1
|
Tran LT, Freeman KT, Lunzer MM, Portoghese PS, Haskell-Luevano C. Recommended Opioid Receptor Tool Compounds: Comparative In Vitro for Receptor Selectivity Profiles and In Vivo for Pharmacological Antinociceptive Profiles. ACS Pharmacol Transl Sci 2025; 8:225-244. [PMID: 39816790 PMCID: PMC11729433 DOI: 10.1021/acsptsci.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025]
Abstract
Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including 35S-GTPγS functional and cAMP based assays. A number of research laboratories have studied key "tool" reference opioid receptor ligands for decades and used them as control reference compounds. Some, but not all, of these commonly used tool compounds have been characterized and compared side by side in parallel assays for selectivity profiles at the different human opioid receptors isoforms. Herein, we performed the standard FLIPR calcium mobilization assay using HEK293 cells engineered to stably express the GαΔ6qi4myr in parallel, at human MOR, KOR, DOR, and NOP opioid receptors. The following tool compounds: morphine, fentanyl, oxycodone, DAMGO, DPDPE, U69593, deltorphin II, and nociceptin, were examined herein. These included the substance use disorder (SUD) compounds morphine, fentanyl, and oxycodone. Additionally, the antagonist tool compounds naloxone, NTI, norBNI, and β-FNA were assayed in parallel at the human MOR, KOR, DOR, and NOP opioid receptors. Furthermore, the agonist tool compounds were tested in the same in vivo tail-flick antinociception assays via intrathecal injection for ED50 potencies. These data provide both in vitro comparative pharmacology as a reference for cellular activities and in vivo antinociception profiles for these tool compounds.
Collapse
Affiliation(s)
- Linh T. Tran
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mary M. Lunzer
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Philip S. Portoghese
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department
of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Stefanucci A, Marinaccio L, Pieretti S, Mancuso JA, Stine C, Streicher JM, Mollica A. Elucidation on the In Vivo Activity of the Bivalent Opioid Peptide MACE2 against Several Types of Chronic Pain. ACS OMEGA 2024; 9:45214-45220. [PMID: 39554412 PMCID: PMC11561757 DOI: 10.1021/acsomega.4c06449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 11/19/2024]
Abstract
Biphalin is a bivalent μ/δ opioid receptor agonist showing a promising therapeutic profile with reduced side effects, but as a peptide is limited by poor metabolic stability and blood-brain barrier penetration. To improve these features, we developed the ligand MACE2 and showed initial in vivo efficacy. To further explore the druggability of this ligand, in this report, we tested MACE2 metabolic stability in human plasma, receptor engagement by 3 different routes of administration using the tail-flick test, and MACE2 efficacy in 2 different pathological and chronic pain models. We found that MACE2 had high stability in plasma and could produce target engagement and a tail flick response. We also showed that MACE2 had high analgesic efficacy in CIPN but no efficacy in paw incision. Together, these findings suggest that MACE2 has improved metabolic stability and brain penetration in vivo, prompting further development in clinical testing.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Department
of Pharmacy, “G. D’Annunzio”
University of Chieti-Pescara, 66100 Chieti, Italy
| | - Lorenza Marinaccio
- Department
of Pharmacy, “G. D’Annunzio”
University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Pieretti
- National
Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Joseph A. Mancuso
- Department
of Pharmacology, College of Medicine; and Comprehensive Center for
Pain and Addiction, University of Arizona, Tucson, Arizona 85719-4330, United
States
| | - Carrie Stine
- Department
of Pharmacology, College of Medicine; and Comprehensive Center for
Pain and Addiction, University of Arizona, Tucson, Arizona 85719-4330, United
States
| | - John M. Streicher
- Department
of Pharmacology, College of Medicine; and Comprehensive Center for
Pain and Addiction, University of Arizona, Tucson, Arizona 85719-4330, United
States
| | - Adriano Mollica
- Department
of Pharmacy, “G. D’Annunzio”
University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Li Y, Eans SO, Ganno-Sherwood M, Eliasof A, Houghten RA, McLaughlin JP. Identification and Pharmacological Characterization of a Low-Liability Antinociceptive Bifunctional MOR/DOR Cyclic Peptide. Molecules 2023; 28:7548. [PMID: 38005269 PMCID: PMC10674865 DOI: 10.3390/molecules28227548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Peptide-based opioid ligands are important candidates for the development of novel, safer, and more effective analgesics to treat pain. To develop peptide-based safer analgesics, we synthesized a mixture-based cyclic pentapeptide library containing a total of 24,624 pentapeptides and screened the mixture-based library samples using a 55 °C warm water tail-withdrawal assay. Using this phenotypic screening approach, we deconvoluted the mixture-based samples to identify a novel cyclic peptide Tyr-[D-Lys-Dap(Ant)-Thr-Gly] (CycloAnt), which produced dose- and time-dependent antinociception with an ED50 (and 95% confidence interval) of 0.70 (0.52-0.97) mg/kg i.p. mediated by the mu-opioid receptor (MOR). Additionally, higher doses (≥3 mg/kg, i.p.) of CycloAnt antagonized delta-opioid receptors (DOR) for at least 3 h. Pharmacological characterization of CycloAnt showed the cyclic peptide did not reduce breathing rate in mice at doses up to 15 times the analgesic ED50 value, and produced dramatically less hyperlocomotion than the MOR agonist, morphine. While chronic administration of CycloAnt resulted in antinociceptive tolerance, it was without opioid-induced hyperalgesia and with significantly reduced signs of naloxone-precipitated withdrawal, which suggested reduced physical dependence compared to morphine. Collectively, the results suggest this dual MOR/DOR multifunctional ligand is an excellent lead for the development of peptide-based safer analgesics.
Collapse
Affiliation(s)
- Yangmei Li
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA;
| | - Shainnel O. Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| | - Michelle Ganno-Sherwood
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA; (M.G.-S.); (R.A.H.)
| | - Abbe Eliasof
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA;
| | - Richard A. Houghten
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA; (M.G.-S.); (R.A.H.)
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
4
|
Rehrauer KJ, Cunningham CW. IUPHAR Review - Bivalent and bifunctional opioid receptor ligands as novel analgesics. Pharmacol Res 2023; 197:106966. [PMID: 37865129 DOI: 10.1016/j.phrs.2023.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Though efficacious in managing chronic, severe pain, opioid analgesics are accompanied by significant adverse effects including constipation, tolerance, dependence, and respiratory depression. The life-threatening risks associated with µ opioid receptor agonist-based analgesics challenges their use in clinic. A rational approach to combatting these adverse effects is to develop agents that incorporate activity at a second pharmacologic target in addition to µ opioid receptor activation. The promise of such bivalent or bifunctional ligands is the development of an analgesic with an improved side effect profile. In this review, we highlight ongoing efforts in the development of bivalent and bifunctional analgesics that combine µ agonism with efficacy at κ and δ opioid receptors, the nociceptin opioid peptide (NOP) receptor, σ receptors, and cannabinoid receptors. Several examples of bifunctional analgesics in preclinical and clinical development are highlighted, as are strategies being employed toward the rational design of novel agents.
Collapse
Affiliation(s)
- Kyle J Rehrauer
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA
| | - Christopher W Cunningham
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA; CUW Center for Structure-Based Drug Discovery and Development, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA.
| |
Collapse
|
5
|
Lambert DG. Opioids and opioid receptors; understanding pharmacological mechanisms as a key to therapeutic advances and mitigation of the misuse crisis. BJA OPEN 2023; 6:100141. [PMID: 37588171 PMCID: PMC10430815 DOI: 10.1016/j.bjao.2023.100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 08/18/2023]
Abstract
Opioids are a mainstay in acute pain management and produce their effects and side effects (e.g., tolerance, opioid-use disorder and immune suppression) by interaction with opioid receptors. I will discuss opioid pharmacology in some controversial areas of enquiry of anaesthetic relevance. The main opioid target is the µ (mu,MOP) receptor but other members of the opioid receptor family, δ (delta; DOP) and κ (kappa; KOP) opioid receptors also produce analgesic actions. These are naloxone-sensitive. There is important clinical development relating to the Nociceptin/Orphanin FQ (NOP) receptor, an opioid receptor that is not naloxone-sensitive. Better understanding of the drivers for opioid effects and side effects may facilitate separation of side effects and production of safer drugs. Opioids bind to the receptor orthosteric site to produce their effects and can engage monomer or homo-, heterodimer receptors. Some ligands can drive one intracellular pathway over another. This is the basis of biased agonism (or functional selectivity). Opioid actions at the orthosteric site can be modulated allosterically and positive allosteric modulators that enhance opioid action are in development. As well as targeting ligand-receptor interaction and transduction, modulating receptor expression and hence function is also tractable. There is evidence for epigenetic associations with different types of pain and also substance misuse. As long as the opioid narrative is defined by the 'opioid crisis' the drive to remove them could gather pace. This will deny use where they are effective, and access to morphine for pain relief in low income countries.
Collapse
|
6
|
Smith MT, Kong D, Kuo A, Imam MZ, Williams CM. Multitargeted Opioid Ligand Discovery as a Strategy to Retain Analgesia and Reduce Opioid-Related Adverse Effects. J Med Chem 2023; 66:3746-3784. [PMID: 36856340 DOI: 10.1021/acs.jmedchem.2c01695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The global "opioid crisis" has placed enormous pressure on the opioid ligand discovery community to produce novel opioid analgesics with superior opioid-related adverse-effect profiles compared with morphine. In this Perspective, the multitargeted opioid ligand strategy for the discovery of opioid analgesics with superior preclinical therapeutic indices relative to morphine is reviewed and discussed. Dual-targeted μ-opioid (MOP)/δ-opioid (DOP) ligands in which the in vitro DOP antagonist potency at least equals that of the MOP agonist activity, and are devoid of DOP or κ-opioid (KOP) agonist activity, are sufficiently promising candidates to warrant further investigation. Dual-targeted MOP/NOP partial agonists have superior preclinical therapeutic indices to morphine and/or fentanyl in nonhuman primates and are also considered promising. Based on the poor preclinical and clinical therapeutic indices of cebranopadol, which is a full agonist at MOP, DOP, and NOP receptors and a partial agonist at the KOP receptor, this pharmacologic template should be avoided.
Collapse
|
7
|
Mani I, Singh V. Receptor biology: Challenges and opportunities. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:337-349. [PMID: 36813364 DOI: 10.1016/bs.pmbts.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Receptor biology provides a great opportunity to understand the ligand-receptor signaling involved in health and disease processes. Receptor endocytosis and signaling play a vital role in health conditions. Receptor-based signaling is the main form of communication between cells and cells with the environment. However, if any irregularities happen during these events, the consequences of pathophysiological conditions occur. Various methods are utilized to know structure, function, and regulation of receptor proteins. Further, live-cell imaging and genetic manipulations have aided in the understanding of receptor internalization, subcellular trafficking, signaling, metabolic degradation, etc. Understanding the genetics, biochemistry, and physiology of receptors and ligands is very helpful to explore various aspects such as prognosis, diagnosis, and treatment of disease. However, there are enormous challenges that exist to explore receptor biology further. This chapter briefly discusses the current challenges and emerging opportunities of receptor biology.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
8
|
Differential Effects of a Novel Opioid Ligand UTA1003 on Antinociceptive Tolerance and Motor Behaviour. Pharmaceuticals (Basel) 2022; 15:ph15070789. [PMID: 35890089 PMCID: PMC9318816 DOI: 10.3390/ph15070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Analgesic tolerance is a major problem in the clinic for the maintenance of opioid-induced long-term pain relief. Opioids with mixed activity on multiple opioid receptors promise reduced antinociceptive tolerance in preclinical studies, but these compounds typically show poor bioavailability upon oral, subcutaneous, intraperitoneal, or intravenous administration. We designed UTA1003 as a novel opioid that acts as a mu (MOP) and kappa (KOP) opioid receptor agonist and a partial agonist for delta (DOP) opioid receptor. In the present study, its antinociceptive effects, as well as its effects on antinociceptive tolerance and motor behaviour, were investigated in male rats. Acute antinociception was measured before (basal) and at different time points after subcutaneous injection of UTA1003 or morphine using the tail flick and hot plate assays. Various motor behavioural activities, including horizontal locomotion, rearing, and turning, were automatically measured in an open-field arena. The antinociceptive and behavioural effects of repeated administration of UTA1003 and morphine were determined over eight days. UTA1003 induced mild antinociceptive effects after acute administration but induced no tolerance after repeated treatment. Importantly, UTA1003 co-treatment with morphine prevented antinociceptive tolerance compared to morphine alone. UTA1003 showed less motor suppression than morphine in both acute and sub-chronic treatment regimens, while it did not affect morphine-induced motor suppression or hyper-excitation. Based on these activities, we speculate that UTA1003 crosses the blood-brain barrier after subcutaneous administration and, therefore, could be developed as a lead molecule to avoid opioid-induced antinociceptive tolerance and motor suppression. Further structural modifications to improve its antinociceptive effects, toxicity profile, and ADME parameters are nevertheless required.
Collapse
|
9
|
Sharma KK, Cassell RJ, Meqbil YJ, Su H, Blaine AT, Cummins BR, Mores KL, Johnson DK, van Rijn RM, Altman RA. Modulating β-arrestin 2 recruitment at the δ- and μ-opioid receptors using peptidomimetic ligands. RSC Med Chem 2021; 12:1958-1967. [PMID: 34825191 DOI: 10.1039/d1md00025j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
μ-Opioid receptor agonists provide potent and effective acute analgesia; however, their therapeutic window narrows considerably upon repeated administration, such as required for treating chronic pain. In contrast, bifunctional μ/δ opioid agonists, such as the endogenous enkephalins, have potential for treating both acute and chronic pain. However, enkephalins recruit β-arrestins, which correlate with certain adverse effects at μ- and δ-opioid receptors. Herein, we identify the C-terminus of Tyr-ψ[(Z)CF[double bond, length as m-dash]CH]-Gly-Leu-enkephalin, a stable enkephalin derivative, as a key site to regulate bias of both δ- and μ-opioid receptors. Using in vitro assays, substitution of the Leu5 carboxylate with amides (NHEt, NMe2, NCyPr) reduced β-arrestin recruitment efficacy through both the δ-opioid and μ-opioid, while retaining affinity and cAMP potency. For this series, computational studies suggest key ligand-receptor interactions that might influence bias. These findings should enable the discovery of a range of tool compounds with previously unexplored biased μ/δ opioid agonist pharmacological profiles.
Collapse
Affiliation(s)
- Krishna K Sharma
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University USA
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA
| | - Yazan J Meqbil
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Computational Interdisciplinary Graduate Program (CIGP), Purdue University USA
| | - Hongyu Su
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA
| | - Arryn T Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Purdue Interdisciplinary Life Science Graduate Program, Purdue University USA
| | | | - Kendall L Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA
| | - David K Johnson
- Computational Chemical Biology Core and Molecular Graphics and Modeling Laboratory, The University of Kansas USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Purdue Institute for Drug Discovery, Purdue University USA.,Purdue Institute for Integrative Neuroscience, Purdue University USA
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Department of Chemistry, Purdue University USA
| |
Collapse
|
10
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
11
|
Wtorek K, Piekielna-Ciesielska J, Janecki T, Janecka A. The search for opioid analgesics with limited tolerance liability. Peptides 2020; 130:170331. [PMID: 32497566 DOI: 10.1016/j.peptides.2020.170331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Reducing the well-known side effects of opioids prescribed to treat chronic pain remains unresolved, despite extensive research in this field. Among several options to tackle this problem the synthesis of multifunctional compounds containing hybridized structures gained a lot of interest. Recently, extensively investigated are combinations of opioid agonist and antagonist pharmacophores embodied in a single molecule. To this end, agonism at the μ opioid receptor (MOR) with simultaneous antagonism at the δ opioid receptor (DOR) emerged as a promising avenue to obtaining novel analogs devoid of serious adverse effects associated with morphine-based analgesics. In this review we covered up-to-date research on the synthesis of peptide-based ligands with MOR agonist/DOR antagonist profile.
Collapse
Affiliation(s)
- Karol Wtorek
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| | | | - Tomasz Janecki
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
12
|
Pasquinucci L, Parenti C, Ruiz-Cantero MC, Georgoussi Z, Pallaki P, Cobos EJ, Amata E, Marrazzo A, Prezzavento O, Arena E, Dichiara M, Salerno L, Turnaturi R. Novel N-Substituted Benzomorphan-Based Compounds: From MOR-Agonist/DOR-Antagonist to Biased/Unbiased MOR Agonists. ACS Med Chem Lett 2020; 11:678-685. [PMID: 32435370 PMCID: PMC7236032 DOI: 10.1021/acsmedchemlett.9b00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Modifications at the basic nitrogen of the benzomorphan scaffold allowed the development of compounds able to segregate physiological responses downstream of the receptor signaling, opening new possibilities in opioid drug development. Alkylation of the phenyl ring in the N-substituent of the MOR-agonist/DOR-antagonist LP1 resulted in retention of MOR affinity. Moreover, derivatives 7a, 7c, and 7d were biased MOR agonists toward ERK1,2 activity stimulation, whereas derivative 7e was a low potency MOR agonist on adenylate cyclase inhibition. They were further screened in the mouse tail flick test and PGE2-induced hyperalgesia and drug-induced gastrointestinal transit.
Collapse
Affiliation(s)
- Lorella Pasquinucci
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Carmela Parenti
- Department
of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - M. Carmen Ruiz-Cantero
- Department
of Pharmacology, Faculty of Medicine and Institute of Neuroscience,
Biomedical Research Center, University of
Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
- Teófilo Hernando
Institute for Drug Discovery, 28029 Madrid, Spain
| | - Zafiroula Georgoussi
- Laboratory
of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences
and Applications, National Center for Scientific
Research “Demokritos″, Ag. Paraskevi 15310, Athens, Greece
| | - Paschalina Pallaki
- Laboratory
of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences
and Applications, National Center for Scientific
Research “Demokritos″, Ag. Paraskevi 15310, Athens, Greece
| | - Enrique J. Cobos
- Department
of Pharmacology, Faculty of Medicine and Institute of Neuroscience,
Biomedical Research Center, University of
Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
- Teófilo Hernando
Institute for Drug Discovery, 28029 Madrid, Spain
| | - Emanuele Amata
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Emanuela Arena
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
13
|
A Novel Mu-Delta Opioid Agonist Demonstrates Enhanced Efficacy With Reduced Tolerance and Dependence in Mouse Neuropathic Pain Models. THE JOURNAL OF PAIN 2019; 21:146-160. [PMID: 31201990 DOI: 10.1016/j.jpain.2019.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 01/18/2023]
Abstract
Numerous studies have demonstrated a physiological interaction between the mu opioid receptor (MOR) and delta opioid receptor (DOR) systems. A few studies have shown that dual MOR-DOR agonists could be beneficial, with reduced tolerance and addiction liability, but are nearly untested in chronic pain models, particularly neuropathic pain. In this study, we tested the MOR-DOR agonist SRI-22141 in mice in the clinically relevant models of HIV Neuropathy and Chemotherapy-Induced Peripheral Neuropathy (CIPN). SRI-22141 was more potent than morphine in the tail flick pain test and had equal or enhanced efficacy versus morphine in both neuropathic pain models, with significantly reduced tolerance. SRI-22141 also produced no jumping behavior during naloxone-precipitated withdrawal in CIPN or naïve mice, suggesting that SRI-22141 produces little to no dependence. SRI-22141 also reduced tumor necrosis factor-α and cyclooxygenase-2 in CIPN in the spinal cord, suggesting an anti-inflammatory mechanism of action. The DOR-selective antagonist naltrindole strongly reduced CIPN efficacy and anti-inflammatory activity in the spinal cord, without affecting tail flick antinociception, suggesting the importance of DOR activity in these models. Overall, these results provide compelling evidence that MOR-DOR agonists could have strong efficacy with reduced side effects and an anti-inflammatory mechanism in the treatment of neuropathic pain. PERSPECTIVE: This study demonstrates that a MOR-DOR dual agonist given chronically in chronic neuropathic pain models has enhanced efficacy with strongly reduced tolerance and dependence, with a further anti-inflammatory effect in the spinal cord. This suggests that MOR-DOR dual agonists could be effective treatments for neuropathic pain with reduced side effects.
Collapse
|
14
|
Cunningham CW, Elballa WM, Vold SU. Bifunctional opioid receptor ligands as novel analgesics. Neuropharmacology 2019; 151:195-207. [PMID: 30858102 DOI: 10.1016/j.neuropharm.2019.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/30/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Prolonged treatment of chronic severe pain with opioid analgesics is frought with problematic adverse effects including tolerance, dependence, and life-threatening respiratory depression. Though these effects are mediated predominately through preferential activation of μ opioid peptide (μOP) receptors, there is an emerging appreciation that actions at κOP and δOP receptors contribute to the observed pharmacologic and behavioral profile of μOP receptor agonists and may be targeted simultaneously to afford improved analgesic effects. Recent developments have also identified the related nociceptin opioid peptide (NOP) receptor as a key modulator of the effects of μOP receptor signaling. We review here the available literature describing OP neurotransmitter systems and highlight recent drug and probe design strategies.
Collapse
Affiliation(s)
| | - Waleed M Elballa
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| | - Stephanie U Vold
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| |
Collapse
|
15
|
Pasternak GW, Childers SR, Pan YX. Emerging Insights into Mu Opioid Pharmacology. Handb Exp Pharmacol 2019; 258:89-125. [PMID: 31598835 DOI: 10.1007/164_2019_270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Opioid analgesics, most of which act through mu opioid receptors, have long represented valuable therapeutic agents to treat severe pain. Concerted drug development efforts for over a 100 years have resulted in a large variety of opioid analgesics used in the clinic, but all of them continue to exhibit the side effects, especially respiratory depression, that have long plagued the use of morphine. The recent explosion in fatalities resulting from overdose of prescription and synthetic opioids has dramatically increased the need for safer analgesics, but recent developments in mu receptor research have provided new strategies to develop such drugs. This chapter reviews recent advances in developing novel opioid analgesics from an understanding of mu receptor structure and function. This includes a summary of the mechanism of agonist binding deduced from the crystal structure of mu receptors. It will also highlight the development of novel agonist mechanisms, including biased agonists, bivalent ligands, and allosteric modulators of mu receptor function, and describe how receptor phosphorylation modulates these pathways. Finally, it will summarize research on the alternative pre-mRNA splicing mechanisms that produces a multiplicity of mu receptor isoforms. Many of these isoforms exhibit different pharmacological specificities and brain circuitry localization, thus providing an opportunity to develop novel drugs with increased therapeutic windows.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven R Childers
- Department of Physiology/Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Ying-Xian Pan
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Kaye AD, Cornett EM, Patil SS, Gennuso SA, Colontonio MM, Latimer DR, Kaye AJ, Urman RD, Vadivelu N. New opioid receptor modulators and agonists. Best Pract Res Clin Anaesthesiol 2018; 32:125-136. [PMID: 30322454 DOI: 10.1016/j.bpa.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023]
Abstract
There has been significant research to develop an ideal synthetic opioid. Opioids with variable properties possessing efficacy and with reduced side effects have been synthesized when compared to previously used agents. An opioid modulator is a drug that can produce both agonistic and antagonistic effects by binding to different opioid receptors and therefore cannot be classified as one or the other alone. These compounds can differ in their structures while still possessing opioid-mediated actions. This review will discuss TRV130 receptor modulators and other novel opioid receptor modulators, including Mitragyna "Kratom," Ignavine, Salvinorin-A, DPI-289, UFP-505, LP1, SKF-10,047, Cebranopadol, Naltrexone-14-O-sulfate, and Naloxegol. In summary, the structural elucidation of opioid receptors, allosteric modulation of opioid receptors, new opioid modulators and agonists, the employment of optogenetics, optopharmacology, and next-generation sequencing of opioid receptor genes and related functionality should create exciting new avenues for research and therapeutic development to treat conditions including pain, opioid abuse, and addiction.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, LSU Health Sciences Center, Room 656, 1542 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Shilpa S Patil
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Sonja A Gennuso
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Matthew M Colontonio
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Dustin R Latimer
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Aaron J Kaye
- Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| | - Nalini Vadivelu
- Department of Anesthesiology, Yale School of Medicine, 333 Cedar Street, TMP 3, PO Box 208051, New Haven, CT, 06520, USA.
| |
Collapse
|
17
|
Abstract
This themed section of the British Journal of Pharmacology stems from an International Narcotics Research Conference (INRC) meeting held in July 2016 at The Assembly Rooms in Bath, UK. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Graeme Henderson
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Chris P Bailey
- Department of Pharmacy and PharmacologyUniversity of BathBathUK
| |
Collapse
|
18
|
Dietis N, Niwa H, Tose R, McDonald J, Ruggieri V, Filaferro M, Vitale G, Micheli L, Ghelardini C, Salvadori S, Calo G, Guerrini R, Rowbotham DJ, Lambert DG. In vitro and in vivo characterization of the bifunctional μ and δ opioid receptor ligand UFP-505. Br J Pharmacol 2018; 175:2881-2896. [PMID: 29524334 PMCID: PMC6016625 DOI: 10.1111/bph.14199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Targeting more than one opioid receptor type simultaneously may have analgesic advantages in reducing side-effects. We have evaluated the mixed μ opioid receptor agonist/ δ opioid receptor antagonist UFP-505 in vitro and in vivo. EXPERIMENTAL APPROACH We measured receptor density and function in single μ, δ and μ /δ receptor double expression systems. GTPγ35 S binding, cAMP formation and arrestin recruitment were measured. Antinociceptive activity was measured in vivo using tail withdrawal and paw pressure tests following acute and chronic treatment. In some experiments, we collected tissues to measure receptor densities. KEY RESULTS UFP-505 bound to μ receptors with full agonist activity and to δ receptors as a low efficacy partial agonist At μ, but not δ receptors, UFP-505 binding recruited arrestin. Unlike morphine, UFP-505 treatment internalized μ receptors and there was some evidence for internalization of δ receptors. Similar data were obtained in a μ /δ receptor double expression system. In rats, acute UFP-505 or morphine, injected intrathecally, was antinociceptive. In tissues harvested from these experiments, μ and δ receptor density was decreased after UFP-505 but not morphine treatment, in agreement with in vitro data. Both morphine and UFP-505 induced significant tolerance. CONCLUSIONS AND IMPLICATIONS In this study, UFP-505 behaved as a full agonist at μ receptors with variable activity at δ receptors. This bifunctional compound was antinociceptive in rats after intrathecal administration. In this model, dual targeting provided no advantages in terms of tolerance liability. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- N Dietis
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - H Niwa
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - R Tose
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - J McDonald
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - V Ruggieri
- Department of Oncology Haematology and Respiratory DiseasesUniversity of Modena and Reggio EmiliaModenaItaly
| | - M Filaferro
- Department of Biomedical, Metabolic and Neuro‐SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - G Vitale
- Section of Pharmacology, Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - L Micheli
- Department of Preclinical and Clinical PharmacologyUniversity of FlorenceFlorenceItaly
| | - C Ghelardini
- Department of Preclinical and Clinical PharmacologyUniversity of FlorenceFlorenceItaly
| | - S Salvadori
- Department of Experimental and Clinical Medicine, Section of PharmacologyUniversity of FerraraFerraraItaly
| | - G Calo
- Department of Experimental and Clinical Medicine, Section of PharmacologyUniversity of FerraraFerraraItaly
| | - R Guerrini
- Department of Pharmaceutical SciencesUniversity of FerraraFerraraItaly
| | - D J Rowbotham
- Department of Health SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - D G Lambert
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| |
Collapse
|