1
|
Lan A, Gong Y, Li X, Wang Y, Zheng D, Tang H, Wang S, Tang W, Huang C, Guan Z, Lou D. The correlation between fluoride-induced bone damage and reduced DLAV formation in Zebrafish Larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117366. [PMID: 39561566 DOI: 10.1016/j.ecoenv.2024.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
In this study, we aimed to investigate the mechanism by which fluoride exposure causes bone damage and the relationship with the loss of dorsal longitudinal anastomotic vessel (DLAV) formation in zebrafish larvae to further understanding of skeletal fluorosis. We assessed the development of chondrogenesis, osteogenesis, and DLAV angiogenesis, and reactive oxygen species (ROS) in zebrafish larvae subjected to blank control group (Con), low-fluoride group (LF), and high-fluoride group (HF). Abnormal development of the cartilage area, bone mineralization accompanied with abnormal mRNA expression of osteoblast-related OC, ALP, and Runx2b genes and osteoclast-related OPG and RANKL genes, and abnormal DLAV angiogenesis and ROS levels in zebrafish larvae were affected to varying degrees with the increase of fluoride exposure. We concluded that exposure of zebrafish embryos to fluoride can affect bone development process of chondrogenesis and osteogenesis, and that bone damage might be related to the loss of DLAV angiogenesis.
Collapse
Affiliation(s)
- Ailin Lan
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Yi Gong
- Guiyang Healthcare Vocational University, Guiyang, Guizhou 550000, PR China
| | - Xiaofen Li
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Yifan Wang
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Dan Zheng
- Guiyang Matemal and Child Health Care Hospital, Guiyang, Guizhou 550000, PR China
| | - Haiming Tang
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Siqi Wang
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Wenchao Tang
- Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Chunhua Huang
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Zhizhong Guan
- Guizhou Medical University, Guiyang, Guizhou 550000, PR China.
| | - Didong Lou
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China.
| |
Collapse
|
2
|
Kang H, Choi Y, Kim H, Kim H, Jeong H. Sambou Bamboo salt™ down-regulates the expression levels of angiotensin-converting enzyme 2 in activated human mast cells. Food Sci Biotechnol 2024; 33:1697-1705. [PMID: 38623440 PMCID: PMC11016022 DOI: 10.1007/s10068-023-01438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 09/15/2023] [Indexed: 04/17/2024] Open
Abstract
Mast cells have a detrimental impact on coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Sambou Bamboo salt™ (BS) suppresses mast cell-mediated inflammatory response and enhances immunity. In this study, we investigated the regulatory effects of BS on expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease/serine subfamily member 2 (TMPRSS2) in human mast cell line (HMC)-1 cells. BS resulted in significant reductions in expression levels of ACE2 and TMPRSS2 in activated HMC-1 cells. Levels of tryptase were reduced by BS. In addition, BS blocked activation of activator protein 1 (AP-1), c-Jun NH2-terminal kinases (JNK), p38, and phosphatidylinositide-3-kinase (PI3K) in activated HMC-1 cells. Therefore, these results show that BS reduces levels of ACE2, TMPRSS2, and tryptase by inhibiting AP-1/JNK/p38/PI3K signaling pathways in mast cells. These findings can serve as valuable foundational data for the development of therapeutic agents aimed at preventing SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ho‑Geun Kang
- Department of Bio-Convergence System, Graduate School, Hoseo University, 20 Hoseo-Ro, 79 Beon-Gil, Baebang-Eup, Asan, 31499 Republic of Korea
| | - Yu‑Jin Choi
- Department of Food Science & Technology, Hoseo University, 20 Hoseo-Ro, 79 Beon-Gil, Baebang-Eup, Asan, 31499 Republic of Korea
| | - Hee‑Yun Kim
- BioChip Research Center, Hoseo University, 20 Hoseo-Ro, 79 Beon-Gil, Baebang-Eup, Asan, 31499 Republic of Korea
| | - Hyung‑Min Kim
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, 02447 Korea
| | - Hyun‑Ja Jeong
- Department of Bio-Convergence System, Graduate School, Hoseo University, 20 Hoseo-Ro, 79 Beon-Gil, Baebang-Eup, Asan, 31499 Republic of Korea
- Department of Food Science & Technology, Hoseo University, 20 Hoseo-Ro, 79 Beon-Gil, Baebang-Eup, Asan, 31499 Republic of Korea
- BioChip Research Center, Hoseo University, 20 Hoseo-Ro, 79 Beon-Gil, Baebang-Eup, Asan, 31499 Republic of Korea
| |
Collapse
|
3
|
Tao H, Li X, Wang Q, Yu L, Yang P, Chen W, Yang X, Zhou J, Geng D. Redox signaling and antioxidant defense in osteoclasts. Free Radic Biol Med 2024; 212:403-414. [PMID: 38171408 DOI: 10.1016/j.freeradbiomed.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Bone remodeling is essential for the repair and replacement of damaged or aging bones. Continuous remodeling is necessary to prevent the accumulation of bone damage and to maintain bone strength and calcium balance. As bones age, the coupling mechanism between bone formation and absorption becomes dysregulated, and bone loss becomes dominant. Bone development and repair rely on interaction and communication between osteoclasts and surrounding cells. Osteoclasts are specialized cells that are accountable for bone resorption and degradation, and any abnormalities in their activity can result in notable alterations in bone structure and worsen disease symptoms. Recent findings from transgenic mouse models and bone analysis have greatly enhanced our understanding of the origin, differentiation pathway, and activation stages of osteoclasts. In this review, we explore osteoclasts and discuss the cellular and molecular events that drive their generation, focusing on intracellular oxidative and antioxidant signaling. This knowledge can help develop targeted therapies for diseases associated with osteoclast activation.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Xuefeng Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Peng Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China.
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Kang HG, Lim JH, Kim HY, Kim H, Kim HM, Jeong HJ. Anti-fatigue effect of tormentic acid through alleviating oxidative stress and energy metabolism-modulating property in C2C12 cells and animal models. Nutr Res Pract 2023; 17:670-681. [PMID: 37529263 PMCID: PMC10375336 DOI: 10.4162/nrp.2023.17.4.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Oxidative stress is caused by reactive oxygen species and free radicals that accelerate inflammatory responses and exacerbate fatigue. Tormentic acid (TA) has antioxidant and anti-inflammatory properties. Thus, the aim of present study is to determine the fatigue-regulatory effects of TA in H2O2-stimulated myoblast cell line, C2C12 cells and treadmill stress test (TST) and forced swimming test (FST) animal models. MATERIALS/METHODS In the in vitro study, C2C12 cells were pretreated with TA before stimulation with H2O2. Then, malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase (CK) activity, tumor necrosis factor (TNF)-α, interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glycogen, and cell viability were analyzed. In the in vivo study, the ICR male mice were administered TA or distilled water orally daily for 28 days. FST and TST were then performed on the last day. In addition, biochemical analysis of the serum, muscle, and liver was performed. RESULTS TA dose-dependently alleviated the levels of MDA, LDH, CK activity, TNF-α, and IL-6 in H2O2-stimulated C2C12 cells without affecting the cytotoxicity. TA increased the SOD and CAT activities and the glycogen levels in H2O2-stimulated C2C12 cells. In TST and FST animal models, TA decreased the FST immobility time significantly while increasing the TST exhaustion time without weight fluctuations. The in vivo studies showed that the levels of SOD, CAT, citrate synthase, glycogen, and free fatty acid were increased by TA administration, whereas TA significantly reduced the levels of glucose, MDA, LDH, lactate, CK, inflammatory cytokines, alanine transaminase, aspartate transaminase, blood urea nitrogen, and cortisol compared to the control group. CONCLUSIONS TA improves fatigue by modulating oxidative stress and energy metabolism in C2C12 cells and animal models. Therefore, we suggest that TA can be a powerful substance in healthy functional foods and therapeutics to improve fatigue.
Collapse
Affiliation(s)
- Ho-Geun Kang
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Korea
| | - Jin-Ho Lim
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Korea
| | - Hee-Yun Kim
- BioChip Research Center, Hoseo University, Asan 31499, Korea
| | - Hyunyong Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyung-Min Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyun-Ja Jeong
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Korea
- BioChip Research Center, Hoseo University, Asan 31499, Korea
| |
Collapse
|
5
|
Fischer V, Bülow JM, Krüger BT, Ragipoglu D, Vikman A, Haffner-Luntzer M, Katsoulis-Dimitriou K, Dudeck A, Ignatius A. Role of Mast-Cell-Derived RANKL in Ovariectomy-Induced Bone Loss in Mice. Int J Mol Sci 2023; 24:ijms24119135. [PMID: 37298085 DOI: 10.3390/ijms24119135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells may contribute to osteoporosis development, because patients with age-related or post-menopausal osteoporosis exhibit more mast cells in the bone marrow, and mastocytosis patients frequently suffer from osteopenia. We previously showed that mast cells crucially regulated osteoclastogenesis and bone loss in ovariectomized, estrogen-depleted mice in a preclinical model for post-menopausal osteoporosis and found that granular mast cell mediators were responsible for these estrogen-dependent effects. However, the role of the key regulator of osteoclastogenesis, namely, receptor activator of NFκB ligand (RANKL), which is secreted by mast cells, in osteoporosis development has, to date, not been defined. Here, we investigated whether mast-cell-derived RANKL participates in ovariectomy (OVX)-induced bone loss by using female mice with a conditional Rankl deletion. We found that this deletion in mast cells did not influence physiological bone turnover and failed to protect against OVX-induced bone resorption in vivo, although we demonstrated that RANKL secretion was significantly reduced in estrogen-treated mast cell cultures. Furthermore, Rankl deletion in mast cells did not influence the immune phenotype in non-ovariectomized or ovariectomized mice. Therefore, other osteoclastogenic factors released by mast cells might be responsible for the onset of OVX-induced bone loss.
Collapse
Affiliation(s)
- Verena Fischer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Jasmin Maria Bülow
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Deniz Ragipoglu
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Anna Vikman
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Konstantinos Katsoulis-Dimitriou
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| |
Collapse
|
6
|
Zhou S, Zhou C, Wang X, Luo P, Lin A, Cui Y, Qiu Q. Profiles of immune infiltration in seasonal allergic rhinitis and related genes and pathways. Int Immunopharmacol 2023; 120:110174. [PMID: 37182444 DOI: 10.1016/j.intimp.2023.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Seasonal allergic rhinitis (SAR) is a chronic inflammatory disease for which the molecular mechanism is unclear. METHODS Whole blood, CD4+ T cells in peripheral blood mononuclear cells (PBMCs), and CD4+ T cells in nasal mucosa from SAR-related datasets (GSE43497, GSE50223, and GSE49782) were downloaded from the Gene Expression Omnibus (GEO) database. Differences in SAR-associated immune cell infiltration in the PBMCs were analyzed using the CIBERSORT algorithm. Differential gene expression analysis was conducted between different groups. Gene set enrichment analysis (GSEA) was performed using the clusterProfiler package to explore functional changes in signaling pathways. RESULTS There was a significant increase in the proportion of CD8+ T cells and a significant decrease in the proportion of neutrophils in the whole blood of SAR patients after allergen challenge compared to SAR patients after diluent challenge. This pattern was also found in SAR patients compared to healthy controls (HCs) by flow cytometry. The NF-κB and Toll-like receptor signaling pathways were enriched in SAR patients following allergen challenge. The expression of CD4+ T cell marker genes and associated cytokines significantly differed between allergen-treated SAR patients, diluent-treated SAR patients and HCs. We also observed heightened CD4+ T cell related genes, cytokines and pathways activation in the nasal mucosa region of SAR patients after allergen challenge. CONCLUSION Our analysis revealed that T cell receptor signaling pathways, T helper 1 (Th1) /T helper 2 (Th2) cell differentiation may contribute to the development of SAR. The present study is the first bioinformatic analysis to quantify immune cell infiltration and identify underlying SAR mechanisms from combined microarray data and provides insight for further research into the molecular mechanisms of SAR.
Collapse
Affiliation(s)
- Suizi Zhou
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong Province, China
| | - Chaozheng Zhou
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Xinyue Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Anqi Lin
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yi Cui
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong Province, China
| | - Qianhui Qiu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong Province, China.
| |
Collapse
|
7
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
8
|
Kim HY, Kang HG, Kim HM, Jeong HJ. Expression of SARS-CoV-2 receptor angiotensin-converting enzyme 2 by activating protein-1 in human mast cells. Cell Immunol 2023; 386:104705. [PMID: 36898276 PMCID: PMC9985914 DOI: 10.1016/j.cellimm.2023.104705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection activates mast cells and induces a cytokine storm, leading to severe Coronavirus disease in 2019 (COVID-19). SARS-CoV-2 employs angiotensin-converting enzyme 2 (ACE2) for cell entry. In the present study, the expression of ACE2 and its mechanism in activated mast cells were studied utilizing the human mast cell line, HMC-1 cells and it was elucidated whether dexamethasone used as a treatment for COVID-19 could regulate ACE2 expression. Here we documented for the first time that levels of ACE2 were increased by stimulation of phorbol 12-myristate 13-acetate and A23187 (PMACI) in HMC-1 cells. Increased levels of ACE2 were significantly diminished by treatment with Wortmannin, SP600125, SB203580, PD98059, or SR11302. The expression of ACE2 was most significantly reduced by the activating protein (AP)-1 inhibitor SR11302. PMACI stimulation enhanced the expression of the transcription factor AP-1 for ACE2. In addition, levels of transmembrane protease/serine subfamily member 2 (TMPRSS2) and tryptase were increased in PMACI-stimulated HMC-1 cells. However, dexamethasone significantly lowered levels of ACE2, TMPRSS2, and tryptase generated by PMACI. Treatment with dexamethasone also reduced activation of signaling molecules linked to ACE2 expression. According to these findings, levels of ACE2 were up-regulated through activation of AP-1 in mast cells, suggesting that suppressing ACE2 levels in mast cells would be a therapeutic approach to lessen the harm caused by COVID-19.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan 31499, Republic of Korea
| | - Ho-Geun Kang
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea.
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan 31499, Republic of Korea; Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Republic of Korea.
| |
Collapse
|
9
|
Kim HY, Jung H, Kweon M, Kim J, Choi SY, Ahn HJ, Park CS, Kim HM, Jeong HJ. Euscaphic acid relieves fatigue by enhancing anti-oxidative and anti-inflammatory effects. Immunopharmacol Immunotoxicol 2023; 45:114-121. [PMID: 36066092 DOI: 10.1080/08923973.2022.2121926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Oxidative stress and inflammation are involved in chronic fatigue. Euscaphic acid (EA) is an active compound of Eriobotrya japonica (Loquat) and has anti-oxidative effect. METHODS The goal of present study is to prove whether EA could relieve fatigue through enhancing anti-oxidant and anti-inflammatory effects in in vitro/in vivo models. RESULTS EA notably improved activity of superoxide dismutase (SOD) and catalase (CAT), while EA reduced levels of malondiadehyde (MDA) and inflammatory cytokines without cytotoxicity in H2O2-stimulated in myoblast cell line, C2C12 cells. EA significantly reduced levels of fatigue-causing factors such as lactate dehydrogenase (LDH) and creatin kinase (CK), while EA significantly incresed levels of anti-fatigue-related factor, glycogen compared to the H2O2-stimulated C2C12 cells. In treadmill stress test (TST), EA significantly enhanced activities of SOD and CAT as well as exhaustive time and decreased levels of MDA and inflammatory cytokines. After TST, levels of free fatty acid, citrate synthase, and muscle glycogen were notably enhanced by oral administration of EA, but EA decreased levels of lactate, LDH, cortisol, aspartate aminotransferase, alanine transaminase, CK, glucose, and blood urea nitrogen compared to the control group. Furthermore, in forced swimming test, EA significantly increased levels of anti-fatigue-related factors and decreased excessive accumulations of fatigue-causing factors. CONCLUSIONS Therefore, the results indicate that potent anti-fatigue effect of EA can be achieved via the improvement of anti-oxidative and anti-inflammatory properties, and this study will provide scientific data for EA to be developed as a novel and efficient component in anti-fatigue health functional food.
Collapse
Affiliation(s)
- Hee-Yun Kim
- BioChip Research Center, Hoseo University, Asan, Republic of Korea
| | - Hanchul Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | | | - Jungeun Kim
- COSMAX NBT, INC, Seongnam, Republic of Korea
| | | | - Hyun-Jong Ahn
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Cheung-Seog Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-Min Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Ja Jeong
- BioChip Research Center, Hoseo University, Asan, Republic of Korea.,Department of Food Science & Technology, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
10
|
Kim HY, Kang HG, Choi YJ, Kim HM, Jeong HJ. Caudatin attenuates inflammatory reaction by suppressing JNK/AP-1/NF-κB/caspase-1 pathways in activated HMC-1 cells. Food Sci Biotechnol 2023; 32:1101-1109. [PMID: 36683865 PMCID: PMC9844171 DOI: 10.1007/s10068-023-01251-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
One of the interfering factors in Coronavirus disease 2019 (COVID-19) is the cytokine storm, which contributes to hyperinflammation. Mast cells cause COVID-19 hyperinflammation by increasing inflammatory cytokine levels. We investigated whether caudatin, an active compound of Cynanchum auriculatum, could suppress inflammatory response signaling in human mast cell line, HMC-1 cells. Caudatin suppressed activation of c-Jun N-terminal kinase (JNK) and activator protein-1 (AP-1) in HMC-1 cells. Caudatin suppressed nuclear translocation of catalytic subunit (p65) of nuclear factor (NF)-κB by blocking IκBα phosphorylation and degradation. Caudatin also reduced levels of activated-caspase-1 protein and activation of caspase-1. Non-toxic caudatin doses inhibited the mRNA expression and protein synthesis of pro-inflammatory cytokines. A significant finding was that caudatin inhibited JNK/AP-1/NF-κB/caspase-1 signaling molecules, reducing the secretion of inflammatory cytokines. Consequently, we propose that caudatin might be used as a material in health functional foods to alleviate mast cell-mediated inflammatory conditions like COVID-19.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, 31499 Republic of Korea
| | - Ho-Geun Kang
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan, 31499 Republic of Korea
| | - Yu-Jin Choi
- Department of Food Science & Technology, Hoseo University, 20 Hoseo-ro, 79 Beon-gil, Baebang-eup, Asan, 31499 Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 130-701 Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, 31499 Republic of Korea ,Department of Bio-Convergence System, Graduate School, Hoseo University, Asan, 31499 Republic of Korea ,Department of Food Science & Technology, Hoseo University, 20 Hoseo-ro, 79 Beon-gil, Baebang-eup, Asan, 31499 Republic of Korea
| |
Collapse
|
11
|
Fischer V, Ragipoglu D, Diedrich J, Steppe L, Dudeck A, Schütze K, Kalbitz M, Gebhard F, Haffner-Luntzer M, Ignatius A. Mast Cells Trigger Disturbed Bone Healing in Osteoporotic Mice. J Bone Miner Res 2022; 37:137-151. [PMID: 34633111 DOI: 10.1002/jbmr.4455] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/21/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022]
Abstract
Mast cells are important tissue-resident sensor and effector immune cells but also play a major role in osteoporosis development. Mast cells are increased in numbers in the bone marrow of postmenopausal osteoporotic patients, and mast cell-deficient mice are protected from ovariectomy (OVX)-induced bone loss. In this study, we showed that mast cell-deficient Mcpt5-Cre R-DTA mice were protected from OVX-induced disturbed fracture healing, indicating a critical role for mast cells in the pathomechanisms of impaired bone repair under estrogen-deficient conditions. We revealed that mast cells trigger the fracture-induced inflammatory response by releasing inflammatory mediators, including interleukin-6, midkine (Mdk), and C-X-C motif chemokine ligand 10 (CXCL10), and promote neutrophil infiltration into the fracture site in OVX mice. Furthermore, mast cells were responsible for reduced osteoblast and increased osteoclast activities in OVX mice callus, as well as increased receptor activator of NF-κB ligand serum levels in OVX mice. Additional in vitro studies with human cells showed that mast cells stimulate osteoclastogenesis by releasing the osteoclastogenic mediators Mdk and CXCL10 in an estrogen-dependent manner, which was mediated via the estrogen receptor alpha on mast cells. In conclusion, mast cells negatively affect the healing of bone fractures under estrogen-deficient conditions. Hence, targeting mast cells might provide a therapeutic strategy to improve disturbed bone repair in postmenopausal osteoporosis. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Verena Fischer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Deniz Ragipoglu
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Johanna Diedrich
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Lena Steppe
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Konrad Schütze
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany.,Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen-Nürnberg, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
12
|
Yeom JH, Kim HY, Lim JH, Yoon KW, Kim HM, Jeong HJ. A calcium channel blocker, manoalide exerts an anti-allergic inflammatory effect through attenuating NF-κB activity. Immunopharmacol Immunotoxicol 2021; 43:799-805. [PMID: 34708672 DOI: 10.1080/08923973.2021.1988101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Many people are troubled by allergic inflammation including ocular allergic diseases, anaphylaxis, allergic rhinitis, atopic dermatitis, and eczema. Consequently, finding medications for use in allergic inflammation therapy is crucial in human health. Manoalide, a marine natural product isolated as an anti-bacterial metabolite from Luffariella variabilis, is a calcium channel blocker. However, its latent ability as an anti-allergic inflammatory agent has not yet been reported. Our research aimed to elucidate whether manoalide exerts an anti-allergic inflammatory effect in the human mast cell line, HMC-1. METHODS Herein, we investigated the immunoregulatory effects and molecular mechanisms of manoalide in HMC-1 cells. RESULTS Manoalide significantly alleviated secretion of the inflammatory cytokines interleukin (IL)-1β, thymic stromal lymphopoietin, tumor necrosis factor-α, IL-6, and IL-8 via blockage of caspase-1 without cytotoxicity in activated HMC-1 cells. Activation of nuclear factor-κB increased by mast cell stimulation was attenuated by treatment with manoalide. In addition, we demonstrated that manoalide treatment remarkably attenuated the activation of mitogen-activated protein kinases in activated-HMC-1 cells. CONCLUSIONS Taken together, our findings indicate manoalide has an anti-allergic inflammatory role, and we propose that manoalide might have potential as a novel anti-allergic inflammatory agent.
Collapse
Affiliation(s)
- Jun-Ho Yeom
- Department of Biotechnology, Hoseo University, Asan, Republic of Korea
| | - Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, Republic of Korea
| | - Jin-Ho Lim
- Department of Food Science & Technology, Hoseo University, Asan, Republic of Korea
| | - Kyoung Wan Yoon
- Department of Biotechnology, Hoseo University, Asan, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Republic of Korea.,Department of Food Science & Technology, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
13
|
Kim HY, Han D, Kim J, Yoo MS, Lee JS, Kim H, Kim HM, Jeong HJ. An anti-cancer effect of Sambou bamboo salt TM in melanoma skin cancer both in vivo and in vitro models. J Food Biochem 2021; 45:e13903. [PMID: 34387368 DOI: 10.1111/jfbc.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023]
Abstract
Bamboo salt has anti-allergic, anti-inflammatory, anti-oxidant, diabetics, anti-aging, and immune-enhancing effects, which are closely related to anti-cancer effect. The aim of this study was to investigate the anti-cancer effects of Sambou bamboo saltTM (SBS) in melanoma skin cancer in vivo and in vitro models. SBS-administered mice effectively reduced tumor growth and increased survival rate compared with B16F10 cell-inoculated mice without tissue damage, hepatotoxicity, and nephrotoxicity. SBS enhanced levels of immune-enhancing mediators, such as interferon-γ, interleukin (IL)-2, IL-6, IL-12, tumor necrosis factor-α, and IgE in serum and melanoma tissues. Furthermore, SBS enhanced activities of caspases and levels of Bax and p53, whereas decreased levels of Bcl-2. This reduction was a consequence of apoptosis signaling pathway. In conclusion, these results suggest that SBS is a potential substance for cancer therapy. SBS has the potential to be developed either as Korean traditional medicine or as a health functional food for cancer therapy. PRACTICAL APPLICATIONS: In these days cancer is one of the world's largest health problems. Bamboo salt is used as a Korean traditional food or medicine and has beneficial effect on inflammation. We have identified Sambou bamboo saltTM (SBS) is a potential substance for cancer therapy. These insights suggest that SBS can potentially be utilized for health functional foods for cancer treatment as well as improve various cancer diseases such as melanoma skin cancer.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, Republic of Korea
| | - Dongkyun Han
- Department of Food Science & Technology, Hoseo University, Asan, Republic of Korea
| | - Jungeun Kim
- Department of Food Science & Technology, Hoseo University, Asan, Republic of Korea
| | - Min-Sun Yoo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Soo Lee
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunyong Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-Min Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Republic of Korea.,Department of Food Science & Technology, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
14
|
Du YN, Chen YJ, Zhang HY, Wang X, Zhang ZF. Inverse association between systemic immune-inflammation index and bone mineral density in postmenopausal women. Gynecol Endocrinol 2021; 37:650-654. [PMID: 33588682 DOI: 10.1080/09513590.2021.1885642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The aim of the present study was to investigate whether systemic immune-inflammation index (SII) and neutrophil-to-platelet ratio (NLR) were associated with bone mineral density (BMD) in postmenopausal women. METHODS In this cross-sectional study, we enrolled 413 postmenopausal women who never received menopause hormone therapy. The relationship between SII, NLR, and BMD was investigated by linear regression analysis. RESULTS Significant inverse association was observed between SII and BMD in postmenopausal women. The mean BMD in each quartile of SII level were 0.923, 0.914, 0.900, and 0.876 g/cm2, respectively (p = .011). After adjusting for covariates, SII levels remained significantly associated with BMD (regression coefficients for quartiles 1-3 vs. quartile 4 were 0.035, 0.029, and 0.023, respectively; p for trend <.05). An inverse association was also found between NLR and BMD in postmenopausal women. However, there was no significant association between NLR and BMD after adjusting for covariates. CONCLUSION The quartile of SII was negatively associated with the mean BMD in postmenopausal women, independent of age, body mass index, sex hormone levels, and other factors. Therefore, SII can be used as a new predictor of bone loss in postmenopausal women.
Collapse
Affiliation(s)
- Y N Du
- Department of Obstetrics and Gynecology, Nanjing Medical University, Nanjing, China
| | - Y J Chen
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - H Y Zhang
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, Hangzhou, China
| | - X Wang
- Department of Obstetrics and Gynecology, Nanjing Medical University, Nanjing, China
| | - Z F Zhang
- Department of Obstetrics and Gynecology, Nanjing Medical University, Nanjing, China
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, Hangzhou, China
| |
Collapse
|
15
|
Kim HY, Nam SY, Kim HM, Jeong HJ. Exposure of ovalbumin during pregnancy prevents the development of allergic rhinitis in offspring through the induction of mast cell autophagy. Cell Immunol 2021; 365:104362. [PMID: 33905950 DOI: 10.1016/j.cellimm.2021.104362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Most allergic disease studies have focused on postnatal chemical or microbial exposure. Recent studies have indicated that allergic diseases are associated with the immunological interaction between the mother and her offspring, but the relevant mechanisms are unclear. The aim of this study was to assess whether maternal exposure to allergens during pregnancy could affect allergic rhinitis (AR) in the offspring. Compared with offspring of naïve mothers, offspring of ovalbumin (OVA)-exposed mothers exhibited a significant reduction in AR clinical symptoms and levels of histamine, IgE, T helper type-2(Th2) cytokines, thymic stromal lymphopoietin, cyclooxygenase-2, chemokines, infiltration of inflammatory cell, and activity of caspase-1. Interestingly, we observed that offspring of OVA-exposed mothers regulated OVA-induced Th2 responses by inducing autophagy in mast cells. Our data demonstrated that maternal exposure to OVA during pregnancy decreased allergic sensitivity in offspring, suggesting that the vertical transmission of maternal immune responses may be involved. These findings have important implications in the regulation of AR. Furthermore, we propose that the autophagy of mast cells may be a potential target for AR prevention or treatment.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea; Department of Food Science & Technology, Hoseo University, Asan 31499, Republic of Korea.
| |
Collapse
|
16
|
Phromnoi K, Suttajit M, Saenjum C, Limtrakul (Dejkriengkraikul) P. Inhibitory Effect of a Rosmarinic Acid-Enriched Fraction Prepared from Nga-Mon ( Perilla frutescens) Seed Meal on Osteoclastogenesis through the RANK Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10020307. [PMID: 33671207 PMCID: PMC7923133 DOI: 10.3390/antiox10020307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to determine antioxidant and anti-inflammatory activities relating to the antiosteoporosis effects of various perilla seed meal (PSM) fractions. The remaining waste of perilla seed obtained from cold oil compression was extracted with 70% ethanol and sequentially fractionated according to solvent polarity with hexane, dichloromethane, ethyl acetate, and water. The results indicated that the seed-meal ethyl acetate fraction (SMEF) exhibited the highest antioxidant and anti-inflammatory activities, and rosmarinic acid (RA) content. The signaling pathways induced by the receptor activator of the nuclear factor kappa B (NF-κB) ligand (RANKL) that trigger reactive oxygen species (ROS) and several transcription factors, leading to the induction of osteoclastogenesis, were also investigated. The SMEF clearly showed attenuated RANKL-induced tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts and TRAP activity. A Western blot analysis showed that the SMEF significantly downregulated RANKL-induced NF-κB, AP-1 activation, and the nuclear factor of activated T-cell 1 (NFATc1) expression. SMEF also suppressed RANKL-induced osteoclast-specific marker gene-like MMP-9 using zymography. Furthermore, the SMEF showed inhibition of RANKL-induced ROS production in RAW 264.7 cells. The results suggest that the SMEF, which contained high quantities of RA, could be developed as a natural active pharmaceutical ingredient for osteoclastogenic protection and health promotion.
Collapse
Affiliation(s)
- Kanokkarn Phromnoi
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (M.S.)
| | - Maitree Suttajit
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (M.S.)
| | - Chalermpong Saenjum
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Excellence on Biodiversity-Based Economics and Society (B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.S.); (P.L.D.); Tel.: +66-89-950-4227 (C.S.); +66-89-952-8111 (P.L.D.)
| | - Pornngarm Limtrakul (Dejkriengkraikul)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.S.); (P.L.D.); Tel.: +66-89-950-4227 (C.S.); +66-89-952-8111 (P.L.D.)
| |
Collapse
|
17
|
Blockade of RANKL/RANK signaling pathway by epigallocatechin gallate alleviates mast cell-mediated inflammatory reactions. Int Immunopharmacol 2020; 88:106872. [DOI: 10.1016/j.intimp.2020.106872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/29/2022]
|
18
|
Groeger M, Spanier G, Wolf M, Deschner J, Proff P, Schröder A, Kirschneck C. Effects of histamine on human periodontal ligament fibroblasts under simulated orthodontic pressure. PLoS One 2020; 15:e0237040. [PMID: 32764823 PMCID: PMC7413485 DOI: 10.1371/journal.pone.0237040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
As type-I-allergies show an increasing prevalence in the general populace, orthodontic patients may also be affected by histamine release during treatment. Human periodontal ligament fibroblasts (PDLF) are regulators of orthodontic tooth movement. However, the impact of histamine on PDLF in this regard is unknown. Therefore PDLF were incubated without or with an orthodontic compressive force of 2g/cm2 with and without additional histamine. To assess the role of histamine-1-receptor (H1R) H1R-antagonist cetirizine was used. Expression of histamine receptors and important mediators of orthodontic tooth movement were investigated. PDLF expressed histamine receptors H1R, H2R and H4R, but not H3R. Histamine increased the expression of H1R, H2R and H4R as well as of interleukin-6, cyclooxygenase-2, and prostaglandin-E2 secretion even without pressure application and induced receptor activator of NF-kB ligand (RANKL) protein expression with unchanged osteoprotegerin secretion. These effects were not observed in presence of H1R antagonist cetirizine. By expressing histamine receptors, PDLF seem to be able to respond to fluctuating histamine levels in the periodontal tissue. Increased histamine concentration was associated with enhanced expression of proinflammatory mediators and RANKL, suggesting an inductive effect of histamine on PDLF-mediated osteoclastogenesis and orthodontic tooth movement. Since cetirizine inhibited these effects, they seem to be mainly mediated via histamine receptor H1R.
Collapse
Affiliation(s)
- Marcella Groeger
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillo-Facial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University of Mainz, Mainz, Germany
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Ye X, Jiang H, Wang Y, Ji Y, Jiang X. A correlative studies between osteoporosis and blood cell composition: Implications for auxiliary diagnosis of osteoporosis. Medicine (Baltimore) 2020; 99:e20864. [PMID: 32590789 PMCID: PMC7328927 DOI: 10.1097/md.0000000000020864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/02/2020] [Accepted: 05/21/2020] [Indexed: 02/02/2023] Open
Abstract
Osteoporosis is defined as a metabolic skeletal disease characterized by a decrease of the bone mass per unit volume, caused by a variety of reasons. Increasing evidence indicate that the host inflammatory response was correlated with the occurrence and development of osteoporosis, and it has been recognized that T lymphocytes and B lymphocytes play a critical role in pathogenesis of inflammatory bone disease. Between January 2018 and December 2018, retrospective analysis of 487 patients (exclusion of patients with recent infections and hematologic disorders whose leukocyte counts or classifications are markedly abnormal) who underwent bone mineral density (BMD) examinations in Huzhou Central Hospital. The patients were divided into normal bone density group, osteopenia group, and osteoporosis group according to the T score of BMD in the left femoral neck, respectively. Statistics of the lymphocyte ratio and the monocyte ratio in the blood routine examination results during the same period were performed so as to make a comparison of the differences among the groups. The correlation of the lymphocyte ratio and monocyte ratio with the T score of BMD in the left femoral neck was also analyzed. The difference between neutrocyte ratio lymphocyte ratio and the monocyte ratio was statistically significant in both males and females among the normal bone density group, osteopenia group and osteoporosis group (P < .01 or P < .05). Inflammation plays an important role in the progression of osteoporosis. By monitoring these three indicators in blood routine examination, early intervention for osteoporosis may become possible.
Collapse
Affiliation(s)
| | - Haowei Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, HuZhou, Zhejiang, China
| | - Yongli Wang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, HuZhou, Zhejiang, China
| | - Yafeng Ji
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, HuZhou, Zhejiang, China
| | - Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, HuZhou, Zhejiang, China
| |
Collapse
|
20
|
Chen Y, Wang Y, Hu J, Tang Y, Tian Z, Hu W, Zeng F, Tan J, Dai Q, Hou Z, Luo F, Xu J, Dong S. Epothilone B prevents lipopolysaccharide-induced inflammatory osteolysis through suppressing osteoclastogenesis via STAT3 signaling pathway. Aging (Albany NY) 2020; 12:11698-11716. [PMID: 32527985 PMCID: PMC7343516 DOI: 10.18632/aging.103337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Inflammatory osteolysis is a common osteolytic specificity that occurs during infectious orthopaedic surgery and is characterized by an imbalance in bone homeostasis due to excessive osteoclast bone resorption activity. Epothilone B (Epo B) induced α-tubulin polymerization and enhanced microtubule stability, which also played an essential role in anti-inflammatory effect on the regulation of many diseases. However, its effects on skeletal system have rarely been investigated. Our study demonstrated that Epo B inhibited osteoclastogenesis in vitro and prevented inflammatory osteolysis in vivo. Further analysis showed that Epo B also markedly induced mature osteoclasts apoptosis during osteoclastogenesis. Mechanistically, Epo B directly suppressed osteoclastogenesis by the inhibitory regulation of the phosphorylation and activation of PI3K/Akt/STAT3 signaling directly, and the suppressive regulation of the CD9/gp130/STAT3 signaling pathway indirectly. The negative regulatory effect on STAT3 signaling further restrained the translocation of NF-κB p65 and NFATc1 from the cytosol to the nuclei during RANKL stimulation. Additionally, the expression of osteoclast specific genes was also significantly attenuated during osteoclast fusion and differentiation. Taken together, these findings illustrated that Epo B protected against LPS-induced bone destruction through inhibiting osteoclastogenesis via regulating the STAT3 dependent signaling pathway.
Collapse
Affiliation(s)
- Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yiran Wang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junxian Hu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yong Tang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhansong Tian
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fanchun Zeng
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
- The Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
21
|
Jeon M, Lee J, Lee HK, Cho S, Lim JH, Choi Y, Pak S, Jeong HJ. Sulforaphane mitigates mast cell-mediated allergic inflammatory reactions in in silico simulation and in vitro models. Immunopharmacol Immunotoxicol 2020; 42:74-83. [PMID: 32041439 DOI: 10.1080/08923973.2020.1724141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: Sulforaphane, a major ingredient isolated from Brassica oleracea var. italica (broccoli), is known to exhibit anti-inflammatory, anti-cancer, and anti-diabetic effects. In this study, we employed an in vitro model of phorbol 12-myristate 13-acetate and a23187 (PMACI)-stimulated human mast cells (HMC-1 cells) to investigate the anti-allergic inflammatory effects and mechanisms of sulforaphane and Brassica oleracea var. italica extracts.Methods: Cytokine levels were measured by ELISA and quantitative real-time-PCR methods. Caspase-1 activity was determined by caspase-1 assay. Binding mode of sulforaphane within caspase-1 was determined by molecular docking simulation. Protein expression was determined by Western blotting.Results: Water extract of Brassica oleracea var. italica (WE) significantly reduced thymic stromal lymphopoietin (TSLP) secretion and caspase-1 activity on activated HMC-1 cells. In the molecular docking simulation and in vitro caspase-1 assays, sulforaphane regulated caspase-1 activity by docking with the identical binding site of caspase-1. Sulforaphane significantly inhibited the levels of inflammatory mediators including TSLP, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 in a dose-dependent manner. Immunoblotting experiments revealed that sulforaphane and WE reduced translocation of NF-κBp65 into the nucleus and phosphorylation of IκBα in the cytosol. Furthermore, phosphorylation of mitogen-activated protein kinases (MAPK) was down-regulated by treatment with sulforaphane or WE.Conclusion: Our findings suggest that sulforaphane and WE have anti-allergic inflammatory effects by intercepting caspase-1/NF-κB/MAPKs signaling pathways.
Collapse
Affiliation(s)
- Miyeon Jeon
- Department of Food Science and Technology, Hoseo University, Asan, Korea
| | - Jimin Lee
- Department of Food Science and Technology, Hoseo University, Asan, Korea
| | - Hee Kyung Lee
- Department of Food Science and Technology, Hoseo University, Asan, Korea
| | - SungJun Cho
- Department of Food Science and Technology, Hoseo University, Asan, Korea
| | - Jin-Ho Lim
- Department of Food Science and Technology, Hoseo University, Asan, Korea
| | - Youngjin Choi
- Department of Food Science and Technology, Hoseo University, Asan, Korea
| | - Sokcheon Pak
- School of Biomedical Sciences, Charles Sturt University, Bathurst, Australia
| | - Hyun-Ja Jeong
- Department of Food Science and Technology, Hoseo University, Asan, Korea
| |
Collapse
|
22
|
Nam SY, Kim HY, Min JY, Kim HM, Jeong HJ. An osteoclastogenesis system, the RANKL/RANK signalling pathway, contributes to aggravated allergic inflammation. Br J Pharmacol 2019; 176:1664-1679. [PMID: 30737962 DOI: 10.1111/bph.14615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE As an osteoclast differentiation factor, receptor activator of NF-κB ligand (RANKL) is produced by various immune cells and may be involved in the pathogenesis of osteoporosis and inflammation. Although RANKL is expressed in most immune cells and tissues, it is not clear how this might affect allergic inflammation. EXPERIMENTAL APPROACH The roles of RANKL in allergic rhinitis (AR) were analysed in an ovalbumin (OVA)-induced animal model, human subjects, and a human mast cell line (HMC-1). Small interfering RNA experiments were performed in an OVA-induced AR model. KEY RESULTS RANKL and RANKL receptor (RANK) were up-regulated in serum or nasal mucosal tissues of AR patients and AR mice. RANKL and RANK were colocalised in mast cells of nasal mucosa tissue. Depletion of RANKL by RANKL siRNA ameliorated AR symptoms and reduced AR-related biomarkers, including thymic stromal lymphopoietin (TSLP), IgE, histamine, and inflammatory cell infiltration, whereas recombinant RANKL increased AR responses and TSLP levels. In addition, functional deficiency of TSLP decreased AR responses induced by RANKL. In human mast cells, interaction of RANKL with RANK increased production of TSLP and inflammatory cytokines. Production of TSLP by RANKL stimulation was mediated through activation of the PI3K, MAPK, caspase-1, and NF-κB pathways. Furthermore, dexamethasone alleviated RANKL-induced inflammatory reactions in AR models. CONCLUSION AND IMPLICATIONS Collectively, these data suggest that RANKL may induce development of AR through up-regulation of TSLP.
Collapse
Affiliation(s)
- Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hee-Yun Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jin-Young Min
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University, School of Medicine, Seoul, Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Ja Jeong
- Division of Food and Pharmaceutical Engineering, Biochip Research Center and Inflammatory Diseases Research Center, Hoseo University, Asan, Korea
| |
Collapse
|