1
|
Pitea M, Lanzafame R, Sala E, Crocè L, Mora S. Hypoparathyroidism: an update on new therapeutic approaches. Endocrine 2024:10.1007/s12020-024-04057-y. [PMID: 39397231 DOI: 10.1007/s12020-024-04057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Hypoparathyroidism is a rare endocrine disease characterized by insufficient parathyroid hormone (PTH) secretion by the parathyroid glands, leading to hypocalcemia. In contrast to most hormone deficiencies for which hormone replacement is currently the mainstay of therapy, hypoparathyroidism has conventionally been treated with calcium supplements and active analogs of vitamin D. Although the advent of a replacement therapy with 1-34 and 1-84 PTH represented a major step in the therapeutic history of hypoparathyroidism, several new molecules and different management strategies have recently been developed. PURPOSE This review investigates the therapeutic approaches currently under investigation for the treatment of hypoparathyroidism. Clinical trials results have been considered and discussed.
Collapse
Affiliation(s)
- Marco Pitea
- Department of Pediatrics, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ruggero Lanzafame
- Department of Pediatrics, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Elisa Sala
- Department of Pediatrics, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ludovica Crocè
- Department of Pediatrics, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Stefano Mora
- Department of Pediatrics, IRCCS Ospedale San Raffaele, Milano, Italy.
- Laboratory of Pediatric Endocrinology, IRCCS Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
2
|
He X, Narushima K, Kojima M, Nagai C, Li K. Pharmacokinetics, Pharmacodynamics, and Safety of Evocalcet (KHK7580), a Novel Calcimimetic Agent: An Open-Label, Single- and Multiple-Dose, Phase I Trial in Healthy Chinese Subjects. Drug Des Devel Ther 2024; 18:567-581. [PMID: 38436038 PMCID: PMC10906727 DOI: 10.2147/dddt.s437903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/04/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose This study explored the pharmacokinetics (PK), pharmacodynamics (PD), and safety of evocalcet (KHK7580), a new calcimimetic agent, in healthy Chinese subjects following single and multiple doses. Methods This was a single-center, open-label phase I trial conducted in China. The study started from the single-dose cohorts (1, 3, 6, 12 mg evocalcet, step-by-step administration) and proceeded to the multiple-dose cohort (6 mg evocalcet once daily for eight days). Blood and urine samples were collected at the designated time points for pharmacokinetic and pharmacodynamic analysis. Safety was evaluated by treatment-emergent adverse events (TEAEs), clinical laboratory tests, vital signs, electrocardiograms (ECGs), and ophthalmological examination. Results Among 42 enrolled subjects, eight in each single-dose cohort and 10 in multiple-dose cohort, 40 subjects completed the study. In single-dose cohorts, tmax was 1.00-2.00 h and declined biphasically. The mean t1/2 was 15.99-20.84 h. Evocalcet exposure in AUC0-inf, AUC0-t, and Cmax showed a dose-proportional increase. In the multiple-dose cohort, tmax was 2.00 h and declined biphasically after multiple administrations. The accumulation was negligible. Ctrough levels were similar across days and steady from 24 hours after the first administration. The mean t1/2 was 15.59 h. PD analysis showed that evocalcet decreased intact parathyroid hormone and corrected calcium levels in a dose-dependent manner. Seventeen (40.5%) subjects reported TEAEs. No serious or severe TEAE occurred. Conclusion In healthy Chinese subjects, evocalcet demonstrated dose-dependent PK and PD properties and was well-tolerated.
Collapse
Affiliation(s)
- Xuemei He
- Clinical Trial Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application, Beijing, People’s Republic of China
| | - Kazuya Narushima
- Research & Development Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Masahiro Kojima
- Research & Development Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Chisato Nagai
- Research & Development Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Kexin Li
- Clinical Trial Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Chen FF, He XF, Zhu XX, Zhang Z, Shen XY, Chen Q, Xu JH, Turner NJ, Zheng GW. Discovery of an Imine Reductase for Reductive Amination of Carbonyl Compounds with Sterically Challenging Amines. J Am Chem Soc 2023; 145:4015-4025. [PMID: 36661845 DOI: 10.1021/jacs.2c11354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The synthesis of structurally diverse amines is of fundamental significance in the pharmaceutical industry due to the ubiquitous presence of amine motifs in biologically active molecules. Biocatalytic reductive amination for amine production has attracted great interest owing to its synthetic advantages. Herein, we report the direct synthesis of a wide range of sterically demanding secondary amines, including several important active pharmaceutical ingredients and pharmaceutical intermediates, via reductive amination of carbonyl substrates and bulky amine nucleophiles employing imine reductases. Key to success for this route is the identification of an imine reductase from Penicillium camemberti with unusual substrate specificity and its further engineering, which empowered the accommodation of a broad range of sterically demanding amine nucleophiles encompassing linear alkyl and (hetero)aromatic (oxy)alkyl substituents and the formation of final amine products with up to >99% conversion. The practical utility of the biocatalytic route has been demonstrated by its application in the preparative synthesis of the anti-hyperparathyroidism drug cinacalcet.
Collapse
Affiliation(s)
- Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xue-Feng He
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Xin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhi Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Yuan Shen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Nicholas J Turner
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Newey PJ, Hannan FM, Wilson A, Thakker RV. Genetics of monogenic disorders of calcium and bone metabolism. Clin Endocrinol (Oxf) 2022; 97:483-501. [PMID: 34935164 PMCID: PMC7614875 DOI: 10.1111/cen.14644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 11/07/2021] [Indexed: 12/19/2022]
Abstract
Disorders of calcium homeostasis are the most frequent metabolic bone and mineral disease encountered by endocrinologists. These disorders usually manifest as primary hyperparathyroidism (PHPT) or hypoparathyroidism (HP), which have a monogenic aetiology in 5%-10% of cases, and may occur as an isolated endocrinopathy, or as part of a complex syndrome. The recognition and diagnosis of these disorders is important to facilitate the most appropriate management of the patient, with regard to both the calcium-related phenotype and any associated clinical features, and also to allow the identification of other family members who may be at risk of disease. Genetic testing forms an important tool in the investigation of PHPT and HP patients and is usually reserved for those deemed to be an increased risk of a monogenic disorder. However, identifying those suitable for testing requires a thorough clinical evaluation of the patient, as well as an understanding of the diversity of relevant phenotypes and their genetic basis. This review aims to provide an overview of the genetic basis of monogenic metabolic bone and mineral disorders, primarily focusing on those associated with abnormal calcium homeostasis, and aims to provide a practical guide to the implementation of genetic testing in the clinic.
Collapse
Affiliation(s)
- Paul J Newey
- Division of Molecular and Clinical Medicine, Ninewells Hospital & Medical School, University of Dundee, Scotland, UK
| | - Fadil M Hannan
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Abbie Wilson
- Division of Molecular and Clinical Medicine, Ninewells Hospital & Medical School, University of Dundee, Scotland, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Mayer CA, Roos B, Teske J, Wells N, Martin RJ, Chang W, Pabelick CM, Prakash YS, MacFarlane PM. Calcium-sensing receptor and CPAP-induced neonatal airway hyperreactivity in mice. Pediatr Res 2022; 91:1391-1398. [PMID: 33958714 PMCID: PMC8571113 DOI: 10.1038/s41390-021-01540-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Continuous positive airway pressure (CPAP) in preterm infants is initially beneficial, but animal models suggest longer term detrimental airway effects towards asthma. We used a neonatal CPAP mouse model and human fetal airway smooth muscle (ASM) to investigate the role of extracellular calcium-sensing receptor (CaSR) in these effects. METHODS Newborn wild type and smooth muscle-specific CaSR-/- mice were given CPAP for 7 days via a custom device (mimicking CPAP in premature infants), and recovered in normoxia for another 14 days (representing infants at 3-4 years). Airway reactivity was tested using lung slices, and airway CaSR quantified. Role of CaSR was tested using NPS2143 (inhibitor) or siRNA in WT mice. Fetal ASM cells stretched cyclically with/without static stretch mimicking breathing and CPAP were analyzed for intracellular Ca2+ ([Ca2+]i) responses, role of CaSR, and signaling cascades. RESULTS CPAP increased airway reactivity in WT but not CaSR-/- mice, increasing ASM CaSR. NPS2143 or CaSR siRNA reversed CPAP effects in WT mice. CPAP increased fetal ASM [Ca2+]I, blocked by NPS2143, and increased ERK1/2 and RhoA suggesting two mechanisms by which stretch increases CaSR. CONCLUSIONS These data implicate CaSR in CPAP effects on airway function with implications for wheezing in former preterm infants. IMPACT Neonatal CPAP increases airway reactivity to bronchoconstrictor agonist. CPAP increases smooth muscle expression of the extracellular calcium-sensing receptor (CaSR). Inhibition or absence of CaSR blunts CPAP effects on contractility. These data suggest a causal/contributory role for CaSR in stretch effects on the developing airway. These data may impact clinical recognition of the ways that CPAP may contribute to wheezing disorders of former preterm infants.
Collapse
Affiliation(s)
- Catherine A Mayer
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jacob Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Natalya Wells
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Wenhan Chang
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Peter M MacFarlane
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Wade L, Aindow A, Isherwood L, Mughal MZ, Ramakrishnan R. Successful use of cinacalcet monotherapy in the management of siblings with homozygous calcium-sensing receptor mutation. J Pediatr Endocrinol Metab 2022; 35:549-556. [PMID: 35073615 DOI: 10.1515/jpem-2021-0632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Neonatal severe hyperparathyroidism (NSHPT) due to pathogenic mutations in the calcium-sensing receptor (CASR) is a serious medical condition that can lead to symptomatic hypercalcaemia and has detrimental effects on a child's growth and development. What is new: This report adds to evidence that homozygous CASR mutations can be managed with cinacalcet monotherapy as an alternative to parathyroidectomy. And, early use of cinacalcet in NSHPT can result in improvements in symptoms, growth and developmental milestones. CASE PRESENTATION We present two siblings with NSHPT due to homozygous mutation in the CASR gene with moderate hypercalcaemia. Both were treated with cinacalcet monotherapy and showed significant improvement in growth parameters including head circumference, developmental milestones and hypercalcaemic symptoms, once their calcium and parathyroid hormone levels normalised. CONCLUSIONS This report highlights the role of cinacalcet in managing elevated serum calcium levels in a select group of infants with NSHPT due to homozygous CASR mutations, resulting in improvement in hypercalcaemic symptoms, growth and neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Laura Wade
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Anita Aindow
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | | | - M Zulf Mughal
- Manchester Foundation NHS Trust, Manchester, UK.,Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | | |
Collapse
|
7
|
Wu WY, Lee SP, Chiang BJ, Lin WY, Chien CT. Urothelial Calcium-Sensing Receptor Modulates Micturition Function via Mediating Detrusor Activity and Ameliorates Bladder Hyperactivity in Rats. Pharmaceuticals (Basel) 2021; 14:ph14100960. [PMID: 34681183 PMCID: PMC8537609 DOI: 10.3390/ph14100960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
The urothelium displays mechano- and chemosensory functions via numerous receptors and channels. The calcium-sensing receptor (CaSR) detects extracellular calcium and modulates several physiological functions. Nonetheless, information about the expression and the role of CaSR in lower urinary tract has been absent. We aimed to determine the existence of urothelial CaSR in urinary bladder and its effect on micturition function. We utilized Western blot to confirm the expression of CaSR in bladder and used immunofluorescence to verify the location of the CaSR in the bladder urothelium via colocalization with uroplakin III A. The activation of urothelial CaSR via the CaSR agonist, AC-265347 (AC), decreased urinary bladder smooth muscle (detrusor) activity, whereas its inhibition via the CaSR antagonist, NPS-2143 hydrochloride (NPS), increased detrusor activity in in vitro myography experiments. Cystometry, bladder nerve activities recording, and bladder surface microcirculation detection were conducted to evaluate the effects of the urothelial CaSR via intravesical administrations. Intravesical AC inhibited micturition reflex, bladder afferent and efferent nerve activities, and reversed cystitis-induced bladder hyperactivity. The urothelial CaSR demonstrated a chemosensory function, and modulated micturition reflex via regulating detrusor activity. This study provided further evidence of how the urothelial CaSR mediated micturition and implicated the urothelial CaSR as a potential pharmacotherapeutic target in the intervention of bladder disorders.
Collapse
Affiliation(s)
- Wei-Yi Wu
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Shih-Pin Lee
- Department of Public Health, International College, Krirk University, Bangkok 10220, Thailand;
| | - Bing-Juin Chiang
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan;
- College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
- Department of Urology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- Correspondence: (B.-J.C.); (W.-Y.L.); (C.-T.C.); Tel.: +886-2-77496312 (C.-T.C.)
| | - Wei-Yu Lin
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan;
- Department of Urology, Ministry of Health and Welfare, Taipei Hospital, New Taipei City 24213, Taiwan
- Correspondence: (B.-J.C.); (W.-Y.L.); (C.-T.C.); Tel.: +886-2-77496312 (C.-T.C.)
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan;
- Correspondence: (B.-J.C.); (W.-Y.L.); (C.-T.C.); Tel.: +886-2-77496312 (C.-T.C.)
| |
Collapse
|
8
|
A novel case of neonatal severe hyperparathyroidism successfully treated with a type II calcimimetic drug. Bone Rep 2021; 14:100761. [PMID: 33748353 PMCID: PMC7972953 DOI: 10.1016/j.bonr.2021.100761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
We report a boy with hypercalcemia due to neonatal severe hyperparathyroidism (NSHPT) caused by a compound heterozygous mutation in the calcium sensing receptor (CaSR) managed successfully on a type II calcimimetic drug. The hypercalcemia was temporarily treated by hyperhydration, bisphosphonate and calcium depleted milk. At 29 days of age cinacalcet was introduced. The starting dose was 0.5 mg/kg/day and was subsequently titrated to the point of efficacy (5.2 mg/kg/day) when a persuasive reduction in parathyroid hormone and calcium concentrations was observed. We propose a trial of type II calcimimetics in newborns with NSHPT irrespective of the genetic mutation and advocate that residual functionality of the CaSR predict the drug efficacy.
Collapse
|
9
|
Hannan FM, Stevenson M, Bayliss AL, Stokes VJ, Stewart M, Kooblall KG, Gorvin CM, Codner G, Teboul L, Wells S, Thakker RV. Ap2s1 mutation causes hypercalcaemia in mice and impairs interaction between calcium-sensing receptor and adaptor protein-2. Hum Mol Genet 2021; 30:880-892. [PMID: 33729479 PMCID: PMC8165646 DOI: 10.1093/hmg/ddab076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Adaptor protein 2 (AP2), a heterotetrameric complex comprising AP2α, AP2β2, AP2μ2 and AP2σ2 subunits, is ubiquitously expressed and involved in endocytosis and trafficking of membrane proteins, such as the calcium-sensing receptor (CaSR), a G-protein coupled receptor that signals via Gα11. Mutations of CaSR, Gα11 and AP2σ2, encoded by AP2S1, cause familial hypocalciuric hypercalcaemia types 1–3 (FHH1–3), respectively. FHH3 patients have heterozygous AP2S1 missense Arg15 mutations (p.Arg15Cys, p.Arg15His or p.Arg15Leu) with hypercalcaemia, which may be marked and symptomatic, and occasional hypophosphataemia and osteomalacia. To further characterize the phenotypic spectrum and calcitropic pathophysiology of FHH3, we used CRISPR/Cas9 genome editing to generate mice harboring the AP2S1 p.Arg15Leu mutation, which causes the most severe FHH3 phenotype. Heterozygous (Ap2s1+/L15) mice were viable, and had marked hypercalcaemia, hypermagnesaemia, hypophosphataemia, and increases in alkaline phosphatase activity and fibroblast growth factor-23. Plasma 1,25-dihydroxyvitamin D was normal, and no alterations in bone mineral density or bone turnover were noted. Homozygous (Ap2s1L15/L15) mice invariably died perinatally. Co-immunoprecipitation studies showed that the AP2S1 p.Arg15Leu mutation impaired protein–protein interactions between AP2σ2 and the other AP2 subunits, and also with the CaSR. Cinacalcet, a CaSR positive allosteric modulator, decreased plasma calcium and parathyroid hormone concentrations in Ap2s1+/L15 mice, but had no effect on the diminished AP2σ2-CaSR interaction in vitro. Thus, our studies have established a mouse model that is representative for FHH3 in humans, and demonstrated that the AP2S1 p.Arg15Leu mutation causes a predominantly calcitropic phenotype, which can be ameliorated by treatment with cinacalcet.
Collapse
Affiliation(s)
- Fadil M Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Mark Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Asha L Bayliss
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Victoria J Stokes
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Michelle Stewart
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Kreepa G Kooblall
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Caroline M Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK
| | - Gemma Codner
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Lydia Teboul
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Sara Wells
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK
| |
Collapse
|
10
|
Roesler AM, Ravix J, Bartman CM, Patel BS, Schiliro M, Roos B, Nesbitt L, Pabelick CM, Martin RJ, MacFarlane PM, Prakash YS. Calcium-Sensing Receptor Contributes to Hyperoxia Effects on Human Fetal Airway Smooth Muscle. Front Physiol 2021; 12:585895. [PMID: 33790802 PMCID: PMC8006428 DOI: 10.3389/fphys.2021.585895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Supplemental O2 (hyperoxia), necessary for maintenance of oxygenation in premature infants, contributes to neonatal and pediatric airway diseases including asthma. Airway smooth muscle (ASM) is a key resident cell type, responding to hyperoxia with increased contractility and remodeling [proliferation, extracellular matrix (ECM) production], making the mechanisms underlying hyperoxia effects on ASM significant. Recognizing that fetal lungs experience a higher extracellular Ca2+ ([Ca2+]o) environment, we previously reported that the calcium sensing receptor (CaSR) is expressed and functional in human fetal ASM (fASM). In this study, using fASM cells from 18 to 22 week human fetal lungs, we tested the hypothesis that CaSR contributes to hyperoxia effects on developing ASM. Moderate hyperoxia (50% O2) increased fASM CaSR expression. Fluorescence [Ca2+]i imaging showed hyperoxia increased [Ca2+]i responses to histamine that was more sensitive to altered [Ca2+]o, and promoted IP3 induced intracellular Ca2+ release and store-operated Ca2+ entry: effects blunted by the calcilytic NPS2143. Hyperoxia did not significantly increase mitochondrial calcium which was regulated by CaSR irrespective of oxygen levels. Separately, fASM cell proliferation and ECM deposition (collagens but not fibronectin) showed sensitivity to [Ca2+]o that was enhanced by hyperoxia, but blunted by NPS2143. Effects of hyperoxia involved p42/44 ERK via CaSR and HIF1α. These results demonstrate functional CaSR in developing ASM that contributes to hyperoxia-induced contractility and remodeling that may be relevant to perinatal airway disease.
Collapse
Affiliation(s)
- Anne M Roesler
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jovanka Ravix
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Brijeshkumar S Patel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Marta Schiliro
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Benjamin Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Richard J Martin
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Peter M MacFarlane
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Tőke J, Czirják G, Enyedi P, Tóth M. Rare diseases caused by abnormal calcium sensing and signalling. Endocrine 2021; 71:611-617. [PMID: 33528764 PMCID: PMC8016752 DOI: 10.1007/s12020-021-02620-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
The calcium-sensing receptor (CaSR) provides the major mechanism for the detection of extracellular calcium concentration in several cell types, via the induction of G-protein-coupled signalling. Accordingly, CaSR plays a pivotal role in calcium homeostasis, and the CaSR gene defects are related to diseases characterized by serum calcium level changes. Activating mutations of the CaSR gene cause enhanced sensitivity to extracellular calcium concentration resulting in autosomal dominant hypocalcemia or Bartter-syndrome type V. Inactivating CaSR gene mutations lead to resistance to extracellular calcium. In these cases, familial hypocalciuric hypercalcaemia (FHH1) or neonatal severe hyperparathyroidism (NSHPT) can develop. FHH2 and FHH3 are associated with mutations of genes of partner proteins of calcium signal transduction. The common polymorphisms of the CaSR gene have been reported not to affect the calcium homeostasis itself; however, they may be associated with the increased risk of malignancies.
Collapse
Affiliation(s)
- Judit Tőke
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Gábor Czirják
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Miklós Tóth
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
The Calcilytic Drug Calhex-231 Ameliorates Vascular Hyporesponsiveness in Traumatic Hemorrhagic Shock by Inhibiting Oxidative Stress and miR-208a-Mediated Mitochondrial Fission. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4132785. [PMID: 33343806 PMCID: PMC7732383 DOI: 10.1155/2020/4132785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/27/2020] [Accepted: 11/26/2020] [Indexed: 12/29/2022]
Abstract
Background The calcium-sensing receptor (CaSR) plays a fundamental role in extracellular calcium homeostasis in humans. Surprisingly, CaSR is also expressed in nonhomeostatic tissues and is involved in regulating diverse cellular functions. The objective of this study was to determine if Calhex-231 (Cal), a negative modulator of CaSR, may be beneficial in the treatment of traumatic hemorrhagic shock (THS) by improving cardiovascular function and investigated the mechanisms. Methods Rats that had been subjected to THS and hypoxia-treated vascular smooth muscle cells (VSMCs) were used in this study. The effects of Cal on cardiovascular function, animal survival, hemodynamics, and vital organ function in THS rats and the relationship to oxidative stress, mitochondrial fusion-fission, and microRNA (miR-208a) were investigated. Results Cal significantly improved hemodynamics, elevated blood pressure, increased vital organ blood perfusion and local oxygen supply, and markedly improved the survival outcomes of THS rats. Furthermore, Cal significantly improved vascular reactivity after THS in vivo and in vitro. Cal also restored the THS-induced decrease in myosin light chain (MLC) phosphorylation (the key element for VSMC contraction). Inhibition of MLC phosphorylation antagonized the Cal-induced restoration of vascular reactivity following THS. Cal suppressed oxidative stress in THS rats and hypoxic-VSMCs. Meanwhile, THS induced expression of mitochondrial fission proteins Drp1 and Fis1 and decreased expression of mitochondrial fusion protein Mfn1 in vascular tissues. Cal reduced expression of Drp1 and Fis1. In hypoxic-VSMCs, Cal inhibited mitochondrial fragmentation and preserved mitochondrial morphology. In addition, miR-208a mimic decreased Fis1 expression, and miR-208a inhibitor prevented Cal-induced Fis1 downregulation in hypoxic-VSMCs. Conclusion Calhex-231 exhibits outstanding potential for effective therapy of traumatic hemorrhagic shock, and the beneficial effects result from its protection of vascular function via inhibition of oxidative stress and miR-208a-mediated mitochondrial fission.
Collapse
|
13
|
|
14
|
Hannan FM, Gorvin CM, Babinsky VN, Olesen MK, Stewart M, Wells S, Cox RD, Nemeth EF, Thakker RV. Calcilytic NPSP795 Increases Plasma Calcium and PTH in an Autosomal Dominant Hypocalcemia Type 1 Mouse Model. JBMR Plus 2020; 4:e10402. [PMID: 33103030 PMCID: PMC7574706 DOI: 10.1002/jbm4.10402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022] Open
Abstract
Calcilytics are calcium‐sensing receptor (CaSR) antagonists that reduce the sensitivity of the CaSR to extracellular calcium. Calcilytics have the potential to treat autosomal dominant hypocalcemia type 1 (ADH1), which is caused by germline gain‐of‐function CaSR mutations and leads to symptomatic hypocalcemia, inappropriately low PTH concentrations, and hypercalciuria. To date, only one calcilytic compound, NPSP795, has been evaluated in patients with ADH1: Doses of up to 30 mg per patient have been shown to increase PTH concentrations, but did not significantly alter ionized blood calcium concentrations. The aim of this study was to further investigate NPSP795 for the treatment of ADH1 by undertaking in vitro and in vivo studies involving Nuf mice, which have hypocalcemia in association with a gain‐of‐function CaSR mutation, Leu723Gln. Treatment of HEK293 cells stably expressing the mutant Nuf (Gln723) CaSR with 20nM NPSP795 decreased extracellular Ca2+‐mediated intracellular calcium and phosphorylated ERK responses. An in vivo dose‐ranging study was undertaken by administering a s.c. bolus of NPSP795 at doses ranging from 0 to 30 mg/kg to heterozygous (Casr+/Nuf) and to homozygous (CasrNuf/Nuf) mice, and measuring plasma PTH responses at 30 min postdose. NPSP795 significantly increased plasma PTH concentrations in a dose‐dependent manner with the 30 mg/kg dose causing a maximal (≥10‐fold) rise in PTH. To determine whether NPSP795 can rectify the hypocalcemia of Casr+/Nuf and CasrNuf/Nuf mice, a submaximal dose (25 mg/kg) was administered, and plasma adjusted‐calcium concentrations measured over a 6‐hour period. NPSP795 significantly increased plasma adjusted‐calcium in Casr+/Nuf mice from 1.87 ± 0.03 mmol/L to 2.16 ± 0.06 mmol/L, and in CasrNuf/Nuf mice from 1.70 ± 0.03 mmol/L to 1.89 ± 0.05 mmol/L. Our findings show that NPSP795 elicits dose‐dependent increases in PTH and ameliorates the hypocalcemia in an ADH1 mouse model. Thus, calcilytics such as NPSP795 represent a potential targeted therapy for ADH1. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Fadil M Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford Oxford UK
| | - Caroline M Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford Oxford UK
| | - Valerie N Babinsky
- Academic Endocrine Unit, Radcliffe Department of Medicine Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford Oxford UK
| | - Mie K Olesen
- Academic Endocrine Unit, Radcliffe Department of Medicine Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford Oxford UK
| | - Michelle Stewart
- MRC Mammalian Genetics Unit and Mary Lyon Centre MRC Harwell Institute, Harwell Science and Innovation Campus Oxford UK
| | - Sara Wells
- MRC Mammalian Genetics Unit and Mary Lyon Centre MRC Harwell Institute, Harwell Science and Innovation Campus Oxford UK
| | - Roger D Cox
- MRC Mammalian Genetics Unit and Mary Lyon Centre MRC Harwell Institute, Harwell Science and Innovation Campus Oxford UK
| | | | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford Oxford UK
| |
Collapse
|
15
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
16
|
Gomes V, Silvestre C, Ferreira F, Bugalho MJGM. Autosomal dominant hypocalcaemia: identification of two novel variants of CASR gene. BMJ Case Rep 2020; 13:13/6/e234391. [PMID: 32513763 DOI: 10.1136/bcr-2020-234391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autosomal dominant hypocalcaemia is a rare aetiology of hypocalcaemia, caused by gain-of-function mutations of the calcium-sensing receptor (CASR) gene. We present two cases of two asymptomatic women (50-year-old-case 1 and 25-year-old-case 2), referred to our endocrinology department for investigation of hypocalcaemia, hyperphosphatemia and inappropriately low parathormone. Both patients had relatives with the same laboratorial findings. At diagnosis, both patients presented basal ganglia calcifications. Genetic analysis was performed, identifying two novel heterozygous CASR variants: c.2269G>A (p.Glu757Lys) and c.2086C>G (p.Leu696Val), respectively, for case 1 and case 2. Affected individuals started oral calcium and vitamin D analogues, aiming to a low-normal calcium level. They remain under observation and are asymptomatic.
Collapse
Affiliation(s)
- Vânia Gomes
- Endocrinology, Diabetes and Metabolism Department, Hospital de Santa Maria, Lisboa, Portugal
| | - Catarina Silvestre
- Endocrinology, Diabetes and Metabolism Department, Hospital de Santa Maria, Lisboa, Portugal
| | - Florbela Ferreira
- Endocrinology, Diabetes and Metabolism Department, Hospital de Santa Maria, Lisboa, Portugal
| | | |
Collapse
|
17
|
Current status in therapeutic interventions of neonatal bone mineral metabolic disorders. Semin Fetal Neonatal Med 2020; 25:101075. [PMID: 31879202 DOI: 10.1016/j.siny.2019.101075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neonatal care has significantly improved in the past decade with improved survival of preterm and sick neonates. Similarly, the field of bone and mineral disorders is continuing to accelerate with better understanding of pathophysiology and genetic basis of diseases, as well as availability of newer diagnostic and therapeutic modalities. In this extensive and rapidly expanding field, metabolic bone disease specialists are frequently called upon to translate progress into better care for neonates with bone and mineral disorders. Accordingly, this chapter provides a review of clinical manifestations and evidence-based investigation and management (where available) of common, rare and ultra-rare disorders of bone and mineral metabolism manifesting in the neonatal period. Besides medical treatment we emphasise the crucial role of the multidisciplinary team, which include physical therapists, occupational therapists and dieticians, in the care of neonates with bone disorders such as osteogenesis imperfecta and achondroplasia.
Collapse
|
18
|
Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev 2019; 28:28/154/190095. [PMID: 31871127 DOI: 10.1183/16000617.0095-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Available bronchodilators can satisfy many of the needs of patients suffering from airway disorders, but they often do not relieve symptoms and their long-term use raises safety concerns. Therefore, there is interest in developing new classes that could help to overcome the limits that characterise the existing classes.At least nine potential new classes of bronchodilators have been identified: 1) selective phosphodiesterase inhibitors; 2) bitter-taste receptor agonists; 3) E-prostanoid receptor 4 agonists; 4) Rho kinase inhibitors; 5) calcilytics; 6) agonists of peroxisome proliferator-activated receptor-γ; 7) agonists of relaxin receptor 1; 8) soluble guanylyl cyclase activators; and 9) pepducins. They are under consideration, but they are mostly in a preclinical phase and, consequently, we still do not know which classes will actually be developed for clinical use and whether it will be proven that a possible clinical benefit outweighs the impact of any adverse effect.It is likely that if developed, these new classes may be a useful addition to, rather than a substitution of, the bronchodilator therapy currently used, in order to achieve further optimisation of bronchodilation.
Collapse
Affiliation(s)
- Mario Cazzola
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
19
|
Roesler AM, Wicher SA, Ravix J, Britt RD, Manlove L, Teske JJ, Cummings K, Thompson MA, Farver C, MacFarlane P, Pabelick CM, Prakash YS. Calcium sensing receptor in developing human airway smooth muscle. J Cell Physiol 2019; 234:14187-14197. [PMID: 30624783 DOI: 10.1002/jcp.28115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
Airway smooth muscle (ASM) regulation of airway structure and contractility is critical in fetal/neonatal physiology in health and disease. Fetal lungs experience higher Ca2+ environment that may impact extracellular Ca2+ ([Ca2+ ]o ) sensing receptor (CaSR). Well-known in the parathyroid gland, CaSR is also expressed in late embryonic lung mesenchyme. Using cells from 18-22 week human fetal lungs, we tested the hypothesis that CaSR regulates intracellular Ca2+ ([Ca2+ ]i ) in fetal ASM (fASM). Compared with adult ASM, CaSR expression was higher in fASM, while fluorescence Ca2+ imaging showed that [Ca2+ ]i was more sensitive to altered [Ca2+ ]o . The fASM [Ca2+ ]i responses to histamine were also more sensitive to [Ca2+ ]o (0-2 mM) compared with an adult, enhanced by calcimimetic R568 but blunted by calcilytic NPS2143. [Ca2+ ]i was enhanced by endogenous CaSR agonist spermine (again higher sensitivity compared with adult). Inhibition of phospholipase C (U73122; siRNA) or inositol 1,4,5-triphosphate receptor (Xestospongin C) blunted [Ca2+ ]o sensitivity and R568 effects. NPS2143 potentiated U73122 effects. Store-operated Ca2+ entry was potentiated by R568. Traction force microscopy showed responsiveness of fASM cellular contractility to [Ca2+ ]o and NPS2143. Separately, fASM proliferation showed sensitivity to [Ca2+ ]o and NPS2143. These results demonstrate functional CaSR in developing ASM that modulates airway contractility and proliferation.
Collapse
Affiliation(s)
- Anne M Roesler
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jovanka Ravix
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Logan Manlove
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Katelyn Cummings
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Carol Farver
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Peter MacFarlane
- Division of Neonatology, Case Western University, Cleveland, Ohio
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
20
|
Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol 2018; 15:33-51. [PMID: 30443043 PMCID: PMC6535143 DOI: 10.1038/s41574-018-0115-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ca2+-sensing receptor (CaSR) is a dimeric family C G protein-coupled receptor that is expressed in calcitropic tissues such as the parathyroid glands and the kidneys and signals via G proteins and β-arrestin. The CaSR has a pivotal role in bone and mineral metabolism, as it regulates parathyroid hormone secretion, urinary Ca2+ excretion, skeletal development and lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss-of-function and gain-of-function CaSR mutations that cause familial hypocalciuric hypercalcaemia and autosomal dominant hypocalcaemia, respectively, and also by the fact that alterations in parathyroid CaSR expression contribute to the pathogenesis of primary and secondary hyperparathyroidism. Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR is also expressed in organs not involved in Ca2+ homeostasis: it has noncalcitropic roles in lung and neuronal development, vascular tone, gastrointestinal nutrient sensing, wound healing and secretion of insulin and enteroendocrine hormones. Furthermore, the abnormal expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as well as in asthma, and the CaSR is reported to protect against colorectal cancer and neuroblastoma but increase the malignant potential of prostate and breast cancers.
Collapse
Affiliation(s)
- Fadil M Hannan
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Wenhan Chang
- Endocrine Research Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Luisa Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Abstract
LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| |
Collapse
|
22
|
Hannan FM, Olesen MK, Thakker RV. Calcimimetic and calcilytic therapies for inherited disorders of the calcium-sensing receptor signalling pathway. Br J Pharmacol 2018; 175:4083-4094. [PMID: 29127708 PMCID: PMC6177618 DOI: 10.1111/bph.14086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022] Open
Abstract
The calcium-sensing receptor (CaS receptor) plays a pivotal role in extracellular calcium homeostasis, and germline loss-of-function and gain-of-function mutations cause familial hypocalciuric hypercalcaemia (FHH) and autosomal dominant hypocalcaemia (ADH), respectively. CaS receptor signal transduction in the parathyroid glands is probably regulated by G-protein subunit α11 (Gα11 ) and adaptor-related protein complex-2 σ-subunit (AP2σ), and recent studies have identified germline mutations of these proteins as a cause of FHH and/or ADH. Calcimimetics and calcilytics are positive and negative allosteric modulators of the CaS receptor that have potential efficacy for symptomatic forms of FHH and ADH. Cellular studies have demonstrated that these compounds correct signalling and/or trafficking defects caused by mutant CaS receptor, Gα11 or AP2σ proteins. Moreover, mouse model studies indicate that calcilytics can rectify the hypocalcaemia and hypercalciuria associated with ADH, and patient-based studies reveal calcimimetics to ameliorate symptomatic hypercalcaemia caused by FHH. Thus, calcimimetics and calcilytics represent targeted therapies for inherited disorders of the CaS receptor signalling pathway. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Fadil M Hannan
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Mie K Olesen
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
23
|
Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol 2018; 19:638-653. [DOI: 10.1038/s41580-018-0049-3] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Gerbino A, Colella M. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. Int J Mol Sci 2018; 19:E999. [PMID: 29584660 PMCID: PMC5979557 DOI: 10.3390/ijms19040999] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The current interest of the scientific community for research in the field of calcium sensing in general and on the calcium-sensing Receptor (CaR) in particular is demonstrated by the still increasing number of papers published on this topic. The extracellular calcium-sensing receptor is the best-known G-protein-coupled receptor (GPCR) able to sense external Ca2+ changes. Widely recognized as a fundamental player in systemic Ca2+ homeostasis, the CaR is ubiquitously expressed in the human body where it activates multiple signalling pathways. In this review, old and new notions regarding the mechanisms by which extracellular Ca2+ microdomains are created and the tools available to measure them are analyzed. After a survey of the main signalling pathways triggered by the CaR, a special attention is reserved for the emerging concepts regarding CaR function in the heart, CaR trafficking and pharmacology. Finally, an overview on other Ca2+ sensors is provided.
Collapse
Affiliation(s)
- Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| | - Matilde Colella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| |
Collapse
|
25
|
Nemeth EF, Van Wagenen BC, Balandrin MF. Discovery and Development of Calcimimetic and Calcilytic Compounds. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:1-86. [PMID: 29680147 DOI: 10.1016/bs.pmch.2017.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The extracellular calcium receptor (CaR) is a G protein-coupled receptor (GPCR) and the pivotal molecule regulating systemic Ca2+ homeostasis. The CaR was a challenging target for drug discovery because its physiological ligand is an inorganic ion (Ca2+) rather than a molecule so there was no structural template to guide medicinal chemistry. Nonetheless, small molecules targeting this receptor were discovered. Calcimimetics are agonists or positive allosteric modulators of the CaR, while calcilytics are antagonists and all to date are negative allosteric modulators. The calcimimetic cinacalcet was the first allosteric modulator of a GPCR to achieve regulatory approval and is a first-in-class treatment for secondary hyperparathyroidism in patients on dialysis, and for hypercalcemia in some forms of primary hyperparathyroidism. It is also useful in treating some rare genetic diseases that cause hypercalcemia. Two other calcimimetics are now on the market (etelcalcetide) or under regulatory review (evocalcet). Calcilytics stimulate the secretion of parathyroid hormone and were initially developed as treatments for osteoporosis. Three different calcilytics of two different chemotypes failed in clinical trials due to lack of efficacy. Calcilytics are now being repurposed and might be useful in treating hypoparathyroidism and several rare genetic diseases causing hypocalcemia. The challenges ahead for medicinal chemists are to design compounds that select conformations of the CaR that preferentially target a particular signalling pathway and/or that affect the CaR in a tissue-selective manner.
Collapse
|