1
|
Wang K, Zhang S, Wang Y, Wu X, Wen L, Meng T, Jin X, Li S, Hong Y, Ke J, Xu Y, Yuan H, Hu F. Taprenepag restores maternal-fetal interface homeostasis for the treatment of neurodevelopmental disorders. J Neuroinflammation 2024; 21:307. [PMID: 39609821 PMCID: PMC11603931 DOI: 10.1186/s12974-024-03300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurodevelopmental disorders (NDDs) are characterized by abnormalities in brain development and neurobehaviors, including autism. The maternal-fetal interface (MFI) is a highly specialized tissue through which maternal factors affect fetal brain development. However, limited research exists on restoring and maintaining MFI homeostasis and its potential impact on NDDs. This study explores the role of placental indoleamine 2,3-dioxygenase (IDO-1) in MFI homeostasis and fetal brain development. EXPERIMENTAL APPROACH The maternal-fetal barrier was disrupted by sodium valproate (VPA) in pregnant mice, whose offspring show typical autism-like behaviors. Ultrastructural analysis and flow cytometric analysis were conducted to observe the morphological and immune system changes. Behavioral tests and immunofluorescence staining was used to investigate the ability and mechanism of taprenepag to alleviate the abnormal behaviors of VPA-exposed offspring and normalize the development of serotonergic neurons. KEY RESULTS In VPA-exposed pregnant mice, the downregulation of IDO-1 led to maternal immune overactivation and disruption of maternal-fetal barrier, resulting in excessive 5-HT synthesis in the placenta. This process disrupted the development of the serotonergic neuronal system in the offspring, resulting in impaired development of serotonergic neurons, thalamocortical axons, and NDDs in the progeny. However, a single injection of taprenepag at E13.5 ultimately upregulated placental IDO-1 through amplifying the positive feedback loop COX-2/PGE2/PTGER-2/IDO-1 and abolished these alterations. CONCLUSION Taprenepag improved autism-like behaviors in the offspring of VPA-exposed mice by addressing placental IDO-1 downregulation. This study highlights the potential of targeting IDO-1 to mitigate MFI disruption and NDD development.
Collapse
Affiliation(s)
- Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China
| | - Shufen Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiaomei Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Lijuan Wen
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Tingting Meng
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China
| | - Xiangyu Jin
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Sufen Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yiling Hong
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Jia Ke
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yichong Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, PR China.
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
2
|
Khan F, Tunaz H, Haas E, Kim Y, Stanley D. PGE 2 Binding Affinity of Hemocyte Membrane Preparations of Manduca sexta and Identification of the Receptor-Associated G Proteins in Two Lepidopteran Species. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70005. [PMID: 39508136 DOI: 10.1002/arch.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Prostaglandin E2 (PGE2) is an eicosanoid that mediates a range of physiological actions in vertebrates and invertebrates, including reproduction and immunity. The PGE2 receptor was identified and functionally assessed in two lepidopteran insects, Manduca sexta and Spodoptera exigua. However, its binding affinity to the receptor has not been reported. The PGE2 receptor is a G-protein coupled receptor (GPCR) although its corresponding G-protein is not identified. PGE2 binding assays were performed with membrane preparations from hemocytes of M. sexta larvae. We recorded an optimal binding in 4 h reactions conducted at pH 7.5 with 12 nM tritium-labeled PGE2. We found that hemocytes express a single population of PGE2 binding sites with a high affinity (Kd = 35 pmol/mg protein), which are specific and saturable. The outcomes of experiments on the influence of purine nucleotides suggested these are functional GPCRs. A bioinformatics analysis led to a proposed trimeric G-protein in the S. exigua transcriptome, in which the Gα subunit is classified into five different types: Gα(o), Gα(q), Gα(s), Gα(12), and Gα(f). After confirming expressions of these five types in S. exigua, individual RNA interference (RNAi) treatments were applied to the larvae using gene-specific double-stranded RNAs. RNAi treatments specific to Gα(s) or Gα(12) gene expression significantly suppressed the cellular immune responses although the RNAi treatments specific to other three Gα components did not. While PGE2 treatments led to elevated hemocyte cAMP or Ca2+ levels, the RNAi treatments specific to Gα(s) or Gα(12) genes led to significantly reduced second messenger levels under PGE2, although the RNAi treatments specific to the other three Gα components did not. These results showed that the PGE2 receptor has high PGE2 affinity in the nanomolar range and binds G-proteins containing a Gα(s) or Gα(12) trimeric component in S. exigua and M. sexta, and likely, all lepidopteran insects.
Collapse
Affiliation(s)
- Falguni Khan
- Department of Plant Medicals, Andong National University, Andong, Korea
| | - Hasan Tunaz
- Faculty of Agriculture, Department of Plant Protection, KahramanMaras Situ Imam University, KahramanMaras, Turkey
| | - Eric Haas
- Department of Chemistry and Biochemistry, Creighton University, Omaha, Nebraska, USA
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
| | - David Stanley
- Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| |
Collapse
|
3
|
Chae IG, Jung J, Kim DH, Choi JS, Chun KS. EP4 receptor agonist CAY10598 upregulates ROS-dependent Hsp90 cleavage in colorectal cancer cells. Free Radic Res 2024; 58:596-605. [PMID: 39258904 DOI: 10.1080/10715762.2024.2396909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
Prostaglandin E2 (PGE2) interacts with four specific G protein-coupled receptors, namely EP1, EP2, EP3, and EP4, playing a pivotal role in determining the fate of cells. Our previous findings highlighted that stimulating the EP4 receptor with its agonist, CAY10598, triggers apoptosis in colon cancer HCT116 cells via the production of reactive oxygen species (ROS). This process also reduces the phosphorylation of the oncogenic protein JAK2 and leads to its degradation in these cells. In this study, our goal was to explore the pathways through which CAY10598 leads to JAK2 degradation. We focused on Hsp90, a heat shock protein family member known for its role as a molecular chaperone maintaining the stability of several key proteins including EGFR, MET, Akt, and JAK2. Our results show that CAY10598 decreases the levels of client proteins of Hsp90 in HCT116 cells, an effect reversible by pretreatment with the ROS scavenger N-acetyl cysteine (NAC) or the proteasome inhibitor MG132, indicating that the degradation is likely driven by ROS. Furthermore, we observed that CAY10598 cleaves both α and β isoforms of Hsp90, the process inhibited by NAC. Inhibition of EP4 with the antagonist GW627368x not only prevented the degradation of Hsp90 client proteins but also the cleavage of Hsp90 itself in CAY10598-treated HCT116 cells. Additionally, CAY10598 suppressed the growth of HCT116 cells implanted in mice. Our findings reveal that CAY10598 induces apoptosis in cancer cells by a novel mechanism involving the ROS-dependent cleavage of Hsp90, thereby inhibiting the function of crucial Hsp90 client proteins.
Collapse
Affiliation(s)
- In Gyung Chae
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
- Gyeongbuk Institute for Bio Industry (GIB), Gyeongbuk, Republic of Korea
| | - Joohee Jung
- College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
- Innovative Drug Center, Duksung Women's University, Seoul, Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon, Republic of Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Walker AR, Parkin HA, Hye Kim S, Terzidou V, Woodward DF, Bennett PR, Hanyaloglu AC. Constitutive internalisation of EP2 differentially regulates G protein signalling. J Mol Endocrinol 2024; 73:e230153. [PMID: 38639976 PMCID: PMC11227035 DOI: 10.1530/jme-23-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 04/20/2024]
Abstract
The prostanoid G protein-coupled receptor (GPCR) EP2 is widely expressed and implicated in endometriosis, osteoporosis, obesity, pre-term labour and cancer. Internalisation and intracellular trafficking are critical for shaping GPCR activity, yet little is known regarding the spatial programming of EP2 signalling and whether this can be exploited pharmacologically. Using three EP2-selective ligands that favour activation of different EP2 pathways, we show that EP2 undergoes limited agonist-driven internalisation but is constitutively internalised via dynamin-dependent, β-arrestin-independent pathways. EP2 was constitutively trafficked to early and very early endosomes (VEE), which was not altered by ligand activation. APPL1, a key adaptor and regulatory protein of the VEE, did not impact EP2 agonist-mediated cAMP. Internalisation was required for ~70% of the acute butaprost- and AH13205-mediated cAMP signalling, yet PGN9856i, a Gαs-biased agonist, was less dependent on receptor internalisation for its cAMP signalling, particularly in human term pregnant myometrial cells that endogenously express EP2. Inhibition of EP2 internalisation partially reduced calcium signalling activated by butaprost or AH13205 and had no effect on PGE2 secretion. This indicates an agonist-dependent differential spatial requirement for Gαs and Gαq/11 signalling and a role for plasma membrane-initiated Gαq/11-Ca2+-mediated PGE2 secretion. These findings reveal a key role for EP2 constitutive internalisation in its signalling and potential spatial bias in mediating its downstream functions. This, in turn, could highlight important considerations for future selective targeting of EP2 signalling pathways.
Collapse
Affiliation(s)
- Abigail R Walker
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Holly A Parkin
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sung Hye Kim
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Vasso Terzidou
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - David F Woodward
- Department of Bioengineering, Imperial College London, London, UK
| | - Phillip R Bennett
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
5
|
Sharif NA. Human experience and efficacy of omidenepag isopropyl (Eybelis®; Omlonti®): Discovery to approval of the novel non-prostaglandin EP2-receptor-selective agonist ocular hypotensive drug. Curr Opin Pharmacol 2024; 74:102426. [PMID: 38168596 DOI: 10.1016/j.coph.2023.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
More than 75 million people worldwide suffer from ocular hypertension (OHT)-associated retinal and optic nerve degenerative diseases that cause visual impairment and can lead to blindness. In an effort to find novel pharmaceutical therapeutics to combat OHT with reduced side-effect potential, several emerging drug candidates have advanced to human proof-of-concept in recent years. One such compound is a nonprostaglandin (non-PG) EP2-receptor-selective agonist (omidenepag isopropyl ester). Omidenepag (OMD; free acid form) is a novel non-PG that selectively binds to and activates the human EP2-prostglandin receptor (EP2R) with a high affinity (Ki = 3.6 nM) and which potently generates intracellular cAMP in living cells (EC50 = 3.9-8.3 nM). OMD significantly downregulated COL12A1 and COL13A1 mRNAs in human trabecular meshwork (TM) cells, a tissue involved in the pathogenesis of OHT. Omidenepag isopropyl (OMDI) potently and efficaciously lowered intraocular pressure (IOP) in ocular normotensive rabbits, dogs, and monkeys, and also in ocular hypertension (OHT) Cynomolgus monkeys, after a single topical ocular (t.o.) instillation at doses of 0.0001-0.01%. No reduction in IOP-lowering response to OMDI was observed after repeated t.o. dosing with OMDI in dogs and monkeys. Additive IOP reduction to OMDI was noted with brinzolamide, timolol, and brimonidine in rabbits and monkeys. OMDI 0.002% t.o. decreased IOP by stimulating the conventional (TM) and uveoscleral (UVSC) outflow of aqueous humor (AQH) in OHT monkeys. In a Phase-III clinical investigation, 0.002% OMDI (once daily t.o.) reduced IOP by 5-6 mmHg in OHT/primary open-angle glaucoma (POAG) patients (22-34 mmHg baseline IOPs) that was maintained over 12-months. In an additional month-long clinical study, 0.002% OMDI induced IOP-lowering equivalent to that of latanoprost (0.005%), a prostanoid FP-receptor agonist, thus OMDI was noninferior to latanoprost. Additive IOPreduction was also noted in OHT/OAG patients when OMDI (0.002%, once daily t.o.) and timolol (0.05%, twice daily t.o.) were administered. Patients with OHT/POAG who were low responders or nonresponders to latanoprost (0.005%, q.d.; t.o.) experienced significant IOP-lowering (additional approximately 3 mmHg) when they were switched over to OMDI 0.002% (q.d.; t.o.). No systemic or ocular adverse reactions (e.g. iris color changes/deepening of the upper eyelid sulcus/abnormal eyelash growth) were noted after a year-long, once-daily t.o. dosing with 0.002 % OMDI in OHT/POAG patients. However, OMDI caused transient conjunctival hyperemia. These characteristics of OMDI render it a suitable new medication for treating OHT and various types of glaucoma, especially where elevated IOP is implicated.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-ACP Duke-National University of Singapore Medical School, Singapore; Singapore Eye Research Institute (SERI), Singapore; Institute of Ophthalmology, University College London (UCL), London UK; Imperial College of Science and Technology, St. Mary's Campus, London UK; Department of Pharmacy Sciences, Creighton University, Omaha, NE USA; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX USA.
| |
Collapse
|
6
|
Walker AR, Larsen CB, Kundu S, Stavrinidis C, Kim SH, Inoue A, Woodward DF, Lee YS, Migale R, MacIntyre DA, Terzidou V, Fanelli F, Khanjani S, Bennett PR, Hanyaloglu AC. Functional rewiring of G protein-coupled receptor signaling in human labor. Cell Rep 2022; 40:111318. [PMID: 36070698 PMCID: PMC9638024 DOI: 10.1016/j.celrep.2022.111318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/21/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Current strategies to manage preterm labor center around inhibition of uterine myometrial contractions, yet do not improve neonatal outcomes as they do not address activation of inflammation. Here, we identify that during human labor, activated oxytocin receptor (OTR) reprograms the prostaglandin E2 receptor, EP2, in the pregnant myometrium to suppress relaxatory/Gαs-cAMP signaling and promote pro-labor/inflammatory responses via altered coupling of EP2 from Gαq/11 to Gαi/o. The ability of EP2 to signal via Gαi/o is recapitulated with in vitro OT and only following OTR activation, suggesting direct EP2-OTR crosstalk. Super-resolution imaging with computational modeling reveals OT-dependent reorganization of EP2-OTR complexes to favor conformations for Gαi over Gαs activation. A selective EP2 ligand, PGN9856i, activates the relaxatory/Gαs-cAMP pathway but not the pro-labor/inflammatory responses in term-pregnant myometrium, even following OT. Our study reveals a mechanism, and provides a potential therapeutic solution, whereby EP2-OTR functional associations could be exploited to delay preterm labor. EP2 activity is reprogrammed toward pro-inflammatory pathways during human labor Oxytocin downregulates EP2-Gαs signaling and switches EP2-Gαq/11 signaling to Gαi/o EP2/OTR heterotetramers are reorganized by oxytocin to conformations favoring Gαi EP2 agonist PGN9856i does not activate pro-labor signals even after oxytocin treatment
Collapse
Affiliation(s)
- Abigail R Walker
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Camilla B Larsen
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Samit Kundu
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK; March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK
| | - Christina Stavrinidis
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sung Hye Kim
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK; March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - David F Woodward
- Department of Bioengineering, Imperial College London, London, UK
| | - Yun S Lee
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK; March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK
| | - Roberta Migale
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK; March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK
| | - Vasso Terzidou
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK; March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK
| | - Francesca Fanelli
- Department Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Shirin Khanjani
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Reproductive Medicine Unit, University College London Hospital, London, UK
| | - Phillip R Bennett
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK; March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK.
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Department Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
7
|
Czub N, Pacławski A, Szlęk J, Mendyk A. Do AutoML-Based QSAR Models Fulfill OECD Principles for Regulatory Assessment? A 5-HT1A Receptor Case. Pharmaceutics 2022; 14:pharmaceutics14071415. [PMID: 35890310 PMCID: PMC9319483 DOI: 10.3390/pharmaceutics14071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
The drug discovery and development process requires a lot of time, financial, and workforce resources. Any reduction in these burdens might benefit all stakeholders in the healthcare domain, including patients, government, and companies. One of the critical stages in drug discovery is a selection of molecular structures with a strong affinity to a particular molecular target. The possible solution is the development of predictive models and their application in the screening process, but due to the complexity of the problem, simple and statistical models might not be sufficient for practical application. The manuscript presents the best-in-class predictive model for the serotonin 1A receptor affinity and its validation according to the Organization for Economic Co-operation and Development guidelines for regulatory purposes. The model was developed based on a database with close to 9500 molecules by using an automatic machine learning tool (AutoML). The model selection was conducted based on the Akaike information criterion value and 10-fold cross-validation routine, and later good predictive ability was confirmed with an additional external validation dataset with over 700 molecules. Moreover, the multi-start technique was applied to test if an automatic model development procedure results in reliable results.
Collapse
|
8
|
Aringer I, Artinger K, Schabhüttl C, Bärnthaler T, Mooslechner AA, Kirsch A, Pollheimer M, Eller P, Rosenkranz AR, Heinemann A, Eller K. Agonism of Prostaglandin E2 Receptor 4 Ameliorates Tubulointerstitial Injury in Nephrotoxic Serum Nephritis in Mice. J Clin Med 2021; 10:832. [PMID: 33670614 PMCID: PMC7922874 DOI: 10.3390/jcm10040832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Selectively targeting the E-type prostanoid receptor 4 (EP4) might be a new therapeutic option in the treatment of glomerulonephritis (GN), since the EP4 receptor is expressed on different immune cells, resident kidney cells, and endothelial cells, which are all involved in the pathogenesis of immune-complex GN. This study aimed to evaluate the therapeutic potential and to understand the mode of action of EP4 agonist in immune-complex GN using the murine model of nephrotoxic serum nephritis (NTS). In vivo, NTS mice were treated two times daily with two different doses of an EP4 agonist ONO AE1-329 or vehicle for 14 days total. The effect of PGE2 and EP4 agonism and antagonism was tested on murine distal convoluted tubular epithelial cells (DCT) in vitro. In vivo, the higher dose of the EP4 agonist led to an improved NTS phenotype, including a reduced tubular injury score and reduced neutrophil gelatinase-associated lipocalin (NGAL) and blood urea nitrogen (BUN) levels. EP4 agonist treatment caused decreased CD4+ T cell infiltration into the kidney and increased proliferative capacity of tubular cells. Injection of the EP4 agonist resulted in dose-dependent vasodilation and hypotensive episodes. The low-dose EP4 agonist treatment resulted in less pronounced episodes of hypotension. In vitro, EP4 agonism resulted in cAMP production and increased distal convoluted tubular (DCT) proliferation. Taken together, EP4 agonism improved the NTS phenotype by various mechanisms, including reduced blood pressure, decreased CD4+ T cell infiltration, and a direct effect on tubular cells leading to increased proliferation probably by increasing cAMP levels.
Collapse
Affiliation(s)
- Ida Aringer
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (I.A.); (K.A.); (C.S.); (A.A.M.); (A.R.R.)
- Clinical Department of Internal Medicine 1, University Hospital St. Poelten, 3100 St. Poelten, Austria
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, BioTechMed Graz, 8036 Graz, Austria; (T.B.); (A.H.)
| | - Katharina Artinger
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (I.A.); (K.A.); (C.S.); (A.A.M.); (A.R.R.)
| | - Corinna Schabhüttl
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (I.A.); (K.A.); (C.S.); (A.A.M.); (A.R.R.)
| | - Thomas Bärnthaler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, BioTechMed Graz, 8036 Graz, Austria; (T.B.); (A.H.)
| | - Agnes A. Mooslechner
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (I.A.); (K.A.); (C.S.); (A.A.M.); (A.R.R.)
| | - Andrijana Kirsch
- Clinical Department of Phoniatrics, Medical University of Graz, 8036 Graz, Austria;
| | - Marion Pollheimer
- Institute of Pathology, Medical University of Graz, 8036 Graz, Austria;
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Alexander R. Rosenkranz
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (I.A.); (K.A.); (C.S.); (A.A.M.); (A.R.R.)
| | - Akos Heinemann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, BioTechMed Graz, 8036 Graz, Austria; (T.B.); (A.H.)
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (I.A.); (K.A.); (C.S.); (A.A.M.); (A.R.R.)
| |
Collapse
|
9
|
Heeney A, Rogers AC, Mohan H, Mc Dermott F, Baird AW, Winter DC. Prostaglandin E 2 receptors and their role in gastrointestinal motility - Potential therapeutic targets. Prostaglandins Other Lipid Mediat 2021; 152:106499. [PMID: 33035691 DOI: 10.1016/j.prostaglandins.2020.106499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
Prostaglandin E2 (PGE2) is found throughout the gastrointestinal tract in a diverse variety of functions and roles. The recent discovery of four PGE2 receptor subtypes in intestinal muscle layers as well as in the enteric plexus has led to much interest in the study of their roles in gut motility. Gut dysmotility has been implicated in functional disease processes including irritable bowel syndrome (IBS) and slow transit constipation, and lubiprostone, a PGE2 derivative, has recently been licensed to treat both conditions. The diversity of actions of PGE2 in the intestinal tract is attributed to its differing effects on its downstream receptor types, as well as their varied distribution in the gut, in both health and disease. This review aims to identify the role and distribution of PGE2 receptors in the intestinal tract, and aims to elucidate their distinct role in gut motor function, with a specific focus on functional intestinal pathologies.
Collapse
Affiliation(s)
- A Heeney
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| | - A C Rogers
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - H Mohan
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - F Mc Dermott
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - A W Baird
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - D C Winter
- Institute for Clinical Outcomes, Research and Education (ICORE), St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
10
|
Bertrand JA, Woodward DF, Sherwood JM, Wang JW, Overby DR. The role of EP 2 receptors in mediating the ultra-long-lasting intraocular pressure reduction by JV-GL1. Br J Ophthalmol 2020; 105:1610-1616. [PMID: 33239414 DOI: 10.1136/bjophthalmol-2020-317762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND A single application of JV-GL1 substantially lowers non-human primate intraocular pressure (IOP) for about a week, independent of dose. This highly protracted effect does not correlate with its ocular biodisposition or correlate with the once-daily dosing regimen for other prostanoid EP2 receptor agonists such as trapenepag or omidenepag. The underlying pharmacological mechanism for the multiday extended activity of JV-GL1 is highly intriguing. The present studies were intended to determine EP2 receptor involvement in mediating the long-term ocular hypotensive activity of JV-GL1 by using mice genetically deficient in EP2 receptors. METHODS The protracted IOP reduction produced by JV-GL1 was investigated in C57BL/6J and EP2 receptor knock-out mice (B6.129-Ptger2tm1Brey /J; EP2KO). Both ocular normotensive and steroid-induced ocular hypertensive (SI-OHT) mice were studied. IOP was measured tonometrically under general anaesthesia. Aqueous humour outflow facility was measured ex vivo using iPerfusion in normotensive C57BL/6J mouse eyes perfused with 100 nM de-esterified JV-GL1 and in SI-OHT C57BL/6J mouse eyes that had received topical JV-GL1 (0.01%) 3 days prior. RESULTS Both the initial 1-day and the protracted multiday effects of JV-GL1 in the SI-OHT model for glaucoma were abolished by deletion of the gene encoding the EP2 receptor. Thus, JV-GL1 did not lower IOP in SI-OHT EP2KO mice, but in littermate SI-OHT EP2WT control mice, JV-GL1 statistically significantly lowered IOP for 4-6 days. CONCLUSIONS Both the 1-day and the long-term effects of JV-GL1 on IOP are entirely EP2 receptor dependent.
Collapse
Affiliation(s)
| | - David F Woodward
- Dept. of Bioengineering, Imperial College London, London, UK.,JeniVision Inc, Suite 200, Irvine, California, USA
| | | | - Jenny W Wang
- JeniVision Inc, Suite 200, Irvine, California, USA
| | - Darryl R Overby
- Dept. of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
11
|
Woodward DF, Coleman RA, Woodrooffe AJ, Spada CS, Wang JW. Effect of the Antiglaucoma Agent JV-GL1 and Related Compounds in the Canine Eye. J Ocul Pharmacol Ther 2020; 36:636-648. [DOI: 10.1089/jop.2020.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- David F. Woodward
- Department of Bioengineering, Imperial College London, South Kensington, United Kingdom
- JeniVision, Inc., Irvine, California, USA
| | | | | | | | | |
Collapse
|
12
|
Siricilla S, Iwueke CC, Herington JL. Drug discovery strategies for the identification of novel regulators of uterine contractility. CURRENT OPINION IN PHYSIOLOGY 2019; 13:71-86. [PMID: 32864532 DOI: 10.1016/j.cophys.2019.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Preterm birth and postpartum hemorrhage are the leading causes of neonatal and maternal morbidities worldwide, respectively. Current clinically utilized tocolytics and uterotonics to manage these obstetric conditions are limited due to their off-target effects and/or lack of efficacy. Thus, an ideal tocolytic or uterotonic would be uterine-selective with rapid onset and long-duration efficacy. Here, we discuss strategies for the discovery of new therapeutic targets and compounds that regulate uterine contractility with the aforementioned properties.
Collapse
Affiliation(s)
- Shajila Siricilla
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chisom C Iwueke
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer L Herington
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
13
|
Coleman RA, Woodrooffe AJ, Clark KL, Toris CB, Fan S, Wang JW, Woodward DF. The affinity, intrinsic activity and selectivity of a structurally novel EP 2 receptor agonist at human prostanoid receptors. Br J Pharmacol 2019; 176:687-698. [PMID: 30341781 PMCID: PMC6365485 DOI: 10.1111/bph.14525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Prostanoid EP2 receptor agonists exhibit several activities including ocular hypotension, tocolysis and anti-inflammatory activity. This report describes the affinity and selectivity of a structurally novel, non-prostanoid EP2 receptor agonist, PGN-9856, and its therapeutic potential. EXPERIMENTAL APPROACH The pharmacology of a series of non-prostanoid EP2 receptor agonists was determined according to functional and radioligand binding studies, mostly using human recombinant prostanoid receptor transfectants. The selectivity of PGN-9856, as the preferred compound, was subsequently determined by using a diverse variety of non-prostanoid target proteins. The therapeutic potential of PGN-9856 was addressed by determining its activity in relevant primate cell, tissue and disease models. KEY RESULTS PGN-9856 was a selective and high affinity (pKi ≥ 8.3) ligand at human recombinant EP2 receptors. In addition to high affinity binding, it was a potent and full EP2 receptor agonist with a high level of selectivity at EP1 , EP3 , EP4 , DP, FP, IP and TP receptors. In cells overexpressing human recombinant EP2 receptors, PGN-9856 displayed a potency (pEC50 ≥ 8.5) and a maximal response (increase in cAMP) comparable to that of the endogenous agonist PGE2 . PGN-9856 exhibited no appreciable affinity (up 10 μM) for a range of 53 other receptors, ion channels and enzymes. Finally, PGN-9856 exhibited tocolytic, anti-inflammatory and long-acting ocular hypotensive properties consistent with its potent EP2 receptor agonist properties. CONCLUSIONS AND IMPLICATIONS PGN-9856 is a potent, selective and efficacious prostanoid EP2 receptor agonist with diverse potential therapeutic applications: tocolytic, anti-inflammatory and notably anti-glaucoma.
Collapse
Affiliation(s)
| | | | | | - C B Toris
- University of Nebraska Medical Center, Omaha, NE, USA
| | - S Fan
- University of Nebraska Medical Center, Omaha, NE, USA
| | - J W Wang
- JeniVision Inc., Irvine, CA, USA
| | | |
Collapse
|