1
|
Zou K, Wang T, Guan M, Liu Y, Li J, Liu Y, Du J, Wu D. Identification and Evaluation of qRT-PCR Reference Genes in Melanaphis sacchari. INSECTS 2024; 15:522. [PMID: 39057255 PMCID: PMC11277337 DOI: 10.3390/insects15070522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Appropriate reference genes must be selected for accurate qRT-PCR data to conduct a thorough gene expression analysis in the sorghum aphid (Melanaphis sacchari, Hemiptera, Aphididae). This approach will establish a foundation for gene expression analysis and determines the efficacy of RNA interference in the sorghum aphid. Nine potential reference genes, including Actin, 18S, GAPDH, RPL7, EF-1α, EF-1β, 28S, HSP70, and TATA, were assessed under various experimental conditions to gauge their suitability based on qRT-PCR Ct values. The stability of these candidate reference genes in diverse experimental setups was analyzed employing several techniques, including the ΔCt comparative method, geNorm, Normfinder, BestKeeper, and RefFinder. The findings revealed that the quantity of ideal reference genes ascertained by the geNorm method for diverse experimental conditions remained consistent. For the developmental stages of the sorghum aphid, RPL7 and 18S proved to be the most dependable reference genes, whereas GAPDH and EF-1β were recommended as the most stable reference genes for different tissues. In experiments involving wing dimorphism, EF-1α and GAPDH were identified as the optimal reference gene pair. Under varying temperatures, EF-1α and EF-1β were found to be the most dependable gene pair. For studies focusing on insecticide susceptibility, 18S and TATA emerged as the most stable candidate reference genes. Across all experimental conditions, EF-1α and EF-1β was the optimal combination of reference genes in the sorghum aphid. This research has pinpointed stable reference genes that can be utilized across various treatments, thereby enhancing gene expression studies and functional genomics research on the sorghum aphid.
Collapse
Affiliation(s)
- Kunliang Zou
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
| | - Tonghan Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
| | - Minghui Guan
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China;
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China;
| | - Yang Liu
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China;
| | - Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China;
| | - Yanlong Liu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China;
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
- Anhui Province International Joint Research Center of Forage Bio-Breeding, Chuzhou 233100, China;
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (K.Z.); (T.W.); (J.L.); (Y.L.); (D.W.)
| |
Collapse
|
2
|
Thomas R, Yang X. Semaphorins in immune cell function, inflammatory and infectious diseases. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100060. [PMID: 37645659 PMCID: PMC10461194 DOI: 10.1016/j.crimmu.2023.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 08/31/2023] Open
Abstract
The Semaphorin family is a group of proteins studied broadly for their functions in nervous systems. They consist of eight subfamilies ubiquitously expressed in vertebrates, invertebrates, and viruses and exist in membrane-bound or secreted forms. Emerging evidence indicates the relevance of semaphorins outside the nervous system, including angiogenesis, cardiogenesis, osteoclastogenesis, tumour progression, and, more recently, the immune system. This review provides a broad overview of current knowledge on the role of semaphorins in the immune system, particularly its involvement in inflammatory and infectious diseases, including chlamydial infections.
Collapse
Affiliation(s)
- Rony Thomas
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Lin Y, Su J, Wang M, Li Y, Zhao Z, Sun Z. Hypericumsampsonii attenuates inflammation in mice with ulcerative colitis via regulation of PDE4/PKA/CREB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115447. [PMID: 35688258 DOI: 10.1016/j.jep.2022.115447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum sampsonii Hance (Yuanbaocao), a traditional herbal medicine with various pharmacological properties, is traditionally used to treat diarrhea and enteritis in China for hundreds of years. Investigations have uncovered its anti-inflammatory effects and corresponding bioactive constituents in H. sampsonii, however, the mechanisms of action for the treatment of enteritis are still unclear. AIMS OF THE STUDY This study aims to investigate the therapeutic effects and molecular mechanisms of H. sampsonii in a dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice model. MATERIALS AND METHODS The major ingredients of the ethyl acetate extract (HS) in H. sampsonii were analyzed by UPLC-QTOF-MS. The inflammatory state of UC mice was caused by 3% DSS once daily for seven days. During DSS treatment, the mice in the positive drug group and the other three groups were orally administered 5-ASA (positive control) or HS daily. After treatment with HS or 5-ASA for a week, colonic pathological observation and the molecular biological index were performed for therapeutic evaluation, including visual inspection in the length and weight of colons and spleens, pathological morphology by hematoxylin and eosin (HE) staining, determination of oxidative markers, inflammatory cytokines and tumor necrosis factor-alpha (TNF-α) levels in colonic tissues as well as spleen index. Gene expression levels of inflammatory cytokines, antioxidant enzymes and PDE4 were detected using kits and PCR, while the expression of colonic tight junction proteins and relative signals of PKA/CREB signaling pathway were analyzed by Western blot. RESULTS The main components in HS were found to be polycyclic polyprenylated acylphloroglucinols (PPAPs). HS distinctly alleviated DSS-stimulated UC-like lesions symptoms as evidenced by a significant recovery from body weight, colon lengths, and histological injuries of colons. HS reduced the accumulation of pro-inflammatory cytokines and improved the mRNA level of IL-10. Simultaneously, the colonic mRNA expression levels of IL-1β, IL-17, iNOS and COX-2 were all significantly suppressed by HS in a dose-dependent manner. Furthermore, HS restored the protein expression of tight junction-associated protein (ZO-1 and occluding). Besides, HS significantly inhibited the protein level of PDE4 and decreased the expressions of PKA and phosphorylated CREB. CONCLUSION This is the first work about main composition and anti-UC effect of Hypericum sampsonii Hance. For the first time, this study reveals HS is not toxic in a single dose and exert significantly protective effect in DSS-colitis mice. The underlying mechanisms may involve the improvement to inflammatory status, the protection for intestinal barrier function, the inhibition of PDE4, and the activation of PKA/CREB signaling pathway. This study provided an experimental basis for the traditional application of H. sampsonii Hance in the treatment of diarrhea and dysentery.
Collapse
Affiliation(s)
- Yinsi Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jianhui Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Mingqiang Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanzhen Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zhanghua Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Kapoor K, Eissa N, Tshikudi D, Bernstein CN, Ghia JE. Impact of intrarectal chromofungin treatment on dendritic cells-related markers in different immune compartments in colonic inflammatory conditions. World J Gastroenterol 2021; 27:8138-8155. [PMID: 35068859 PMCID: PMC8704268 DOI: 10.3748/wjg.v27.i47.8138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chromofungin (CHR: chromogranin-A 47-66) is a chromogranin-A derived peptide with anti-inflammatory and anti-microbial properties. Ulcerative colitis (UC) is characterized by a colonic decrease of CHR and a dysregulation of dendritic CD11c+ cells.
AIM To investigate the association between CHR treatment and dendritic cells (DCs)-related markers in different immune compartments in colitis.
METHODS A model of acute UC-like colitis using dextran sulphate sodium (DSS) was used in addition to biopsies collected from UC patients.
RESULTS Intrarectal CHR treatment reduced the severity of DSS-induced colitis and was associated with a significant decrease in the expression of CD11c, CD40, CD80, CD86 and interleukin (IL)-12p40 in the inflamed colonic mucosa and CD11c, CD80, CD86 IL-6 and IL-12p40 within the mesenteric lymph nodes and the spleen. Furthermore, CHR treatment decreased CD80 and CD86 expression markers of splenic CD11c+ cells and decreased NF-κB expression in the colon and of splenic CD11c+ cells. In vitro, CHR decreased CD40, CD80, CD86 IL-6 and IL-12p40 expression in naïve bone marrow-derived CD11c+ DCs stimulated with lipopolysaccharide. Pharmacological studies demonstrated an impact of CHR on the NF-κB pathway. In patients with active UC, CHR level was reduced and showed a negative linear relationship with CD11c and CD86.
CONCLUSION CHR has protective properties against intestinal inflammation via the regulation of DC-related markers and CD11c+ cells. CHR could be a potential therapy of UC.
Collapse
Affiliation(s)
- Kunal Kapoor
- Department of Immunology, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| | - Nour Eissa
- Department of Immunology, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| | - Diane Tshikudi
- Department of Immunology, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| | - Charles N Bernstein
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| | - Jean-Eric Ghia
- Department of Immunology, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| |
Collapse
|
5
|
Li Q, Lian Y, Deng Y, Chen J, Wu T, Lai X, Zheng B, Qiu C, Peng Y, Li W, Xiang AP, Zhang X, Ren J. mRNA-engineered mesenchymal stromal cells expressing CXCR2 enhances cell migration and improves recovery in IBD. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:222-236. [PMID: 34513306 PMCID: PMC8413681 DOI: 10.1016/j.omtn.2021.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown significant heterogeneity in terms of therapeutic efficacy for inflammatory bowel disease (IBD) treatment, which may be due to an insufficient number of MSCs homing to the damaged tissue of the colon. Engineering MSCs with specific chemokine receptors can enhance the homing ability by lentiviral transduction. However, the unclear specific chemokine profile related to IBD and the safety concerns of viral-based gene delivery limit its application. Thus, a new strategy to modify MSCs to express specific chemokine receptors using mRNA engineering is developed to evaluate the homing ability of MSCs and its therapeutic effects for IBD. We found that CXCL2 and CXCL5 were highly expressed in the inflammatory colon, while MSCs minimally expressed the corresponding receptor CXCR2. Transient expression of CXCR2 in MSC was constructed and exhibited significantly enhanced migration to the inflamed colons, leading to a robust anti-inflammatory effect and high efficacy. Furthermore, the high expression of semaphorins7A on MSCs were found to induce the macrophages to produce IL-10, which may play a critical therapeutic role. This study demonstrated that the specific chemokine receptor CXCR2 mRNA-engineered MSCs not only improves the therapeutic efficacy of IBD but also provides an efficient and safe MSC modification strategy.
Collapse
Affiliation(s)
- Qiaojia Li
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yufan Lian
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yiwen Deng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jieying Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou 510630, China
| | - Tao Wu
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| | - Xinqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Bowen Zheng
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| | - Chen Qiu
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| | - Yanwen Peng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou 510630, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou 510630, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou 510630, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jie Ren
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| |
Collapse
|
6
|
Eissa N, Elgazzar O, Hussein H, Hendy GN, Bernstein CN, Ghia JE. Pancreastatin Reduces Alternatively Activated Macrophages, Disrupts the Epithelial Homeostasis and Aggravates Colonic Inflammation. A Descriptive Analysis. Biomedicines 2021; 9:biomedicines9020134. [PMID: 33535452 PMCID: PMC7912769 DOI: 10.3390/biomedicines9020134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) is characterized by modifying alternatively activated macrophages (AAM) and epithelial homeostasis. Chromogranin-A (CHGA), released by enterochromaffin cells, is elevated in UC and is implicated in inflammation progression. CHGA can be cleaved into several derived peptides, including pancreastatin (PST), which is involved in proinflammatory mechanisms. Previously, we showed that the deletion of Chga decreased the onset and severity of colitis correlated with an increase in AAM and epithelial cells’ functions. Here, we investigated PST activity in colonic biopsies of participants with active UC and investigated PST treatment in dextran sulfate sodium (DSS)-induced colitis using Chga−/− mice, macrophages, and a human colonic epithelial cells line. We found that the colonic protein expression of PST correlated negatively with mRNA expression of AAM markers and tight junction (TJ) proteins and positively with mRNA expression of interleukin (IL)-8, IL18, and collagen in human. In a preclinical setting, intra-rectal administration of PST aggravated DSS-induced colitis by decreasing AAM’s functions, enhancing colonic collagen deposition and disrupting epithelial homeostasis in Chga+/+ and Chga−/− mice. This effect was associated with a significant reduction in AAM markers, increased colonic IL-18 release, and decreased TJ proteins’ gene expression. In vitro, PST reduced Chga+/+ and Chga−/− AAM polarization and decreased anti-inflammatory mediators’ production. Conditioned medium harvested from PST-treated Chga+/+ and Chga−/− AAM reduced Caco-2 cell migration, viability, proliferation, and mRNA levels of TJ proteins and increased oxidative stress-induced apoptosis and proinflammatory cytokines release. In conclusion, PST is a CHGA proinflammatory peptide that enhances the severity of colitis and the inflammatory process via decreasing AAM functions and disrupting epithelial homeostasis.
Collapse
Affiliation(s)
- Nour Eissa
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada or (N.E.); (O.E.)
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- The IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Omar Elgazzar
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada or (N.E.); (O.E.)
| | - Hayam Hussein
- National Research Centre, Department of Parasitology and Animal Diseases, Veterinary Research Division, Giza 12622, Egypt;
| | - Geoffrey N. Hendy
- Metabolic Disorders and Complications, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Charles N. Bernstein
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- The IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Jean-Eric Ghia
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada or (N.E.); (O.E.)
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- The IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Correspondence: or
| |
Collapse
|
7
|
Noueihed B, Rivera JC, Dabouz R, Abram P, Omri S, Lahaie I, Chemtob S. Mesenchymal Stromal Cells Promote Retinal Vascular Repair by Modulating Sema3E and IL-17A in a Model of Ischemic Retinopathy. Front Cell Dev Biol 2021; 9:630645. [PMID: 33553187 PMCID: PMC7859341 DOI: 10.3389/fcell.2021.630645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic retinopathies (IRs), such as retinopathy of prematurity and diabetic retinopathy, are characterized by an initial phase of microvascular degeneration that results in retinal ischemia, followed by exaggerated pathologic neovascularization (NV). Mesenchymal stromal cells (MSCs) have potent pro-angiogenic and anti-inflammatory properties associated with tissue repair and regeneration, and in this regard exert protection to neurons in ischemic and degenerative conditions; however, the exact mechanisms underlying these functions remain largely unknown. Class III Semaphorins (A–G) are particularly implicated in regulating neural blood supply (as well as neurogenesis) by suppressing angiogenesis and affecting myeloid cell function; this is the case for distinct neuropillin-activating Sema3A as well as PlexinD1-activating Sema3E; but during IR the former Sema3A increases while Sema3E decreases. We investigated whether retinal vascular repair actions of MSCs are exerted by normalizing Semaphorin and downstream cytokines in IR. Intravitreal administration of MSCs or their secretome (MSCs-conditioned media [MSCs-CM]) significantly curtailed vasoobliteration as well as aberrant preretinal NV in a model of oxygen-induced retinopathy (OIR). The vascular repair effects of MSCs-CM in the ischemic retina were associated with restored levels of Sema3E. Vascular benefits of MSCs-CM were reversed by anti-Sema3E; while intravitreal injection of anti-angiogenic recombinant Sema3E (rSema3E) in OIR-subjected mice reproduced effects of MSCs-CM by inhibiting as expected preretinal NV but also by decreasing vasoobliteration. To explain these opposing vascular effects of Sema3E we found in OIR high retinal levels, respectively, of the pro- and anti-angiogenic IL-17A and Sema3A-regulating IL-1β; IL-17A positively affected expression of IL-1β. rSema3E decreased concentrations of these myeloid cell-derived pro-inflammatory cytokines in vitro and in vivo. Importantly, IL-17A suppression by MSCs-CM was abrogated by anti-Sema3E neutralizing antibody. Collectively, our findings provide novel evidence by which MSCs inhibit aberrant NV and diminish vasoobliteration (promoting revascularization) in retinopathy by restoring (at least in part) neuronal Sema3E levels that reduce pathological levels of IL-17A (and in turn other proinflammatory factors) in myeloid cells. The ability of MSCs to generate a microenvironment permissive for vascular regeneration by controlling the production of neuronal factors involved in immunomodulatory activities is a promising opportunity for stem cell therapy in ocular degenerative diseases.
Collapse
Affiliation(s)
- Baraa Noueihed
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Pénélope Abram
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|
8
|
Ikeogu NM, Edechi CA, Akaluka GN, Feiz-Barazandeh A, Zayats RR, Salako ES, Onwah SS, Onyilagha C, Jia P, Mou Z, Shan L, Murooka TT, Gounni AS, Uzonna JE. Semaphorin 3E Promotes Susceptibility to Leishmania major Infection in Mice by Suppressing CD4 + Th1 Cell Response. THE JOURNAL OF IMMUNOLOGY 2020; 206:588-598. [PMID: 33443083 DOI: 10.4049/jimmunol.2000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
Protective immunity to cutaneous leishmaniasis is mediated by IFN-γ-secreting CD4+ Th1 cells. IFN-γ binds to its receptor on Leishmania-infected macrophages, resulting in their activation, production of NO, and subsequent destruction of parasites. This study investigated the role of Semaphorin 3E (Sema3E) in host immunity to Leishmania major infection in mice. We observed a significant increase in Sema3E expression at the infection site at different timepoints following L. major infection. Sema3E-deficient (Sema3E knockout [KO]) mice were highly resistant to L. major infection, as evidenced by significantly (p < 0.05-0.01) reduced lesion sizes and lower parasite burdens at different times postinfection when compared with their infected wild-type counterpart mice. The enhanced resistance of Sema3E KO mice was associated with significantly (p < 0.05) increased IFN-γ production by CD4+ T cells. CD11c+ cells from Sema3E KO mice displayed increased expression of costimulatory molecules and IL-12p40 production following L. major infection and were more efficient at inducing the differentiation of Leishmania-specific CD4+ T cells to Th1 cells than their wild-type counterpart cells. Furthermore, purified CD4+ T cells from Sema3E KO mice showed increased propensity to differentiate into Th1 cells in vitro, and this was significantly inhibited by the addition of recombinant Sema3E in vitro. These findings collectively show that Sema3E is a negative regulator of protective CD4+ Th1 immunity in mice infected with L. major and suggest that its neutralization may be a potential therapeutic option for treating individuals suffering from cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Nnamdi M Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chidalu A Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P5, Canada; and
| | - Gloria N Akaluka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Aida Feiz-Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Romaniya R Zayats
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Enitan S Salako
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Somtochukwu S Onwah
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chukuwunonso Onyilagha
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba R3E 3M4, Canada
| | - Ping Jia
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Thomas T Murooka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada;
| |
Collapse
|
9
|
Eissa N, Hussein H, Tshikudi DM, Hendy GN, Bernstein CN, Ghia JE. Interdependence between Chromogranin-A, Alternatively Activated Macrophages, Tight Junction Proteins and the Epithelial Functions. A Human and In-Vivo/In-Vitro Descriptive Study. Int J Mol Sci 2020; 21:ijms21217976. [PMID: 33121008 PMCID: PMC7662632 DOI: 10.3390/ijms21217976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Ulcerative colitis (UC) is characterized by altered chromogranin-A (CHGA), alternatively activated macrophages (M2) and intestinal epithelial cells (IECs). We previously demonstrated that CHGA is implicated in colitis progression by regulating the macrophages. Here, we investigated the interplay between CHGA, M2, tight junctions (TJ) and IECs in an inflammatory environment. Methods: Correlations between CHGA mRNA expression of and TJ proteins mRNA expressions of (Occludin [OCLN], zonula occludens-1 [ZO1], Claudin-1 [CLDN1]), epithelial associated cytokines (interleukin [IL]-8, IL-18), and collagen (COL1A2) were determined in human colonic mucosal biopsies isolated from active UC and healthy patients. Acute UC-like colitis (5% dextran sulphate sodium [DSS], five days) was induced in Chga-C57BL/6-deficient (Chga−/−) and wild type (Chga+/+) mice. Col1a2 TJ proteins, Il-18 mRNA expression and collagen deposition were determined in whole colonic sections. Naïve Chga−/− and Chga+/+ peritoneal macrophages were isolated and exposed six hours to IL-4/IL-13 (20 ng/mL) to promote M2 and generate M2-conditioned supernatant. Caco-2 epithelial cells were cultured in the presence of Chga−/− and Chga+/+ non- or M2-conditioned supernatant for 24 h then exposed to 5% DSS for 24 h, and their functional properties were assessed. Results: In humans, CHGA mRNA correlated positively with COL1A2, IL-8 and IL-18, and negatively with TJ proteins mRNA markers. In the experimental model, the deletion of Chga reduced IL-18 mRNA and its release, COL1A2 mRNA and colonic collagen deposition, and maintained colonic TJ proteins. Chga−/− M2-conditioned supernatant protected caco-2 cells from DSS and oxidative stress injuries by improving caco-2 cells functions (proliferation, viability, wound healing) and by decreasing the release of IL-8 and IL-18 and by maintaining the levels of TJ proteins, and when compared with Chga+/+ M2-conditioned supernatant. Conclusions: CHGA contributes to the development of intestinal inflammation through the regulation of M2 and epithelial cells. Targeting CHGA may lead to novel biomarkers and therapeutic strategies in UC.
Collapse
Affiliation(s)
- Nour Eissa
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (N.E.); (D.M.T.)
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Hayam Hussein
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza 12622, Egypt;
| | - Diane M. Tshikudi
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (N.E.); (D.M.T.)
| | - Geoffrey N. Hendy
- Metabolic Disorders and Complications, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Charles N. Bernstein
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Jean-Eric Ghia
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (N.E.); (D.M.T.)
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Correspondence: or ; Tel.: +1-(204)-789-3802; Fax: +1-(204)-789-3921-431
| |
Collapse
|
10
|
Kou Y, Yu F, Yuan Y, Niu S, Han N, Zhang Y, Yin X, Xu H, Jiang B. Effects of NP-1 on proliferation, migration, and apoptosis of Schwann cell line RSC96 through the NF-κB signaling pathway. Am J Transl Res 2020; 12:4127-4140. [PMID: 32913493 PMCID: PMC7476162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Peripheral nerve injury is a common refractory disease in the clinic that often leads to dysfunction of movement and sensation. Different from other tissue injuries, peripheral nerve injury needs a longer time for regeneration. Therefore, effective drug therapy is needed to promote nerve regeneration in the treatment of peripheral nerve injury. Our preliminary studies have shown that continuous intramuscular injection of NP-1 promotes the regeneration of injured sciatic nerve in rats, but the mechanisms were still unknown. Schwann cells are very important cells in the formation of myelin sheath of peripheral nerves and participate in the repair and regeneration of peripheral nerve injury. To further investigate the effect of NP-1 on rat Schwann cells and the underlying mechanism, different concentrations of NP-1 were used to treat rat Schwann cell line RSC96. Light microscopy, CCK-8 assay, cell scratch assay, and special cell staining were performed to investigate RSC96 cell aging and apoptosis. mRNA and protein expression of NF-κB signaling pathway-related factors were determined using qPCR and immunohistochemistry respectively. Light microscopy, CCK-8 assay, cell scratch assay, and special cell staining showed NP-1 could improve the ability of proliferation, immigration of Schwann cells. QPCR and immunohistochemistry showed NP-1 influenced the expression of multiple factors associated with nerve regeneration which NF-κB signaling pathway played a key role. The results show that NP-1 promoted the proliferation and migration of RSC96 cells and inhibited cell aging and apoptosis possibly through the NF-κB signaling pathway. These findings provide a potential target for clinical treatment of peripheral neuropathy and experimental data support.
Collapse
Affiliation(s)
- Yuhui Kou
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Peking UniversityBeijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of EducationBeijing, China
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen HospitalShenzhen, China
| | - Yusong Yuan
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Peking UniversityBeijing, China
- Diabetic Foot Treatment Center, Peking University People’s Hospital, Peking UniversityBeijing, China
| | - Suping Niu
- Office of Academic Research, Peking University People’s Hospital, Peking UniversityBeijing, China
| | - Na Han
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of EducationBeijing, China
- Office of Academic Research, Peking University People’s Hospital, Peking UniversityBeijing, China
| | - Yajun Zhang
- National Center for Trauma MedicineBeijing, China
| | - Xiaofeng Yin
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Peking UniversityBeijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of EducationBeijing, China
| | - Hailin Xu
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Peking UniversityBeijing, China
- Diabetic Foot Treatment Center, Peking University People’s Hospital, Peking UniversityBeijing, China
| | - Baoguo Jiang
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Peking UniversityBeijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of EducationBeijing, China
- National Center for Trauma MedicineBeijing, China
| |
Collapse
|
11
|
Song W, Ren J, Wang C, Ge Y, Fu T. Analysis of Circular RNA-Related Competing Endogenous RNA Identifies the Immune-Related Risk Signature for Colorectal Cancer. Front Genet 2020; 11:505. [PMID: 32582276 PMCID: PMC7283524 DOI: 10.3389/fgene.2020.00505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background Recent papers have described circular RNAs (circRNAs) playing important roles in the development and progression of colorectal cancer (CRC). However, the expression profiles of circRNAs and their functions in CRC have rarely been studied. The objective was to identify circRNAs involved in the carcinogenesis and progression of CRC and to explore potential molecular mechanisms as a competitive endogenous RNA (ceRNA). Moreover, we aimed to establish an immune-related gene signature for predicting the overall survival (OS) of CRC. Methods The expression patterns of circRNA, miRNA, mRNA, and clinicopathological data were collected from the GEO and TCGA databases. A ceRNA network would be established, and the functional enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed, and hub genes were identified using a cytohub plugin. Subsequently, an immune-related signature was developed based on mRNAs in the ceRNA network. In addition, OS-nomogram was constructed by combining an immune-related signature and clinicopathological characterization to predict the OS. Results We established a circRNA-miRNA-mRNA ceRNA network. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the mRNAs were mainly enriched in neuroactive ligand-receptor interaction, Wnt signaling pathway, cell adhesion molecules (CAMs), and renin secretion. PPI network and module analysis identified 10 hub genes, and the circRNA-miRNA hub gene regulatory modules was established. After univariate and multivariate analysis, seven immune-related genes in the ceRNA network were used to construct the immune-related signature. Patients were divided into low-risk and high-risk groups, and there were significant differences in the OS. The ROC of the nomogram indicated the satisfactory accuracy and predictive power. Furthermore, we established a prognostic nomogram based on immune-related risk score and clinical characterization. The ROC and calibration curves revealed the accuracy of the nomogram. In addition, the high-risk score was positively correlated with six immune infiltrating cells (P < 0.05). Conclusion We screened the key genes and established a circRNA-related ceRNA network involved in CRC, which will assist in understanding the molecular mechanisms underlying the carcinogenesis and progression. Moreover, our proposed immune-based signature may predict survival and reflect the immune status of CRC patients.
Collapse
Affiliation(s)
- Wei Song
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Ren
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuntao Wang
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuhang Ge
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Abstract
Macrophages are professional innate immune cells that are broadly disseminated throughout the body, shape various innate and adaptive immune responses, and play crucial roles in inflammation, homeostasis, wound healing, and tissue remodelling. According to their surrounding microenvironments, macrophages can differentiate themselves in different phenotypes. Over the last two decades, gene expression profiling has been used to decipher new transcripts associated with macrophage phenotypes. This chapter outlines protocols used to isolate and culture murine macrophages and how they can be "polarized" to obtain a specific phenotype. Furthermore, we describe a protocol for gene expression profiling using a quantitative real-time polymerase chain reaction (qPCR), a high-standard technology in the field of gene expression.
Collapse
|
13
|
Semaphorin 3E regulates apoptosis in the intestinal epithelium during the development of colitis. Biochem Pharmacol 2019; 166:264-273. [PMID: 31170375 DOI: 10.1016/j.bcp.2019.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
Semaphorin 3E (SEMA3E) has emerged as an axon-guiding molecule that regulates various biological processes including the immune responses and apoptosis. However, its role in the pathophysiology of colitis remains elusive. We investigated the role of SEMA3E in intestinal epithelial cells (IECs) activation, using biopsies from patients with active ulcerative colitis (UC), a mouse model of UC, and an in-vitro model of intestinal mucosal healing. In this study, we confirmed that the mRNA level of SEMA3E is reduced significantly in patients with UC and demonstrated a negative linear association between SEMA3E mRNA and p53-associated genes. In mice, genetic deletion of Sema3e resulted in an increase onset and severity of colitis, p53-associated genes, apoptosis, and IL-1beta production. Recombinant SEMA3E treatment protected against colitis and decreased these effects. Furthermore, in stimulated epithelial cells, recombinant SEMA3E treatment enhanced wound healing, resistance to oxidative stress and decreased apoptosis and p53-associated genes. Together, these findings identify SEMA3E as a novel regulator in intestinal inflammation that regulates IECs apoptosis and suggest a potential novel approach to treat UC.
Collapse
|
14
|
Kermarrec L, Eissa N, Wang H, Kapoor K, Diarra A, Gounni AS, Bernstein CN, Ghia J. Semaphorin-3E attenuates intestinal inflammation through the regulation of the communication between splenic CD11C + and CD4 + CD25 - T-cells. Br J Pharmacol 2019; 176:1235-1250. [PMID: 30736100 PMCID: PMC6468259 DOI: 10.1111/bph.14614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/02/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE An alteration in the communication between the innate and adaptive immune cells is a hallmark of ulcerative colitis (UC). Semaphorin-3E (SEMA3E), a secreted guidance protein, regulates various immune responses. EXPERIMENTAL APPROACH We investigated the expression of SEMA3E in colonic biopsies of active UC patients and its mechanisms in Sema3e-/- mice using an experimental model of UC. KEY RESULTS SEMA3E level was decreased in active UC patients and negatively correlated with pro-inflammatory mediators. Colonic expression of SEMA3E was reduced in colitic Sema3e+/+ mice, and recombinant (rec-) Plexin-D1 treatment exacerbated disease severity. In vivo rec-SEMA3E treatment restored SEMA3E level in colitic Sema3e+/+ mice. In Sema3e-/- mice, disease severity was increased, and rec-SEMA3E ameliorated these effects. Lack of Sema3e increased the expression of CD11c and CD86 markers. Colitic Sema3e-/- splenocytes and splenic CD11c+ cells produced more IL-12/23 and IFN-γ compared to Sema3e+/+ , and rec-SEMA3E reduced their release as much as NF-κB inhibitors, whereas an NF-κB activator increased their production and attenuated the effect of rec-SEMA3E. Colitic Sema3e-/- splenic CD11c+ /CD4+ CD25- T-cell co-cultures produced higher concentrations of IFN-γ and IL-17 when compared to colitic Sema3e+/+ splenic cell co-cultures, and rec-SEMA3E decreased these effects. In vitro, anti-IL-12p19 and -12p35 antibodies and rec-IL-12 and -23 treatment confirmed the crosstalk between CD11c+ and CD4+ CD25- T-cells. CONCLUSION AND IMPLICATIONS SEMA3E is reduced in colitis and modulates colonic inflammation by regulating the interaction between CD11c+ and CD4+ CD25- T-cells via an NF-κB-dependent mechanism. Thus, SEMA3E could be a potential therapeutic target for UC patients.
Collapse
Affiliation(s)
| | - Nour Eissa
- Department of ImmunologyUniversity of ManitobaWinnipegManitobaCanada
- Children Research Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegManitobaCanada
- Department of Internal Medicine Section of Gastroenterology, IBD Clinical and Research CentreUniversity of ManitobaWinnipegManitobaCanada
| | - Hongxing Wang
- Department of ImmunologyUniversity of ManitobaWinnipegManitobaCanada
| | - Kunal Kapoor
- Department of ImmunologyUniversity of ManitobaWinnipegManitobaCanada
| | - Abdoulaye Diarra
- Department of ImmunologyUniversity of ManitobaWinnipegManitobaCanada
| | | | - Charles N. Bernstein
- Department of Internal Medicine Section of Gastroenterology, IBD Clinical and Research CentreUniversity of ManitobaWinnipegManitobaCanada
| | - Jean‐Eric Ghia
- Department of ImmunologyUniversity of ManitobaWinnipegManitobaCanada
- Children Research Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegManitobaCanada
- Department of Internal Medicine Section of Gastroenterology, IBD Clinical and Research CentreUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|