrence and development of RA.
Collapse
Affiliation(s)
- Wei Liu
- Department of Rheumatology and Immunology, the First hospital of Qiqihar City, Qiqihar City, PR China
| | - Jing Song
- Department of Rheumatology and Immunology, the First hospital of Qiqihar City, Qiqihar City, PR China
| | - Xingyu Feng
- Department of Rheumatology and Immunology, the First hospital of Qiqihar City, Qiqihar City, PR China
| | - Haolong Yang
- Department of Orthopedics, the Third Affiliated Hospital of Qiqihar, Qiqihar City, PR China
| | - Wei Zhong
- Department of Rheumatology and Immunology, the First hospital of Qiqihar City, Qiqihar City, PR China
| |
Collapse
|
35
|
Wang YW, Wu YH, Zhang JZ, Tang JH, Fan RP, Li F, Yu BY, Kou JP, Zhang YY. Ruscogenin attenuates particulate matter-induced acute lung injury in mice via protecting pulmonary endothelial barrier and inhibiting TLR4 signaling pathway. Acta Pharmacol Sin 2021; 42:726-734. [PMID: 32855531 PMCID: PMC8114925 DOI: 10.1038/s41401-020-00502-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
The inhalation of particulate matter (PM) is closely related to respiratory damage, including acute lung injury (ALI), characterized by inflammatory fluid edema and disturbed alveolar-capillary permeability. Ruscogenin (RUS), the main active ingredient in the traditional Chinese medicine Ophiopogonis japonicus, has been found to exhibit anti-inflammatory activity and rescue LPS-induced ALI. In this study, we investigated whether and how RUS exerted therapeutic effects on PM-induced ALI. RUS (0.1, 0.3, 1 mg·kg-1·d-1) was orally administered to mice prior to or after intratracheal instillation of PM suspension (50 mg/kg). We showed that RUS administration either prior to or after PM challenge significantly attenuated PM-induced pathological injury, lung edema, vascular leakage and VE-cadherin expression in lung tissue. RUS administration significantly decreased the levels of cytokines IL-6 and IL-1β, as well as the levels of NO and MPO in both bronchoalveolar lavage fluid (BALF) and serum. RUS administration dose-dependently suppressed the phosphorylation of NF-κB p65 and the expression of TLR4 and MyD88 in lung tissue. Furthermore, TLR4 knockout partly diminished PM-induced lung injury, and abolished the protective effects of RUS in PM-instilled mice. In conclusion, RUS effectively alleviates PM-induced ALI probably by inhibition of vascular leakage and TLR4/MyD88 signaling. TLR4 might be crucial for PM to initiate pulmonary lesion and for RUS to exert efficacy against PM-induced lung injury.
Collapse
Affiliation(s)
- Yu-Wei Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yun-Hao Wu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Zhi Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Hui Tang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rui-Ping Fan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fang Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun-Ping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yuan-Yuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
36
|
Duan H, Khan GJ, Shang LJ, Peng H, Hu WC, Zhang JY, Hua J, Cassandra A, Rashed MM, Zhai KF. Computational pharmacology and bioinformatics to explore the potential mechanism of Schisandra against atherosclerosis. Food Chem Toxicol 2021; 150:112058. [DOI: 10.1016/j.fct.2021.112058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
|
37
|
Zhou S, Zou H, Huang G, Chen G, Zhou X, Huang S. Design, synthesis and anti-rheumatoid arthritis evaluation of double-ring conjugated enones. Bioorg Chem 2021; 109:104701. [PMID: 33601137 DOI: 10.1016/j.bioorg.2021.104701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022]
Abstract
Four series of double-ring conjugated enones were designed, synthesized and studied for the inhibition of synovial cell activity through the modification of Dysodensiol K core structure, double-ring, double-bond and double-carbonyl groups. For in vitro synovial cell assay of rats, compound 151 and 168 exhibited good inhibitory activities, with IC50 values of 2.71 ± 0.18 and 2.68 ± 0.16 μM respectively. At the same time, the LDH release and LD50 test results revealed that the target compounds were low cytotoxicity and acute toxicity. For in vivo CIA model test through the oral administration, compounds 151 and 168 were exhibited similar effect to positive control group methotrexate.
Collapse
Affiliation(s)
- Shiyang Zhou
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China; College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Huiying Zou
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| | - Gangliang Huang
- College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China.
| | - Xueming Zhou
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| | - Shuheng Huang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
38
|
Han Y, Wang J, Jin M, Jia L, Yan C, Wang Y. Shentong Zhuyu Decoction Inhibits Inflammatory Response, Migration, and Invasion and Promotes Apoptosis of Rheumatoid Arthritis Fibroblast-like Synoviocytes via the MAPK p38/PPAR γ/CTGF Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6187695. [PMID: 33511203 PMCID: PMC7826240 DOI: 10.1155/2021/6187695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The current study is aimed at exploring the effect of Shentong Zhuyu Decoction on the proliferation, migration, invasion, and apoptosis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and its underlying molecular mechanism. MATERIALS AND METHODS The type II collagen-induced arthritis (CIA) model was established. Subsequently, the RA-FLS were isolated from the CIA rat model and identified by immunohistochemistry. The viability, apoptosis, cell cycle, migration, and invasion of RA-FLS were detected by the cell counting kit 8 (CCK-8) assay, flow cytometry, wound-healing assay, and transwell invasion assay, respectively. The levels of MAPK p38, PPARγ, CTGF, Bcl-2, Bax, caspase-3, IL-1β, MMP-3, CDK4, and cyclin D1 were determined by qRT-PCR and western blotting, respectively. RESULTS After treatment with Shentong Zhuyu Decoction medicated serum, the OD570 value, migrative and invasive abilities, and the secretion of IL-1β, MMP-3 were remarkably decreased in RA-FLS, while the apoptosis rate was increased. Further, results showed that Shentong Zhuyu Decoction inhibited the transition from the G1 phase to S phase. Additionally, Shentong Zhuyu Decoction significantly inhibited the expression of Bcl-2, CDK4, cyclin D1, MAPK p-p38, and CTGF, whereas elevated the levels of Bax, caspase-3, and PPARγ. Importantly, the effects of Shentong Zhuyu Decoction were consistent with the trends of MAPK P38 inhibitor (SB203580) and PPARγ agonist (GW1929). CONCLUSIONS Shentong Zhuyu Decoction inhibited viability, inflammatory response, migration, invasion, and transition from the G1 phase to S phase and promoted apoptosis of RA-FLS via the MAPK p38/PPARγ/CTGF pathway.
Collapse
Affiliation(s)
- Ying Han
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Chinese Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Wang
- Department of Chinese Medicine Diagnostics, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Meng Jin
- Department of Chinese Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Jia
- Department II of Respiratory, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Cuihuan Yan
- Institute of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yali Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
39
|
Liao AM, Cai B, Huang JH, Hui M, Lee KK, Lee KY, Chun C. Synthesis, anticancer activity and potential application of diosgenin modified cancer chemotherapeutic agent cytarabine. Food Chem Toxicol 2020; 148:111920. [PMID: 33346046 DOI: 10.1016/j.fct.2020.111920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 01/31/2023]
Abstract
Diosgenin (DG), a steroidal saponin, is mainly found in yam tubers. DG and its derivatives displayed significant pharmacological activities against inflammatory, hyperlipidemia, and various cancers. DG was selected to modify the cancer chemotherapeutic agent cytarabine (Ara-C) due to its anti-tumor activities as well as lipophilicity. After characterization, the biomembrane affinity and the kinetic thermal processes of the obtained DG-Ara-C conjugate were evaluated by differential scanning calorimetry (DSC). Thin hydration method with sonication was applied to prepare the DG-Ara-C liposomes without cholesterol since the DG moiety has the similar basic structure with cholesterol with more advantages. Dynamic Light Scattering (DLS) analysis and cytotoxic analysis were employed to characterize the DG-Ara-C liposomes and investigate their biological activities, respectively. The results indicated that DG changed the biomembrane affinity of Ara-C and successfully replaced the cholesterol during the liposome preparation. The DG-Ara-C liposomes have an average particle size of around 116 nm with a narrow size distribution and revealed better anti-cancer activity against leukemia cells and solid tumor cells than that of free DG or Ara-C. Therefore, it can be concluded that DG displayed the potential application as an anti-cancer drug carrier to improve the bio-activities, since DG counted for a critical component in modulating the biomembrane affinity, preparation of liposome, and release of hydrophilic Ara-C from lipid vesicles.
Collapse
Affiliation(s)
- Ai-Mei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bangrong Cai
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea; Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450001, China
| | - Ji-Hong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Cooperation Science and Technology Institute, Luoyang, 471000, China
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Kyung-Ku Lee
- Testing and Evaluation Center for Dental Devices, Chonnam National University Dental Hospital, Gwangju, 61186, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - ChangJu Chun
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
40
|
Liu HW, Hu ZL, Li H, Tan QF, Tong J, Zhang YQ. Knockdown of lncRNA ANRIL suppresses the production of inflammatory cytokines and mucin 5AC in nasal epithelial cells via the miR-15a-5p/JAK2 axis. Mol Med Rep 2020; 23:145. [PMID: 33325534 PMCID: PMC7751488 DOI: 10.3892/mmr.2020.11784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The incidence of allergic rhinitis (AR) is increasing worldwide. Human nasal epithelial cells (HNECs) are the key cells in the occurrence of AR. Antisense non-coding RNA in the INK4 locus (ANRIL) was discovered to be involved in the progression of AR. However, the mechanism by which ANRIL mediates the progression of AR remains to be determined. The present study aimed to further explore the mechanism by which ANRIL regulates AR. Thereby, HNECs were treated with IL-13 to mimic AR in vitro. The mRNA expression levels of ANRIL, microRNA (miR)-15a-5p, JAK2, mucin 5AC (MUC5AC), granulocyte-macrophage colony-stimulating factor (GM-CSF) and eotaxin-1, and protein expression levels of JAK2, STAT3 and phosphorylated-STAT3 in HNECs were analyzed using reverse transcription-quantitative PCR and western blotting, respectively. ELISAs were used to detect the secretory levels of inflammatory cytokines and mucin in cell supernatants. In addition, a dual luciferase reporter assay was used to confirm the downstream target of ANRIL and the target gene of miR-15a-5p. The results revealed that the secretory levels of eotaxin-1, GM-CSF and MUC5AC were significantly upregulated by IL-13 in the supernatant of HNECs. The expression levels of ANRIL and JAK2 were also upregulated in IL-13-induced HNECs, while the expression levels of miR-15a-5p were downregulated. In addition, ANRIL was identified to bind to miR-15a-5p. The IL-13-induced upregulation of eotaxin-1, GM-CSF and MUC5AC mRNA expression and secretory levels was significantly inhibited by the genetic knockdown of ANRIL, while the miR-15a-5p inhibitor effectively reversed this effect. JAK2 was also discovered to be directly targeted by miR-15a-5p. The overexpression of JAK2 significantly suppressed the therapeutic effect of miR-15a-5p mimics on IL-13-induced inflammation in vitro. In conclusion, the findings of the present study suggested that the genetic knockdown of ANRIL may suppress the production of inflammatory cytokines and mucin in IL-13-treated HNECs via regulation of the miR-15a-5p/JAK2 axis. Thus, ANRIL may serve as a novel target for AR treatment.
Collapse
Affiliation(s)
- Huo-Wang Liu
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhong-Liang Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410007, P.R. China
| | - Hao Li
- Department of Otolaryngology-Head and Neck Surgery, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Qi-Feng Tan
- Department of Otolaryngology-Head and Neck Surgery, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Jing Tong
- Department of Otolaryngology-Head and Neck Surgery, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Yong-Quan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
41
|
Olas B, Urbańska K, Bryś M. Saponins as Modulators of the Blood Coagulation System and Perspectives Regarding Their Use in the Prevention of Venous Thromboembolic Incidents. Molecules 2020; 25:molecules25215171. [PMID: 33172028 PMCID: PMC7664220 DOI: 10.3390/molecules25215171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Saponins comprise a heterogenous group of chemical compounds containing a triterpene or steroid aglycone group and at least one sugar chain. They exist as secondary metabolites, occurring frequently in dicotyledonous plants and lower marine animals. Plant saponin extracts or single saponins have indicated antiplatelet and anticoagulant activity. Venous thromboembolism (VTE), including deep venous thrombosis and pulmonary embolism, is a multifactorial disease influenced by various patient characteristics such as age, immobility, previous thromboembolism and inherited thrombophilia. This mini-review (1) evaluates the current literature on saponins as modulators of the coagulation system, (2) discusses the impact of chemical structure on the modulation of the coagulation system, which may further provide a basis for drug or supplement design, (3) examines perspectives of their use in the prevention of VTE. It also describes the molecular mechanisms of action of the saponins involved in the prevention of VTE.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
- Correspondence: ; Tel./Fax: +48-42-6354485
| | - Karina Urbańska
- Faculty of Medicine, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland;
| |
Collapse
|
42
|
Lichota A, Szewczyk EM, Gwozdzinski K. Factors Affecting the Formation and Treatment of Thrombosis by Natural and Synthetic Compounds. Int J Mol Sci 2020; 21:E7975. [PMID: 33121005 PMCID: PMC7663413 DOI: 10.3390/ijms21217975] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Venous thromboembolism (VTE) refers to deep vein thrombosis (DVT), whose consequence may be a pulmonary embolism (PE). Thrombosis is associated with significant morbidity and mortality and is the third most common cardiovascular disease after myocardial infarction and stroke. DVT is associated with the formation of a blood clot in a deep vein in the body. Thrombosis promotes slowed blood flow, hypoxia, cell activation, and the associated release of many active substances involved in blood clot formation. All thrombi which adhere to endothelium consist of fibrin, platelets, and trapped red and white blood cells. In this review, we summarise the impact of various factors affecting haemostatic disorders leading to blood clot formation. The paper discusses the causes of thrombosis, the mechanism of blood clot formation, and factors such as hypoxia, the involvement of endothelial cells (ECs), and the activation of platelets and neutrophils along with the effects of bacteria and reactive oxygen species (ROS). Mechanisms related to the action of anticoagulants affecting coagulation factors including antiplatelet drugs have also been discussed. However, many aspects related to the pathogenesis of thrombosis still need to be clarified. A review of the drugs used to treat and prevent thrombosis and natural anticoagulants that occur in the plant world and are traditionally used in Far Eastern medicine has also been carried out.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Faculty of Pharmacy, Medical University of Lodz, 90-235 Lodz, Poland; (A.L.); (E.M.S.)
| | - Eligia M. Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Faculty of Pharmacy, Medical University of Lodz, 90-235 Lodz, Poland; (A.L.); (E.M.S.)
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
43
|
Wei H, Guan YD, Zhang LX, Liu S, Lu AP, Cheng Y, Cao DS. A combinatorial target screening strategy for deorphaning macromolecular targets of natural product. Eur J Med Chem 2020; 204:112644. [PMID: 32738412 DOI: 10.1016/j.ejmech.2020.112644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Natural products, as an ideal starting point for molecular design, play a pivotal role in drug discovery; however, ambiguous targets and mechanisms have limited their in-depth research and applications in a global dimension. In-silico target prediction methods have become an alternative to target identification experiments due to the high accuracy and speed, but most studies only use a single prediction method, which may reduce the accuracy and reliability of the prediction. Here, we firstly presented a combinatorial target screening strategy to facilitate multi-target screening of natural products considering the characteristics of diverse in-silico target prediction methods, which consists of ligand-based online approaches, consensus SAR modelling and target-specific re-scoring function modelling. To validate the practicability of the strategy, natural product neferine, a bisbenzylisoquinoline alkaloid isolated from the lotus seed, was taken as an example to illustrate the screening process and a series of corresponding experiments were implemented to explore the pharmacological mechanisms of neferine. The proposed computational method could be used for a complementary hypothesis generation and rapid analysis of potential targets of natural products.
Collapse
Affiliation(s)
- Hui Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Yi-Di Guan
- Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Liu-Xia Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, PR China
| | - Shao Liu
- Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Ai-Ping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, PR China
| | - Yan Cheng
- The Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China.
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, PR China; Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, PR China.
| |
Collapse
|
44
|
Xiao H, Li H, Song H, Kong L, Yan X, Li Y, Deng Y, Tai H, Wu Y, Ni Y, Li W, Chen J, Yang J. Shenzao jiannao oral liquid, an herbal formula, ameliorates cognitive impairments by rescuing neuronal death and triggering endogenous neurogenesis in AD-like mice induced by a combination of Aβ42 and scopolamine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112957. [PMID: 32416248 DOI: 10.1016/j.jep.2020.112957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the theory of traditional Chinese medicine (TCM), Alzheimer's disease (AD) is identified as "forgetfulness" or "dementia", and is mainly caused by "kidney essence deficiency" which ultimately induces "encephala reduction". Therefore, herbal formulas possessing the efficacy of nourishing kidney essence or replenishing brain marrow are commonly served as effective strategies for AD treatment. Shenzao jiannao oral liquid (SZJN), a traditional Chinese preparation approved by the China Food and Drug Administration (CFDA), is used for the treatment of insomnia and mind fatigue at present for its efficacy of nourishing kidneys. In present study, we found that SZJN could improve cognitive function of AD-like mice. AIMS OF STUDY This study aims to investigate the effects of SJZN on ameliorating cognitive deficits of AD-like mouse model, and to illuminate the underlying mechanisms from the perspective of neuroprotection and neurogenesis. MATERIALS AND METHODS Kunming mice (28 ± 2 g) were randomly allocated into seven groups: control, sham, model, donepezil and SZJN groups (low, middle and high). The AD mouse model was established by Aβ42 combined with scopolamine. SZJN were intragastrically administrated at doses of 0.3, 1.5 and 7.5 g/kg for 28 days. Morris water maze (MWM) test was applied to determine the cognitive function. Hematoxylin eosin (HE) and Nissl staining were carried out to evaluate pathological damages in the cortex and hippocampal tissues. To explore the protective effects of SZJN on multiple pathogenic factors of AD, protein levels of Aβ42, glial fibrillary acidic protein (GFAP), Bax, Bcl-2, Caspase-3, synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), and neurogenesis related proteins were assessed using Immunofluorescence (IF) and western blot analysis. In vitro, the AD cell model was established by transduction of APP695swe genes into Neural stem cells (NSCs) isolated from the hippocampal tissues of neonatal C57BL/6 mice. Cell viability assay and neurosphere formation assay were carried out to verify the efficacy of SZJN on proliferation of NSCs. RESULTS Our results demonstrated that SZJN (1.5 g/kg and 7.5 g/kg) treatment significantly ameliorated cognitive deficits of AD-like mice. SZJN (7.5 g/kg) treatment significantly retarded the pathological damages including neuronal degeneration, neuronal apoptosis, Aβ peptides aggregation and reaction of astrocytes in AD-like mice. In addition, SZJN (7.5 g/kg) increased the expression of BDNF and SYP, and restored the abnormal level of MDA and SOD in the brain of AD-like mice. Furthermore, SZJN treatment for 28 days remarkably increased the proliferation of NSCs evidenced by more Nestin+ and BrdU+ cells in the hippocampal DG regions, and increased the amount of mature neurons marked by NeuN both in the cortex and hippocampal DG regions. In vitro, SZJN treatement (16, 32, 64 mg/ml) promoted the proliferation of NSCs evidenced by the increased amount and enlarged size of the neurospheres (p < 0.05). CONCLUSIONS Our findings indicated that SZJN could ameliorate cognitive deficits by protecting neurons from death and triggering endogenous neurogenesis. Therefore, SZJN may be considered as a promising agent to restore neuronal loss and deter the deterioration in AD patients.
Collapse
Affiliation(s)
- Honghe Xiao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China.
| | - Hongyan Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Huipeng Song
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Liang Kong
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Xin Yan
- Diaoyutai Pharmaceutical Group Jilin Tianqiang Pharmaceutical co. LTD, 309 Renmin Street, Tonghua, 135300, PR China
| | - Yan Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Yan Deng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - He Tai
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Visera-State Theory and Application, Liaoning University of Traditional Chinese Medicine, Huanggu District Chongshan Road No. 79, Shenyang, Liaoning, 110847, PR China
| | - Yutong Wu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Yingnan Ni
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Wanyi Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Jicong Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Jingxian Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China.
| |
Collapse
|
45
|
Wang J, Tian J, He YH, Yang ZW, Wang L, Lai YX, Xu P. Role of CARD9 in inflammatory signal pathway of peritoneal macrophages in severe acute pancreatitis. J Cell Mol Med 2020; 24:9774-9785. [PMID: 32790017 PMCID: PMC7520331 DOI: 10.1111/jcmm.15559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/24/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022] Open
Abstract
Previous studies revealed that caspase recruitment domain protein 9 (CARD9) was involved in severe acute pancreatitis (SAP) inflammation and that interfering with its expression in vivo could inhibit inflammation. However, the specific mechanism is unknown. This study aimed to discover the related signal pathways of CARD9 in macrophages. SiRNA interference technology was used in vivo and in vitro to detect CARD9‐related signal pathways in peritoneal macrophages. Furthermore, Toll‐like receptor 4 (TLR4) and membrane‐associated C‐type lectin‐1 (Dectin‐1) pathways in macrophages were activated specially to looking for the upstream signal path of CARD9. Results showed up‐regulation of CARD9 expression in peritoneal macrophages of SAP rats (P < .05). CARD9 siRNA alleviated inflammatory cytokines, and inhibited the phosphorylation of NF‐κB and p38MAPK in peritoneal macrophages in vivo or in vitro. Meanwhile, CARD9 siRNA reduced the concentration of CARD9 and Bcl10 in peritoneal macrophages, and TLR4 and Dectin‐1 took part in CARD9 signal pathways in macrophages. In conclusion, there is an inflammation signal pathway comprised of TLR4/Dectin‐1‐CARD9‐NF‐κB/p38MAPK activated in macrophages in SAP. Blockade of CARD9 expression in macrophages can effectively alleviate SAP inflammation.
Collapse
Affiliation(s)
- Jing Wang
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China.,Shanghai Songjiang Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jun Tian
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China
| | - Yang-Huan He
- Jinshan Hospital of Fudan University, Shanghai, China
| | - Zhi-Wen Yang
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China.,Shanghai Songjiang Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Shanghai Songjiang Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yue-Xing Lai
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China.,Shanghai Songjiang Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Ping Xu
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China
| |
Collapse
|
46
|
Kong L, Wang L, Zhao Q, Di G, Wu H. Rhodojaponin II inhibits TNF-α-induced inflammatory cytokine secretion in MH7A human rheumatoid arthritis fibroblast-like synoviocytes. J Biochem Mol Toxicol 2020; 34:e22551. [PMID: 32613688 DOI: 10.1002/jbt.22551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/29/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Rhodojaponin II (R-II) has been shown to possess anti-inflammatory activity. Herein, we aimed to explore the effect of R-II on tumor necrosis factor-α (TNF-α)-induced inflammation in MH7A rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs). We found that R-II treatment at high concentration suppressed the viability of MH7A cells. R-II suppressed the levels of nitric oxide and prostaglandin E2, and inhibited messenger RNA expression and concentrations of interleukin-1β (IL-1β), IL-6 and matrix metalloproteinase-1 in TNF-α-stimulated RA-FLSs. Additionally, R-II repressed TNF-α-induced activation of the Akt, nuclear factor-κB (NF-κB), and toll-like receptor 4 (TLR4)/MyD88 pathways in MH7A cells. Inhibition of the Akt, NF-κB, and TLR4/MyD88 pathways by the corresponding inhibitors reinforced the inhibitory effect of R-II on TNF-α-induced inflammatory cytokine secretion in MH7A cells. R-II ameliorated the severity of collagen-induced arthritis in mice by inhibiting inflammation. In conclusion, R-II repressed TNF-α-induced inflammatory response in MH7A cells by inactivating the Akt, NF-κB, and TLR4/MyD88 pathways.
Collapse
Affiliation(s)
- Lingli Kong
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Laifang Wang
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Qing Zhao
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Guijuan Di
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Huiqiang Wu
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
47
|
Wang G, Wang T, Hu Y, Wang J, Wang Y, Zhang Y, Li F, Liu W, Sun Y, Yu B, Kou J. NMMHC IIA triggers neuronal autophagic cell death by promoting F-actin-dependent ATG9A trafficking in cerebral ischemia/reperfusion. Cell Death Dis 2020; 11:428. [PMID: 32513915 PMCID: PMC7280511 DOI: 10.1038/s41419-020-2639-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
Previous findings have shown that non-muscle myosin heavy-chain IIA (NMMHC IIA) is involved in autophagy induction triggered by starvation in D. melanogaster; however, its functional contribution to neuronal autophagy remains unclear. The aim of this study is to explore the function of NMMHC IIA in cerebral ischemia-induced neuronal autophagy and the underlying mechanism related to autophagy-related gene 9A (ATG9A) trafficking. Functional assays and molecular mechanism studies were used to investigate the role of NMMHC IIA in cerebral ischemia-induced neuronal autophagy in vivo and in vitro. A middle cerebral artery occlusion (MCAO) model in mice was used to evaluate the therapeutic effect of blebbistatin, a myosin II ATPase inhibitor. Herein, either depletion or knockdown of NMMHC IIA led to increased cell viability in both primary cultured cortical neurons and pheochromocytoma (PC12) cells exposed to oxygen–glucose deprivation/reoxygenation (OGD/R). In addition, NMMHC IIA and autophagic marker LC3B were upregulated by OGD/R, and inhibition of NMMHC IIA significantly reduced OGD-induced neuronal autophagy. Furthermore, NMMHC IIA-induced autophagy is through its interactions with F-actin and ATG9A in response to OGD/R. The NMMHC IIA–actin interaction contributes to ATG9A trafficking and autophagosome formation. Inhibition of the NMMHC IIA–actin interaction using blebbistatin and the F-actin polymerization inhibitor cytochalasin D significantly suppressed ATG9A trafficking and autophagy induction. Furthermore, blebbistatin significantly improved neurological deficits and infarct volume after ischemic attack in mice, accompanied by ATG9A trafficking and autophagy inhibition. These findings demonstrate neuroprotective effects of NMMHC IIA inhibition on regulating ATG9A trafficking-dependent autophagy activation in the context of cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Guangyun Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tiezheng Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yang Hu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jieman Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Wang
- Department of Neurology, University of California, Davis, School of Medicine and Shriners Hospital, Sacramento, CA, 95817, Berkeley, USA
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fang Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wentao Liu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 210029, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Boyang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Resource and Developmemt of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Junping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
48
|
Lu E, Wang Q, Li S, Chen C, Wu W, Xu YXZ, Zhou P, Tu W, Lou X, Rao G, Yang G, Jiang S, Zhou K. Profilin 1 knockdown prevents ischemic brain damage by promoting M2 microglial polarization associated with the RhoA/ROCK pathway. J Neurosci Res 2020; 98:1198-1212. [PMID: 32291804 DOI: 10.1002/jnr.24607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ermei Lu
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Qian Wang
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Shengcun Li
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Caiming Chen
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Weibo Wu
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Yang Xin Zi Xu
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
| | - Peng Zhou
- Department of Anatomy Wenzhou Medical University Wenzhou China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Xinfa Lou
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Gaofeng Rao
- Department of Rehabilitation Medicine The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| |
Collapse
|
49
|
Xiao H, Wang Y, Wu Y, Li H, Liang X, Lin Y, Kong L, Ni Y, Deng Y, Li Y, Li W, Yang J. Osthole ameliorates cognitive impairments via augmenting neuronal population in APP / PS1 transgenic mice. Neurosci Res 2020; 164:33-45. [PMID: 32302734 DOI: 10.1016/j.neures.2020.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with notable factors of dysfunction in multiple neurological changes, encompassing neuronal loss in the frontal cortex and hippocampal regions. Dysfunction of proliferation and self-renewal of neural stem cells (NSCs) was observed in AD patients and animals. Thereby, mobilizing endogenous neurogenesis by pharmacological agents would provide a promising route for neurodegeneration. Osthole (Ost), a natural coumarin derivative, has been reported to exert extensive neuroprotective effects in AD. However, whether ost can facilitate endogenous neurogenesis against AD in vivo is still unknown. In this study, by using Morris water maze (MWM) test, hematoxylin-eosin (HE) staining, Nissl staining, immunofluorescence analysis and western blot, we demonstrated that oral administration of ost could improve the learning and memory function, inhibit neuronal apoptosis, elevate the expression of glial cell line derived neurotrophic factor (GDNF), synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). Moreover, ost could remarkably enhance proliferation of NSCs and increase the amount of mature neurons in APP/PS1 transgenic mice. Together, our findings demonstrated that ost possessed the ability of promoting endogenous neurogenesis and ost could be served as a plausible agent to reverse or slow down the progress of AD.
Collapse
Affiliation(s)
- Honghe Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Yuying Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yutong Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hongyan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xicai Liang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yin Lin
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yingnan Ni
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan Deng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wanyi Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jingxian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
50
|
Li X, Wu G, Li M, Zhang Z. Oleanolic acid administration alleviates neuropathic pain after a peripheral nerve injury by regulating microglia polarization-mediated neuroinflammation. RSC Adv 2020; 10:12920-12928. [PMID: 35492085 PMCID: PMC9051258 DOI: 10.1039/c9ra10388k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/07/2020] [Indexed: 11/21/2022] Open
Abstract
Neuropathic pain caused by a peripheral nerve injury constitutes a great challenge in clinical treatments due to the unsatisfactory efficacy of the current strategy. Microglial activation-mediated neuroinflammation is a major characteristic of neuropathic pain. Oleanolic acid is a natural triterpenoid in food and medical plants, and fulfills pleiotropic functions in inflammatory diseases. Nevertheless, its role in neuropathic pain remains poorly elucidated. In the current study, oleanolic acid dose-dependently suppressed LPS-evoked IBA-1 expression (a microglial marker) without cytotoxicity to microglia, suggesting the inhibitory efficacy of oleanolic acid in microglial activation. Moreover, oleanolic acid incubation offset LPS-induced increases in the iNOS transcript and NO releases from microglia, concomitant with the decreases in pro-inflammatory cytokine transcripts and production including IL-6, IL-1β, and TNF-α. Simultaneously, oleanolic acid shifted the microglial polarization from the M1 phenotype to the M2 phenotype upon LPS conditions by suppressing LPS-induced M1 marker CD16, CD86 transcripts, and enhancing the M2 marker Arg-1 mRNA and anti-inflammatory IL-10 levels. In addition, the LPS-induced activation of TLR4-NF-κB signaling was suppressed in the microglia after the oleanolic acid treatment. Restoring this signaling by the TLR4 plasmid transfection overturned the suppressive effects of oleanolic acid on microglial polarization-evoked inflammation. In vivo, oleanolic acid injection alleviated allodynia and hyperalgesia in SNL-induced neuropathic pain mice. Concomitantly, oleanolic acid facilitated microglial polarization to M2, accompanied by inhibition in inflammatory cytokine levels and activation of TLR4-NF-κB signaling. Collectively, these findings confirm that oleanolic acid may ameliorate neuropathic pain by promoting microglial polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotype via the TLR4-NF-κB pathway, thereby indicating its usefulness as therapeutic intervention in neuropathic pain. Neuropathic pain caused by a peripheral nerve injury constitutes a great challenge in clinical treatments due to the unsatisfactory efficacy of the current strategy.![]()
Collapse
Affiliation(s)
- Xuyang Li
- Department of Anesthesiology
- China-Japan Union Hospital of Jilin University
- Changchun City
- P. R. China
| | - Guangzhi Wu
- Department of Hand Surgery
- China-Japan Union Hospital of Jilin University
- Changchun City
- P. R. China
| | - Miyang Li
- Department of Clinical Laboratory
- China-Japan Union Hospital of Jilin University
- Changchun City
- P. R. China
| | - Zhan Zhang
- Department of Hand Surgery
- China-Japan Union Hospital of Jilin University
- Changchun City
- P. R. China
| |
Collapse
|