1
|
Tong Z, Jie X, Chen Z, Deng M, Li X, Zhang Z, Pu F, Xie Z, Xu Z, Wang P. Borneol and lactoferrin dual-modified crocetin-loaded nanoliposomes enhance neuroprotection in HT22 cells and brain targeting in mice. Eur J Med Chem 2024; 276:116674. [PMID: 39004017 DOI: 10.1016/j.ejmech.2024.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Crocetin (CCT), a natural bioactive compound extracted and purified from the traditional Chinese medicinal herb saffron, has been shown to play a role in neurodegenerative diseases, particularly depression. However, due to challenges with solubility, targeting, and bioavailability, formulation development and clinical use of CCT are severely limited. In this study, we used the emulsification-reverse volatilization method to prepare CCT-loaded nanoliposomes (CN). We further developed a borneol (Bor) and lactoferrin (Lf) dual-modified CCT-loaded nanoliposome (BLCN) for brain-targeted delivery of CCT. The results of transmission electron microscope (TEM) and particle size analysis indicated that the size of BLCN (∼140 nm) was suitable for transcellular transport across olfactory axons (∼200 nm), potentially paving a direct path to the brain. Studies on lipid solubility, micropolarity, and hydrophobicity showed that BLCN had a relatively high Lf grafting rate (81.11 ± 1.33 %) and CCT entrapment efficiency (83.60 ± 1.04 %) compared to other liposomes, likely due to Bor improving the lipid solubility of Lf, and the combination promoting the orderly arrangement of liposome membrane molecules. Microplate reader and fluorescence microscopy analysis showed that BLCN efficiently promoted the endocytosis of fluorescent coumarin 6 into HT22 cells with a maximal fluorescence intensity of (13.48 ± 0.80 %), which was significantly higher than that of CCT (5.73 ± 1.17 %) and CN (12.13 ± 1.01 %). BLCN also exhibited sustained function, remaining effective for more than 12 h after reaching a peak at 1 h in cells, while CN showed a significant decrease after 4 h. The uptake mechanisms of BLCN in HT22 cells mainly involve energy-dependent, caveolae-mediated, and microtubule-mediated endocytosis, as well as micropinocytosis. Furthermore, BLCN displayed a significant neuroprotective effect on HT22 cells in glutamate-, corticosterone-, and H2O2-induced models. Tissue fluorescence image analysis of mice showed that BLCN exhibited substantial retention of fluorescent DiR in the brain after nasal administration for 12 h. These findings suggest that CCT has the potential for cellular uptake, neuroprotection, and targeted delivery to the brain following intranasal administration when encapsulated in Bor and Lf dual-modified nanoliposomes.
Collapse
Affiliation(s)
- Zheren Tong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaolu Jie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mingtao Deng
- Department of Pharmacy, Jiangxi Medical College, Shangrao, 334000, China
| | - Xin Li
- Department of Pharmacy, Jiangxi Medical College, Shangrao, 334000, China
| | - Zhiwen Zhang
- Department of Pharmacy, Jiangxi Medical College, Shangrao, 334000, China
| | - Faxiang Pu
- Zhejiang Suichang Liming Pharmaceutical Co., LTD, Suichang, 323300, China
| | - Zhangfu Xie
- Zhejiang Suichang Liming Pharmaceutical Co., LTD, Suichang, 323300, China
| | - Zijin Xu
- Department of Pharmacy, Jiangxi Medical College, Shangrao, 334000, China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Ye H, Yang X, Feng B, Luo P, Torres Irizarry VC, Carrillo-Sáenz L, Yu M, Yang Y, Eappen BP, Munoz MD, Patel N, Schaul S, Ibrahimi L, Lai P, Qi X, Zhou Y, Kota M, Dixit D, Mun M, Liew CW, Jiang Y, Wang C, He Y, Xu P. 27-Hydroxycholesterol acts on estrogen receptor α expressed by POMC neurons in the arcuate nucleus to modulate feeding behavior. SCIENCE ADVANCES 2024; 10:eadi4746. [PMID: 38996023 PMCID: PMC11244552 DOI: 10.1126/sciadv.adi4746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/05/2024] [Indexed: 07/14/2024]
Abstract
Oxysterols are metabolites of cholesterol that regulate cholesterol homeostasis. Among these, the most abundant oxysterol is 27-hydroxycholesterol (27HC), which can cross the blood-brain barrier. Because 27HC functions as an endogenous selective estrogen receptor modulator, we hypothesize that 27HC binds to the estrogen receptor α (ERα) in the brain to regulate energy balance. Supporting this view, we found that delivering 27HC to the brain reduced food intake and activated proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (POMCARH) in an ERα-dependent manner. In addition, we observed that inhibiting brain ERα, deleting ERα in POMC neurons, or chemogenetic inhibition of POMCARH neurons blocked the anorexigenic effects of 27HC. Mechanistically, we further revealed that 27HC stimulates POMCARH neurons by inhibiting the small conductance of the calcium-activated potassium (SK) channel. Together, our findings suggest that 27HC, through its interaction with ERα and modulation of the SK channel, inhibits food intake as a negative feedback mechanism against a surge in circulating cholesterol.
Collapse
Affiliation(s)
- Hui Ye
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiaohua Yang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pei Luo
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Valeria C. Torres Irizarry
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Meng Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin P. Eappen
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Marcos David Munoz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nirali Patel
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xinyue Qi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuliang Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Maya Kota
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Madeline Mun
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chong Wee Liew
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Wen J, Hao X, Jia Y, Wang B, Pang J, Liang F. Sex Differences in the Association Between LDL/HDL with Cognitive Decline in Older Adults: National Health and Nutrition Examination Survey. J Alzheimers Dis 2024; 98:1493-1502. [PMID: 38578891 DOI: 10.3233/jad-231195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Lipids have a significant impact on the development and functioning of the nervous system, but the sex differences between the association of LDL/HDL, which reflects lipid metabolic status, and cognitive impairment remains unclear. Objective We aimed to determine if there were sex differences between the association of LDL/HDL and cognitive function in US older adults. Methods This population-based cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) 2011-2012 and 2013-2014 cycles. The main outcome was poor cognitive performance defined by the Digit Symbol Substitution Test (DSST) < 34 based on published literature. Results A total of 1,225 participants were included in the study, with a cognitive impairment incidence of 25.6% (314/1,225). Multivariate regression models demonstrated a significant association between cognitive decline and each 1-unit increase in LDL/HDL, after adjusting for all covariates (adjusted odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.11-1.67). Furthermore, subgroup analysis revealed an interaction between LDL/HDL and cognitive impairment in sex subgroups. Conclusions LDL/HDL was associated with cognitive impairment in the US older adult population in adjusted models, although the significance of this association was not observed in females.
Collapse
Affiliation(s)
- Jiaqi Wen
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| | - Xiwa Hao
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| | - Yanhong Jia
- Department of Neurology, Baotou Central Hospital, Baotou, China
| | - Baojun Wang
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| | - Jiangxia Pang
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| | - Furu Liang
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| |
Collapse
|
4
|
Hjazi A, Ahsan M, Alghamdi MI, Kareem AK, Al-Saidi DN, Qasim MT, Romero-Parra RM, Zabibah RS, Ramírez-Coronel AA, Mustafa YF, Hosseini-Fard SR, Karampoor S, Mirzaei R. Unraveling the impact of 27-hydroxycholesterol in autoimmune diseases: Exploring promising therapeutic approaches. Pathol Res Pract 2023; 248:154737. [PMID: 37542860 DOI: 10.1016/j.prp.2023.154737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The role of 27-hydroxycholesterol (27-OHC) in autoimmune diseases has become a subject of intense research in recent years. This oxysterol, derived from cholesterol, has been identified as a significant player in modulating immune responses and inflammation. Its involvement in autoimmune pathogenesis has drawn attention to its potential as a therapeutic target for managing autoimmune disorders effectively. 27-OHC, an oxysterol derived from cholesterol, has emerged as a key player in modulating immune responses and inflammatory processes. It exerts its effects through various mechanisms, including activation of nuclear receptors, interaction with immune cells, and modulation of neuroinflammation. Additionally, 27-OHC has been implicated in the dysregulation of lipid metabolism, neurotoxicity, and blood-brain barrier (BBB) disruption. Understanding the intricate interplay between 27-OHC and autoimmune diseases, particularly neurodegenerative disorders, holds promise for developing targeted therapeutic strategies. Additionally, emerging evidence suggests that 27-OHC may interact with specific receptors and transcription factors, thus influencing gene expression and cellular processes in autoimmune disorders. Understanding the intricate mechanisms by which 27-OHC influences immune dysregulation and tissue damage in autoimmune diseases is crucial for developing targeted therapeutic interventions. Further investigations into the molecular pathways and signaling networks involving 27-OHC are warranted to unravel its full potential as a therapeutic target in autoimmune diseases, thereby offering new avenues for disease intervention and management.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Maria Ahsan
- King Edward Medical University Lahore, Pakistan
| | - Mohammed I Alghamdi
- Department of Computer Science, Al-Baha University, Al-Baha City, Kingdom of Saudi Arabia
| | - A K Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Dahlia N Al-Saidi
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Research group in educational statistics, National University of Education, Azogues, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Wang L, Yu H, Hao L, Ju M, Feng W, Xiao R. The Interaction Effect of 27-Hydroxycholesterol Metabolism Disorder and CYP27A1 Single Nucleotide Polymorphisms in Mild Cognitive Impairment: Evidence from a Case-Control Study. Mol Nutr Food Res 2023; 67:e2200576. [PMID: 36811281 DOI: 10.1002/mnfr.202200576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/02/2023] [Indexed: 02/24/2023]
Abstract
SCOPE The aim of the study is to investigate the relationship between 27-hydroxycholesterol (27-OHC), 27-hydroxylase (CYP27A1) polymorphisms, and Alzheimer's disease (AD). METHODS AND RESULTS A case-control study based on EMCOA study includes 220 healthy cognition and mild cognitive impairment (MCI) subjects respectively, matched by sex, age, and education. The level of 27-OHC and its related metabolites are examined by high performance liquid chromatography-mass spectrometry (HPLC-MS). The results show that 27-OHC level is positively associated with risk of MCI (p < 0.001), negatively associated with specific domain of cognitive function. Serum 27-OHC is positively associated with 7a-hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) in cognitive healthy subjects, while positively associated with 3β-hydroxy-5-cholestenoic acid (27-CA) in MCI subjects (p < 0.001). CYP27A1 and Apolipoprotein E (ApoE) single nucleotide polymorphisms (SNPs) genotyping are determined. The global cognitive function is significant higher in Del-carrier of rs10713583, compared with AA genotype (p = 0.007). Stroop Color-Word Test Interference Trial (SCWT-IT) is significant higher in G-carrier genotype (p = 0.042), compared with TT genotype in rs12614206. CONCLUSIONS The results show that 27-OHC metabolic disorder is associated with MCI and multi-domain cognitive function. CYP27A1 SNPs is correlated to cognitive function, while the interaction between 27-OHC and CYP27A1 SNPs need further study.
Collapse
Affiliation(s)
- Lijing Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Huiyan Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ling Hao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Mengwei Ju
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Wenjing Feng
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
6
|
AT1 receptor autoantibodies mediate effects of metabolic syndrome on dopaminergic vulnerability. Brain Behav Immun 2023; 108:255-268. [PMID: 36535607 DOI: 10.1016/j.bbi.2022.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/20/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The metabolic syndrome has been associated to chronic peripheral inflammation and related with neuroinflammation and neurodegeneration, including Parkinson's disease. However, the responsible mechanisms are unclear. Previous studies have involved the brain renin-angiotensin system in progression of Parkinson's disease and the angiotensin receptor type 1 (AT1) has been recently revealed as a major marker of dopaminergic vulnerability in humans. Dysregulation of tissue renin-angiotensin system is a key common mechanism for all major components of metabolic syndrome. Circulating AT1 agonistic autoantibodies have been observed in several inflammation-related peripheral processes, and activation of AT1 receptors of endothelial cells, dopaminergic neurons and glial cells have been observed to disrupt endothelial blood -brain barrier and induce neurodegeneration, respectively. Using a rat model, we observed that metabolic syndrome induces overactivity of nigral pro-inflammatory renin-angiotensin system axis, leading to increase in oxidative stress and neuroinflammation and enhancing dopaminergic neurodegeneration, which was inhibited by treatment with AT1 receptor blockers (ARBs). In rats, metabolic syndrome induced the increase in circulating levels of LIGHT and other major pro-inflammatory cytokines, and 27-hydroxycholesterol. Furthermore, the rats showed a significant increase in serum levels of proinflammatory AT1 and angiotensin converting enzyme 2 (ACE2) autoantibodies, which correlated with levels of several metabolic syndrome parameters. We also found AT1 and ACE2 autoantibodies in the CSF of these rats. Effects of circulating autoantibodies were confirmed by chronic infusion of AT1 autoantibodies, which induced blood-brain barrier disruption, an increase in the pro-inflammatory renin-angiotensin system activity in the substantia nigra and a significant enhancement in dopaminergic neuron death in two different rat models of Parkinson's disease. Observations in the rat models, were analyzed in a cohort of parkinsonian and non-parkinsonian patients with or without metabolic syndrome. Non-parkinsonian patients with metabolic syndrome showed significantly higher levels of AT1 autoantibodies than non-parkinsonian patients without metabolic syndrome. However, there was no significant difference between parkinsonian patients with metabolic syndrome or without metabolic syndrome, which showed higher levels of AT1 autoantibodies than non-parkinsonian controls. This is consistent with our recent studies, showing significant increase of AT1 and ACE2 autoantibodies in parkinsonian patients, which was related to dopaminergic degeneration and neuroinflammation. Altogether may lead to a vicious circle enhancing the progression of the disease that may be inhibited by strategies against production of these autoantibodies or AT1 receptor blockers (ARBs).
Collapse
|
7
|
Wu M, Zhai Y, Liang X, Chen W, Lin R, Ma L, Huang Y, Zhao D, Liang Y, Zhao W, Fang J, Fang S, Chen Y, Wang Q, Li W. Connecting the Dots Between Hypercholesterolemia and Alzheimer’s Disease: A Potential Mechanism Based on 27-Hydroxycholesterol. Front Neurosci 2022; 16:842814. [PMID: 35464321 PMCID: PMC9021879 DOI: 10.3389/fnins.2022.842814] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia, is a complex and multifactorial disease involving genetic and environmental factors, with hypercholesterolemia considered as one of the risk factors. Numerous epidemiological studies have reported a positive association between AD and serum cholesterol levels, and experimental studies also provide evidence that elevated cholesterol levels accelerate AD pathology. However, the underlying mechanism of hypercholesterolemia accelerating AD pathogenesis is not clear. Here, we review the metabolism of cholesterol in the brain and focus on the role of oxysterols, aiming to reveal the link between hypercholesterolemia and AD. 27-hydroxycholesterol (27-OHC) is the major peripheral oxysterol that flows into the brain, and it affects β-amyloid (Aβ) production and elimination as well as influencing other pathogenic mechanisms of AD. Although the potential link between hypercholesterolemia and AD is well established, cholesterol-lowering drugs show mixed results in improving cognitive function. Nevertheless, drugs that target cholesterol exocytosis and conversion show benefits in improving AD pathology. Herbs and natural compounds with cholesterol-lowering properties also have a potential role in ameliorating cognition. Collectively, hypercholesterolemia is a causative risk factor for AD, and 27-OHC is likely a potential mechanism for hypercholesterolemia to promote AD pathology. Drugs that regulate cholesterol metabolism are probably beneficial for AD, but more research is needed to unravel the mechanisms involved in 27-OHC, which may lead to new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Mingan Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Zhai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weichun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiyi Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linlin Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunbo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Qi Wang,
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- Weirong Li,
| |
Collapse
|
8
|
Affiliation(s)
- Mark Nixon
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Resveratrol Alleviates 27-Hydroxycholesterol-Induced Senescence in Nerve Cells and Affects Zebrafish Locomotor Behavior via Activation of SIRT1-Mediated STAT3 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6673343. [PMID: 34239694 PMCID: PMC8238615 DOI: 10.1155/2021/6673343] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/09/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
The oxysterol 27-hydroxycholesterol (27HC) is the first identified endogenous selective estrogen receptor modulator (SERM), which like endogenous estrogen 17β-estradiol (E2) induces the proliferation of estrogen receptor- (ER-) positive breast cancer cells in vitro. However, 27HC differs from E2 in that it shows adverse effects in the nervous system. Our previous study confirmed that 27HC could induce neural senescence by activating phosphorylated signal transducer and activator of transcription, which E2 could not. The purpose of the present study is to investigate whether STAT3 acetylation was involved in 27HC-induced neural senescence. Microglia (BV2 cells) and rat pheochromocytoma cells (PC12 cells) were used in vitro to explore the effect of resveratrol (REV) on 27HC-induced neural senescence. Senescence-associated β-galactosidase (SA-β-Gal) staining was performed using an SA-β-Gal Staining Kit in cells and zebrafish larvae. Zebrafish were used in vivo to assess the effect of 27HC on locomotor behavior and aging. We found that 27HC could induce senescence in neural cells, and REV, which has been employed as a Sirtuin-1 (SIRT1) agonist, could attenuate 27HC-induced senescence by inhibiting STAT3 signaling via SIRT1. Moreover, in the zebrafish model, REV attenuated 27HC-induced locomotor behavior disorder and aging in the spinal cord of zebrafish larvae, which was also associated with the activation of SIRT1-mediated STAT3 signaling. Our findings unveiled a novel mechanism by which REV alleviates 27HC-induced senescence in neural cells and affects zebrafish locomotor behavior by activating SIRT1-mediated STAT3 signaling.
Collapse
|
10
|
Sandebring-Matton A, Goikolea J, Björkhem I, Paternain L, Kemppainen N, Laatikainen T, Ngandu T, Rinne J, Soininen H, Cedazo-Minguez A, Solomon A, Kivipelto M. 27-Hydroxycholesterol, cognition, and brain imaging markers in the FINGER randomized controlled trial. Alzheimers Res Ther 2021; 13:56. [PMID: 33676572 PMCID: PMC7937194 DOI: 10.1186/s13195-021-00790-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND 27-Hydroxycholesterol (27-OH), the main circulating oxysterol in humans and the potential missing link between peripheral hypercholesterolemia and Alzheimer's disease (AD), has not been investigated previously in relation to cognition and neuroimaging markers in the context of preventive interventions. METHODS The 2-year Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) included older individuals (60-77 years) at increased risk for dementia but without dementia or substantial cognitive impairment from the general population. Participants were randomized to a multidomain intervention (diet, exercise, cognitive training, and vascular risk management) or control group (general health advice) in a 1:1 ratio. Outcome assessors were masked to group allocation. This FINGER exploratory sub-study included 47 participants with measures of 27-OH, cognition, brain MRI, brain FDG-PET, and PiB-PET. Linear regression models were used to assess the cross-sectional and longitudinal associations between 27-OH, cognition, and neuroimaging markers, considering several potential confounders/intervention effect modifiers. RESULTS 27-OH reduction during the intervention was associated with improvement in cognition (especially memory). This was not observed in the control group. The intervention reduced 27-OH particularly in individuals with the highest 27-OH levels and younger age. No associations were found between changes in 27-OH levels and neuroimaging markers. However, at baseline, a higher 27-OH was associated with lower total gray matter and hippocampal volume, and lower cognitive scores. These associations were unaffected by total cholesterol levels. While sex seemed to influence associations at baseline, it did not affect longitudinal associations. CONCLUSION 27-OH appears to be a marker not only for dementia/AD risk, but also for monitoring the effects of preventive interventions on cholesterol metabolism. TRIAL REGISTRATION ClinicalTrials.gov , NCT01041989 . Registered on 4 January 2010.
Collapse
Affiliation(s)
- Anna Sandebring-Matton
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.
| | - Julen Goikolea
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Paternain
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Nina Kemppainen
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Tiina Laatikainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Joint Municipal Authority for North Karelia Social and Health Services, Joensuu, Finland
- Public Health Promotion Unit, Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tiia Ngandu
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
- Public Health Promotion Unit, Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Juha Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
- Neurocenter, Neurology Kuopio University Hospital, Kuopio, Finland
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Alina Solomon
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
- Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Parrado-Fernandez C, Leoni V, Saeed A, Rodriguez-Rodriguez P, Sandebring-Matton A, Córdoba-Beldad CM, Bueno P, Gali CC, Panzenboeck U, Cedazo-Minguez A, Björkhem I. Sex difference in flux of 27-hydroxycholesterol into the brain. Br J Pharmacol 2021; 178:3194-3204. [PMID: 33345295 PMCID: PMC8359195 DOI: 10.1111/bph.15353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/21/2023] Open
Abstract
Background and Purpose The cerebrospinal fluid (CSF)/plasma albumin ratio (QAlb) is believed to reflect the integrity of the blood–brain barrier (BBB). Recently, we reported that QAlb is lower in females. This may be important for uptake of neurotoxic 27‐hydroxycholesterol (27OH) by the brain in particular because plasma levels of 27OH are higher in males. We studied sex differences in the relation between CSF and plasma levels of 27OH and its major metabolite 7α‐hydroxy‐3‐oxo‐4‐cholestenoic acid (7HOCA) with QAlb. We tested the possibility of sex differences in the brain metabolism of 27OH and if its flux into the brain disrupted integrity of the BBB. Experimental Approach We have examined our earlier studies looking for sex differences in CSF levels of oxysterols and their relation to QAlb. We utilized an in vitro model for the BBB with primary cultured brain endothelial cells to test if 27OH has a disruptive effect on this barrier. We measured mRNA and protein levels of CYP7B1 in autopsy brain samples. Key Results The correlation between CSF levels of 27OH and QAlb was higher in males whereas, with 7HOCA, the correlation was higher in females. No significant sex difference in the expression of CYP7B1 mRNA in brain autopsy samples. A correlation was found between plasma levels of 27OH and QAlb. No support was obtained for the hypothesis that plasma levels of 27OH have a disruptive effect on the BBB. Conclusions and Implications The sex differences are discussed in relation to negative effects of 27OH on different brain functions. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc
Collapse
Affiliation(s)
- Cristina Parrado-Fernandez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Solna, Sweden.,Discovery and Research, AlzeCure Pharma AB, Huddinge, Sweden
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Desio, ASST-Monza and School of Medicine, University of Milano Bicocca, Monza, Italy
| | - Ahmed Saeed
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | | | - Anna Sandebring-Matton
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Solna, Sweden
| | | | - Paula Bueno
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Solna, Sweden
| | - Chaitanya Chakravarthi Gali
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ute Panzenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Solna, Sweden.,Rare & Neurologic Diseases Research Therapeutic Area, Neurodegeneration Research, Sanofi Pharmaceuticals, Paris, France
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| |
Collapse
|