1
|
Clarke H, Miles S, Peer M, Fitzcharles MA. The Elusive Truth of Cannabinoids for Rheumatic Pain. Curr Rheumatol Rep 2024; 26:392-402. [PMID: 39120750 DOI: 10.1007/s11926-024-01162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE OF REVIEW Medical cannabis (MC) has entered mainstream medicine by a unique route. Regulatory acceptance as a medical product in many jurisdictions has bypassed the traditional evidence-based pathway required for therapies. Easier access to MC, especially related to recreational legalization of cannabis, has led to widespread use by patients for symptom relief of a variety of medical conditions and often without medical oversight. Musculoskeletal pain remains the most common reason for MC use. This review examines real-world issues pertaining to MC and offers some guidance for clinical care of patients with rheumatic diseases being treated with MC. RECENT FINDINGS Controlled clinical studies of cannabis products in patients with rheumatic diseases have been small and tested a range of compounds, routes of administration, and clinical populations, limiting our ability to generate conclusions on MC's effectiveness in this population. Observational cohort studies and surveys suggest that use of MC and related products in patients with rheumatic diseases improves pain and associated symptoms but is commonly accompanied by mild to moderate side effects. Conflicting evidence contributes to practitioner and patient uncertainty regarding the use of MC for rheumatic disease-related pain. Despite promising preclinical and observational evidence that MC and cannabis-derived compounds are useful in the management of rheumatic disease-related pain, there remains limited high-quality clinical evidence to substantiate these findings. There are a significant number of clinical trials on this topic currently planned or underway, however, suggesting the next decade may yield more clarity. Nevertheless, given that many people with rheumatic diseases are using cannabis products, healthcare professionals must remain apprised of the evidence pertaining to cannabinoids, communicate such evidence to patients in a meaningful way that is free from personal bias and stigma, and maintain strong collaborative clinical care pertaining to MC.
Collapse
Affiliation(s)
- Hance Clarke
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Canada
- Department of Anesthesia and Pain Management, Pain Research Unit, Toronto General Hospital, Toronto, Canada
- Transitional Pain Service, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Sarah Miles
- Department of Anesthesia and Pain Management, University Health Network, Sinai Health System, and Women's College Hospital, Toronto, ON, Canada
| | - Miki Peer
- Department of Anesthesia and Pain Management, University Health Network, Sinai Health System, and Women's College Hospital, Toronto, ON, Canada
| | - Mary-Ann Fitzcharles
- Department of Rheumatology, Montreal General Hospital, McGill University, Montreal, Canada.
- Alan Edwards Pain Management Unit, Montreal General Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
2
|
Wang X, Liu C, Liang R, Zhou Y, Kong X, Wang W, Wang H, Zhao L, Niu W, Yi C, Jiang F. Elucidating the beneficial impact of exercise on chronic obstructive pulmonary disease and its comorbidities: Integrating proteomic and immunological insights. Br J Pharmacol 2024. [PMID: 39317434 DOI: 10.1111/bph.17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND AND PURPOSE Physical activity is an effective therapeutic protocol for treating chronic obstructive pulmonary disease (COPD). However, the mechanisms underlying the benefits of physical activity in COPD are not fully elucidated. EXPERIMENTAL APPROACH In a mouse model of COPD, analysis of biological markers and lung proteomics identified the molecular pathways through which exercise ameliorates COPD. KEY RESULTS Exercise improved pulmonary function, emphysema, small airway disease, pulmonary inflammation, glucose metabolic dysregulation, and insulin resistance in COPD mice. Proteomic analysis revealed 430 differentially expressed proteins (DEPs) between the COPD and COPD + Exercise (COPD + Ex) groups. GO analysis indicated that the enriched pathways were predominantly related to the immune response, inflammatory processes, insulin secretion, and glucose metabolic processes. GO analysis revealed IL-33 as a crucial target for the exercise-related amelioration of COPD. KEGG analysis showed that DEPs were significantly enriched in primary immunodeficiency, the intestinal immune network for IgA production, and the NF-κB signalling pathway. Exercise inhibited NF-κB activation by suppressing the CD14/TLR4/MyD88 and TNF-α/TNF-R1/TRAF2/5 pathways in COPD mice. Exercise inhibited expression of BCR, IgM, IgD, IgG, IgE, and IgA by suppressing B-cell receptor signalling. Exercise attenuated glucose metabolic dysregulation and insulin resistance through the suppression of proinflammatory mediators, including MHC I, MHC II, TNF-α, IFN-γ, and IL-1β, while concurrently increasing insulin expression. The qRT-PCR results were consistent with the proteomic results. CONCLUSION AND IMPLICATIONS In a mouse model, exercise improved COPD and its metabolic comorbidities through immune system regulation and inflammation suppression, offering insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Xishuai Wang
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
- College of Education for the Future, Beijing Normal University, Zhuhai, China
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Liu
- College of Education for the Future, Beijing Normal University, Zhuhai, China
| | - Ruining Liang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuehui Zhou
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Xiliang Kong
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Weichao Wang
- Graduate School of Sports Coaching, Kyungil University, Gyeongsan-si, Gyeongsangbuk-do, South Korea
| | - Hongwei Wang
- College of Physical Education, Northwest Normal University, Lanzhou, Gansu, China
| | - Lunan Zhao
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Weina Niu
- Basic Department, Qilu Institute of Technology, Qufu, Shandong, China
| | - Chao Yi
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Fugao Jiang
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
3
|
Murray CH, Gannon BM, Winsauer PJ, Cooper ZD, Delatte MS. The Development of Cannabinoids as Therapeutic Agents in the United States. Pharmacol Rev 2024; 76:915-955. [PMID: 38849155 PMCID: PMC11331953 DOI: 10.1124/pharmrev.123.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Cannabis is one of the oldest and widely used substances in the world. Cannabinoids within the cannabis plant, known as phytocannabinoids, mediate cannabis' effects through interactions with the body's endogenous cannabinoid system. This endogenous system, the endocannabinoid system, has important roles in physical and mental health. These roles point to the potential to develop cannabinoids as therapeutic agents while underscoring the risks related to interfering with the endogenous system during nonmedical use. This scoping narrative review synthesizes the current evidence for both the therapeutic and adverse effects of the major (i.e., Δ9-tetrahydrocannabinol and cannabidiol) and lesser studied minor phytocannabinoids, from nonclinical to clinical research. We pay particular attention to the areas where evidence is well established, including analgesic effects after acute exposures and neurocognitive risks after acute and chronic use. In addition, drug development considerations for cannabinoids as therapeutic agents within the United States are reviewed. The proposed clinical study design considerations encourage methodological standards for greater scientific rigor and reproducibility to ultimately extend our knowledge of the risks and benefits of cannabinoids for patients and providers. SIGNIFICANCE STATEMENT: This work provides a review of prior research related to phytocannabinoids, including therapeutic potential and known risks in the context of drug development within the United States. We also provide study design considerations for future cannabinoid drug development.
Collapse
Affiliation(s)
- Conor H Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Brenda M Gannon
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Peter J Winsauer
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Ziva D Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Marcus S Delatte
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| |
Collapse
|
4
|
Zamith Cunha R, Salamanca G, Mille F, Delprete C, Franciosi C, Piva G, Gramenzi A, Chiocchetti R. Endocannabinoid System Receptors at the Hip and Stifle Joints of Middle-Aged Dogs: A Novel Target for the Therapeutic Use of Cannabis sativa Extract in Canine Arthropathies. Animals (Basel) 2023; 13:2833. [PMID: 37760233 PMCID: PMC10525782 DOI: 10.3390/ani13182833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The endocannabinoid system (ECS) has emerged as a potential therapeutic target in veterinary medicine due to its involvement in a wide range of physiological processes including pain, inflammation, immune function, and neurological function. Modulation of the ECS receptors has been shown to have anti-inflammatory, analgesic, and immunomodulatory effects in various animal models of disease, including dogs with osteoarthritis. The goal of this study was to identify and compare the cellular expression and distribution of cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) and the cannabinoid-related G protein-coupled receptor 55 (GPR55) on the synovial cells of hip and stifle joints of seven dogs of different breeds without overt signs of osteoarthritis (OA). The synovial membranes of seven hips and seven stifle joints were harvested post mortem. The expression of the CB1R, CB2R, and GPR55 present in the synovial tissues was investigated using qualitative and quantitative immunofluorescence and Western blot (Wb) analysis. Synoviocytes of the stifle and hip joints expressed CB1R, CB2R, and GPR55 immunoreactivity (IR); no significant differences were observed for each different joint. Cannabinoid receptor 2- and GPR55-IR were also expressed by macrophages, neutrophils, and vascular cells. The ECS receptors were widely expressed by the synovial elements of dogs without overt signs of OA. It suggests that the ECS could be a target for the therapeutic use of Cannabis sativa extract in canine arthropathies.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (G.S.); (F.M.)
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy;
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (G.S.); (F.M.)
| | - Fanny Mille
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (G.S.); (F.M.)
| | - Cecilia Delprete
- Laboratory of Cellular Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (C.D.); (C.F.)
| | - Cecilia Franciosi
- Laboratory of Cellular Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (C.D.); (C.F.)
| | - Giuliano Piva
- Veterinary Clinic Dr. Giuliano Piva, 41049 Sassuolo, Italy;
| | - Alessandro Gramenzi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy;
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (G.S.); (F.M.)
| |
Collapse
|
5
|
Yuan J, Yang B, Hou G, Xie XQ, Feng Z. Targeting the endocannabinoid system: Structural determinants and molecular mechanism of allosteric modulation. Drug Discov Today 2023; 28:103615. [PMID: 37172889 PMCID: PMC10330941 DOI: 10.1016/j.drudis.2023.103615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Although drugs targeting the orthosteric binding site of cannabinoid receptors (CBRs) have several therapeutic effects on human physiological and pathological conditions, they can also cause serious adverse effects. Only a few orthosteric ligands have successfully passed clinical trials. Recently, allosteric modulation has become a novel option for drug discovery, with fewer adverse effects and the potential to avoid drug overdose. In this review, we highlight novel findings related to the drug discovery of allosteric modulators (AMs) targeting CBRs. We summarize newly synthesized AMs and the reported/predicted allosteric binding sites. We also discuss the structural determinants of the AMs binding as well as the molecular mechanism of CBR allostery.
Collapse
Affiliation(s)
- Jiayi Yuan
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Bo Yang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Guanyu Hou
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
| |
Collapse
|
6
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
7
|
Analysis of Anti-Cancer and Anti-Inflammatory Properties of 25 High-THC Cannabis Extracts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186057. [PMID: 36144796 PMCID: PMC9506243 DOI: 10.3390/molecules27186057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Cannabis sativa is one of the oldest cultivated plants. Many of the medicinal properties of cannabis are known, although very few cannabis-based formulations became prescribed drugs. Previous research demonstrated that cannabis varieties are very different in their medicinal properties, likely due to the entourage effect-the synergistic or antagonistic effect of various cannabinoids and terpenes. In this work, we analyzed 25 cannabis extracts containing high levels of delta-9-tetrahydrocannabinol (THC). We used HCC1806 squamous cell carcinoma and demonstrated various degrees of efficiency of the tested extracts, from 66% to 92% of growth inhibition of cancer cells. Inflammation was tested by induction of inflammation with TNF-α/IFN-γ in WI38 human lung fibroblasts. The efficiency of the extracts was tested by analyzing the expression of COX2 and IL6; while some extracts aggravated inflammation by increasing the expression of COX2/IL6 by 2-fold, other extracts decreased inflammation, reducing expression of cytokines by over 5-fold. We next analyzed the level of THC, CBD, CBG and CBN and twenty major terpenes and performed clustering and association analysis between the chemical composition of the extracts and their efficiency in inhibiting cancer growth and curbing inflammation. A positive correlation was found between the presence of terpinene (pval = 0.002) and anti-cancer property; eucalyptol came second, with pval of 0.094. p-cymene and β-myrcene positively correlated with the inhibition of IL6 expression, while camphor correlated negatively. No significant correlation was found for COX2. We then performed a correlation analysis between cannabinoids and terpenes and found a positive correlation for the following pairs: α-pinene vs. CBD, p-cymene vs. CBGA, terpenolene vs. CBGA and isopulegol vs. CBGA. Our work, thus, showed that most of high-THC extracts demonstrate anti-cancer activity, while only certain selected extracts showed anti-inflammatory activity. Presence of certain terpenes, such as terpinene, eucalyptol, cymene, myrcene and camphor, appear to have modulating effects on the activity of cannabinoids.
Collapse
|
8
|
Raïch I, Rivas-Santisteban R, Lillo A, Lillo J, Reyes-Resina I, Nadal X, Ferreiro-Vera C, de Medina VS, Majellaro M, Sotelo E, Navarro G, Franco R. Similarities and differences upon binding of naturally occurring Δ 9-tetrahydrocannabinol-derivatives to cannabinoid CB 1 and CB 2 receptors. Pharmacol Res 2021; 174:105970. [PMID: 34758399 DOI: 10.1016/j.phrs.2021.105970] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
We have here assessed, using Δ9-tetrahydrocannabinol (Δ9-THC) for comparison, the effect of Δ9-tetrahydrocannabinolic acid (Δ9-THCA) and of Δ9-tetrahydrocannabivarin (Δ9-THCV) that is mediated by human versions of CB1, CB2, and CB1-CB2 receptor functional units, expressed in a heterologous system. Binding to the CB1 and CB2 receptors was addressed in living cells by means of a homogeneous assay. A biphasic competition curve for the binding to the CB2 receptor, was obtained for Δ9-THCV in cells expressing the two receptors. Signaling studies included cAMP level determination, activation of the mitogen-activated protein kinase pathway and ß-arrestin recruitment were performed. The signaling triggered by Δ9-THCA and Δ9-THCV via individual receptors or receptor heteromers disclosed differential bias, i.e. the bias observed using a given phytocannabinoid depended on the receptor (CB1, CB2 or CB1-CB2) and on the compound used as reference to calculate the bias factor (Δ9-THC, a selective agonist or a non-selective agonist). These results are consistent with different binding modes leading to differential functional selectivity depending on the agonist structure, and the state (monomeric or heteromeric) of the cannabinoid receptor. In addition, on studying Gi-coupling we showed that Δ9-THCV and Δ9-THCA and Δ9-THCV were able to revert the effect of a selective CB2 receptor agonist, but only Δ9-THCV, and not Δ9-THCA, reverted the effect of arachidonyl-2'-chloroethylamide (ACEA 100 nM) a selective agonist of the CB1 receptor. Overall, these results indicate that cannabinoids may have a variety of binding modes that results in qualitatively different effects depending on the signaling pathway that is engaged upon cannabinoid receptor activation.
Collapse
Affiliation(s)
- Iu Raïch
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Spanish National Institute of Health, Carlos iii, 28034 Madrid, Spain
| | - Rafael Rivas-Santisteban
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Spanish National Institute of Health, Carlos iii, 28034 Madrid, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| | - Jaume Lillo
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Spanish National Institute of Health, Carlos iii, 28034 Madrid, Spain
| | - Irene Reyes-Resina
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain; RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Saxony-Anhalt 39118, Germany
| | - Xavier Nadal
- Ethnophytotech Research & Consulting S.L.U., Córdoba, Spain
| | | | | | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Institut de Neurociències de la Universitat de Barcelona, Barcelona, Spain.
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Spanish National Institute of Health, Carlos iii, 28034 Madrid, Spain; School of Chemistry. University of Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Abstract
Cannabis sativa L. plant is currently attracting increasing interest in cosmetics and dermatology. In this review, the biologically active compounds of hemp are discussed. Particularly the complex interactions of cannabinoids with the endocannabinoid system of the skin to treat various conditions (such as acne, allergic contact dermatitis, melanoma, and psoriasis) with clinical data. Moreover, the properties of some cannabinoids make them candidates as cosmetic actives for certain skin types. Hemp seed oil and its minor bioactive compounds such as terpenes, flavonoids, carotenoids, and phytosterols are also discussed for their added value in cosmetic formulation.
Collapse
|
10
|
Paudel P, Ross S, Li XC. Molecular Targets of Cannabinoids Associated with Depression. Curr Med Chem 2021; 29:1827-1850. [PMID: 34165403 DOI: 10.2174/0929867328666210623144658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
Novel therapeutic strategies are needed to address depression, a major neurological disorder affecting hundreds of millions of people worldwide. Cannabinoids and their synthetic derivatives have demonstrated numerous neurological activities and may potentially be developed into new treatments for depression. This review highlights cannabinoid (CB) receptors, monoamine oxidase (MAO), N-methyl-D-aspartate (NMDA) receptor, gamma-aminobutyric acid (GABA) receptor, and cholecystokinin (CCK) receptor as key molecular targets of cannabinoids that are associated with depression. The anti-depressant activity of cannabinoids and their binding modes with cannabinoid receptors are discussed, providing insights into rational design and discovery of new cannabinoids or cannabimimetic agents with improved druggable properties.
Collapse
Affiliation(s)
- Pradeep Paudel
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Samir Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Xing-Cong Li
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
11
|
Lago-Fernandez A, Zarzo-Arias S, Jagerovic N, Morales P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Int J Mol Sci 2021; 22:1001. [PMID: 33498245 PMCID: PMC7863932 DOI: 10.3390/ijms22031001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids have shown to exert their therapeutic actions through a variety of targets. These include not only the canonical cannabinoid receptors CB1R and CB2R but also related orphan G protein-coupled receptors (GPCRs), ligand-gated ion channels, transient receptor potential (TRP) channels, metabolic enzymes, and nuclear receptors. In this review, we aim to summarize reported compounds exhibiting their therapeutic effects upon the modulation of CB1R and/or CB2R and the nuclear peroxisome proliferator-activated receptors (PPARs). Concomitant actions at CBRs and PPARα or PPARγ subtypes have shown to mediate antiobesity, analgesic, antitumoral, or neuroprotective properties of a variety of phytogenic, endogenous, and synthetic cannabinoids. The relevance of this multitargeting mechanism of action has been analyzed in the context of diverse pathologies. Synergistic effects triggered by combinatorial treatment with ligands that modulate the aforementioned targets have also been considered. This literature overview provides structural and pharmacological insights for the further development of dual cannabinoids for specific disorders.
Collapse
Affiliation(s)
| | | | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| | - Paula Morales
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| |
Collapse
|
12
|
Carmona-Hidalgo B, González-Mariscal I, García-Martín A, Prados ME, Ruiz-Pino F, Appendino G, Tena-Sempere M, Muñoz E. Δ9-Tetrahydrocannabinolic Acid markedly alleviates liver fibrosis and inflammation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153426. [PMID: 33341026 DOI: 10.1016/j.phymed.2020.153426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the Western world, and it is closely associated to obesity, type 2 diabetes mellitus, and dyslipidemia. Medicinal cannabis and some neutral cannabinoids have been suggested as a potential therapy for liver diseases. HYPOTHESIS Δ9-tetrahydrocannabinolic acid (Δ9-THCA), the non-psychotropic precursor of Δ9-THC, is one of the most abundant cannabinoids presents in Cannabis Sativa. However, its biological activities have been poorly investigated. Herein, we studied the antifibrotic and antiinflammatory activities of Δ9-THCA in two different animal models of liver injury, providing a rationale for additional studies on the medicinal use of this cannabinoid in the treatment of liver fibrosis and the management of NAFLD. STUDY DESIGN The antifibrotic activity of Δ9-THCA in vitro was investigated in the cell lines LX-2 and NIH-3T3-Col1A2-luc. Non-alcoholic liver fibrosis was induced in mice by CCl4 treatment or, alternatively, by 23-week high fat diet (HFD) feeding. Δ9-THCA was administered daily intraperitoneally during the CCl4 treatment or during the last 3 weeks in HFD-fed mice. METHODS TGFβ-induced profibrotic gene expression was analyzed by luciferase and qPCR assays. Liver fibrosis and inflammation were assessed by immunochemistry and qPCR. Blood glucose, insulin, leptin and triglyceride levels were measured in HFD mice. RESULTS Δ9-THCA inhibited the expression of Tenascin C (TNC) and Col3A1 induced by TGFβ in LX-2 cells and the transcriptional activity of the Col1A2 promoter in fibroblasts. Δ9-THCA significantly attenuated CCl4-induced liver fibrosis and inflammation and reduced T cell and macrophage infiltration. Mice fed HFD for 23 weeks developed severe obesity (DIO), fatty liver and marked liver fibrosis, accompanied by immune cell infiltration. Δ9-THCA, significantly reduced body weight and adiposity, improved glucose tolerance, and drastically attenuated DIO-induced liver fibrosis and immune cell infiltration. CONCLUSIONS Δ9-THCA prevents TGFβ-induced fibrotic markers in vitro and liver inflammation and fibrogenesis in vivo, providing a rationale for additional studies on the medicinal use of this cannabinoid, as well as cannabis preparations containing it, for the treatment of liver fibrosis and the management of NAFLD.
Collapse
Affiliation(s)
- Beatriz Carmona-Hidalgo
- Emerald Health Biotechnology, Astrónoma Cecilia Payne (ed Centauro) s/n. floor 1. 14014. Córdoba, Spain
| | - Isabel González-Mariscal
- Biomedical Research Institute of Málaga (IBIMA), UGC Endocrinology and Nutrition. Regional Hospital of Málaga, Hospital Civil s/n. 29009. Málaga, Spain
| | - Adela García-Martín
- Emerald Health Biotechnology, Astrónoma Cecilia Payne (ed Centauro) s/n. floor 1. 14014. Córdoba, Spain
| | - María E Prados
- Emerald Health Biotechnology, Astrónoma Cecilia Payne (ed Centauro) s/n. floor 1. 14014. Córdoba, Spain
| | - Francisco Ruiz-Pino
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Menéndez Pidal s/n. 14004. Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, Km. 396. 14071. Córdoba, Spain; University Hospital Reina Sofía, Menéndez Pidal s/n. 14004. Córdoba, Spain
| | - Giovanni Appendino
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani, 2. 28100. Novara, Italy
| | - Manuel Tena-Sempere
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Menéndez Pidal s/n. 14004. Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, Km. 396. 14071. Córdoba, Spain; University Hospital Reina Sofía, Menéndez Pidal s/n. 14004. Córdoba, Spain; CIBER Pathophysiology of Obesity and Nutrition, Carlos III Health Institute, Menéndez Pidal s/n. 14004. Córdoba, Spain
| | - Eduardo Muñoz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Menéndez Pidal s/n. 14004. Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, Km. 396. 14071. Córdoba, Spain; University Hospital Reina Sofía, Menéndez Pidal s/n. 14004. Córdoba, Spain.
| |
Collapse
|
13
|
Benson MJ, Anderson LL, Low IK, Luo JL, Kevin RC, Zhou C, McGregor IS, Arnold JC. Evaluation of the Possible Anticonvulsant Effect of Δ 9-Tetrahydrocannabinolic Acid in Murine Seizure Models. Cannabis Cannabinoid Res 2020; 7:46-57. [PMID: 33998858 PMCID: PMC8864425 DOI: 10.1089/can.2020.0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: The cannabinoid Δ9-tetrahydrocannabinolic acid (Δ9-THCA) has long been suggested in review articles and anecdotal reports to be anticonvulsant; yet, there is scant evidence supporting this notion. The objective of this study was to interrogate the anticonvulsant potential of Δ9-THCA in various seizure models—the Scn1a+/− mouse model of Dravet syndrome, the 6-Hz model of psychomotor seizures and the maximal electroshock (MES) model of generalized tonic-clonic seizures. Materials and Methods: We examined the effect of acute Δ9-THCA treatment against hyperthermia-induced seizures, and subchronic treatment on spontaneous seizures and survival in the Scn1a+/− mice. We also studied the effect of acute Δ9-THCA treatment on the critical current thresholds in the 6-Hz and MES tests using outbred Swiss mice. Highly purified Δ9-THCA was used in the studies or a mixture of Δ9-THCA and Δ9-THC. Results: We observed mixed anticonvulsant and proconvulsant effects of Δ9-THCA across the seizure models. Highly pure Δ9-THCA did not affect hyperthermia-induced seizures in Scn1a+/− mice. A Δ9-THCA/Δ9-THC mixture was anticonvulsant in the 6-Hz threshold test, but purified Δ9-THCA and Δ9-THC had no effect. Conversely, both Δ9-THCA and Δ9-THC administered individually were proconvulsant in the MES threshold test but had no effect when administered as a Δ9-THCA/Δ9-THC mixture. The Δ9-THCA/Δ9-THC mixture, however, increased spontaneous seizure severity and increased mortality of Scn1a+/− mice. Discussion: The anticonvulsant profile of Δ9-THCA was variable depending on the seizure model used and presence of Δ9-THC. Because of the unstable nature of Δ9-THCA, further exploration of Δ9-THCA through formal anticonvulsant drug development is problematic without stabilization. Future studies may better focus on determining the mechanisms by which combined Δ9-THCA and Δ9-THC alters seizure thresholds, as this may uncover novel targets for the control of refractory partial seizures.
Collapse
Affiliation(s)
- Melissa J Benson
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Lyndsey L Anderson
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ivan K Low
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
| | - Jia Lin Luo
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard C Kevin
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Cilla Zhou
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Iain S McGregor
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Palomares B, Garrido-Rodriguez M, Gonzalo-Consuegra C, Gómez-Cañas M, Saen-Oon S, Soliva R, Collado JA, Fernández-Ruiz J, Morello G, Calzado MA, Appendino G, Muñoz E. Δ 9 -Tetrahydrocannabinolic acid alleviates collagen-induced arthritis: Role of PPARγ and CB 1 receptors. Br J Pharmacol 2020; 177:4034-4054. [PMID: 32510591 DOI: 10.1111/bph.15155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Δ9 -Tetrahydrocannabinolic acid (Δ9 -THCA-A), the precursor of Δ9 -THC, is a non-psychotropic phytocannabinoid that shows PPARγ agonist activity. Here, we investigated the ability of Δ9 -THCA-A to modulate the classic cannabinoid CB1 and CB2 receptors and evaluated its anti-arthritis activity in vitro and in vivo. EXPERIMENTAL APPROACH Cannabinoid receptors binding and intrinsic activity, as well as their downstream signalling, were analysed in vitro and in silico. The anti-arthritis properties of Δ9 -THCA-A were studied in human chondrocytes and in the murine model of collagen-induced arthritis (CIA). Plasma disease biomarkers were identified by LC-MS/MS based on proteomic and elisa assays. KEY RESULTS Functional and docking analyses showed that Δ9 -THCA-A can act as an orthosteric CB1 receptor agonist and also as a positive allosteric modulator in the presence of CP-55,940. Also, Δ9 -THCA-A seemed to be an inverse agonist for CB2 receptors. In vivo, Δ9 -THCA-A reduced arthritis in CIA mice, preventing the infiltration of inflammatory cells, synovium hyperplasia, and cartilage damage. Furthermore, Δ9 -THCA-A inhibited expression of inflammatory and catabolic genes on knee joints. The anti-arthritic effect of Δ9 -THCA-A was blocked by either SR141716 or T0070907. Analysis of plasma biomarkers, and determination of cytokines and anti-collagen antibodies confirmed that Δ9 -THCA-A mediated its activity mainly through PPARγ and CB1 receptor pathways. CONCLUSION AND IMPLICATIONS Δ9 -THCA-A modulates CB1 receptors through the orthosteric and allosteric binding sites. In addition, Δ9 -THCA-A exerts anti-arthritis activity through CB1 receptors and PPARγ pathways, highlighting its potential for the treatment of chronic inflammatory diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Belén Palomares
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain.,Department of Cellular Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Martín Garrido-Rodriguez
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain.,Department of Cellular Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Claudia Gonzalo-Consuegra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | | | | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Marco A Calzado
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain.,Department of Cellular Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Córdoba, Spain.,Department of Cellular Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|