1
|
Gould S, Winter MJ, Trznadel M, Lange A, Hamilton CM, Boreham RJ, Hetheridge MJ, Young A, Norton WHJ, Tyler CR. Exposure Effects of Environmentally Relevant Concentrations of the Tricyclic Antidepressant Amitriptyline in Early Life Stage Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39018108 PMCID: PMC11295126 DOI: 10.1021/acs.est.3c08126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
Antidepressants are one of the most globally prescribed classes of pharmaceuticals, and drug target conservation across phyla means that nontarget organisms may be at risk from the effects of exposure. Here, we address the knowledge gap for the effects of chronic exposure (28 days) to the tricyclic antidepressant amitriptyline (AMI) on fish, including for concentrations with environmental relevance, using zebrafish (Danio rerio) as our experimental model. AMI was found to bioconcentrate in zebrafish, was readily transformed to its major active metabolite nortriptyline, and induced a pharmacological effect (downregulation of the gene encoding the serotonin transporter; slc6a4a) at environmentally relevant concentrations (0.03 μg/L and above). Exposures to AMI at higher concentrations accelerated the hatch rate and reduced locomotor activity, the latter of which was abolished after a 14 day period of depuration. The lack of any response on the features of physiology and behavior we measured at concentrations found in the environment would indicate that AMI poses a relatively low level of risk to fish populations. The pseudopersistence and likely presence of multiple drugs acting via the same mechanism of action, however, together with a global trend for increased prescription rates, mean that this risk may be underestimated using current ecotoxicological assessment paradigms.
Collapse
Affiliation(s)
- Sophie
L. Gould
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Matthew J. Winter
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Maciej Trznadel
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Anke Lange
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Charles M. Hamilton
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Rebekah J. Boreham
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Malcolm J. Hetheridge
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Andrew Young
- Department
of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Rd., Leicester LE1 7RH, U.K.
| | - William H. J. Norton
- Department
of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Rd., Leicester LE1 7RH, U.K.
| | - Charles R. Tyler
- Biosciences,
Faculty of Health and Life Sciences, University
of Exeter, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| |
Collapse
|
2
|
Pugsley MK, Winters BR, Koshman YE, Authier S, Foley CM, Hayes ES, Curtis MJ. Innovative approaches to cardiovascular safety pharmacology assessment. J Pharmacol Toxicol Methods 2024; 128:107533. [PMID: 38945308 DOI: 10.1016/j.vascn.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
This editorial prefaces the annual themed issue on safety pharmacology (SP) methods which has been published since 2004 in the Journal of Pharmacological and Toxicological Methods (JPTM). Here we highlight content derived from the 2023 Safety Pharmacology Society (SPS) meeting held in Brussels, Belgium. The meeting generated 138 abstracts, reproduced in the current volume of JPTM. As in prior years, the manuscripts reflect various areas of innovation in SP including in silico modeling of stroke volume, cardiac output and systemic vascular resistance, computational approaches that compare drug-induced proarrhythmic sensitivity of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), an evaluation of the utility of the corrected J-Tpeak and Tpeak-to-Tend parameters from the ECG as potential proarrhythmia biomarkers, and the applicability of nonclinical concentration-QTc (C-QTc) modeling of data derived from the conduct of the in vivo QTc study as a component of the core battery of safety pharmacology studies.
Collapse
Affiliation(s)
- Michael K Pugsley
- Toxicology & Safety Pharmacology, Cytokinetics, South San Francisco, CA 94080, United States of America.
| | - Brett R Winters
- Toxicology & Safety Pharmacology, Cytokinetics, South San Francisco, CA 94080, United States of America
| | - Yevgeniya E Koshman
- Safety Pharmacology, Abbvie, North Chicago, IL 60064, United States of America
| | - Simon Authier
- Charles River Laboratories, Laval, QC H7V 4B3, Canada
| | - C Michael Foley
- Safety Pharmacology, Abbvie, North Chicago, IL 60064, United States of America
| | - Eric S Hayes
- BioCurate Pty Ltd, Carlton, Victoria 3053, Australia
| | - Michael J Curtis
- Cardiovascular Division, King's College London, Rayne Institute, St Thomas' Hospital, London SE17EH, UK
| |
Collapse
|
3
|
Margiotta-Casaluci L, Owen SF, Winter MJ. Cross-Species Extrapolation of Biological Data to Guide the Environmental Safety Assessment of Pharmaceuticals-The State of the Art and Future Priorities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:513-525. [PMID: 37067359 DOI: 10.1002/etc.5634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
The extrapolation of biological data across species is a key aspect of biomedical research and drug development. In this context, comparative biology considerations are applied with the goal of understanding human disease and guiding the development of effective and safe medicines. However, the widespread occurrence of pharmaceuticals in the environment and the need to assess the risk posed to wildlife have prompted a renewed interest in the extrapolation of pharmacological and toxicological data across the entire tree of life. To address this challenge, a biological "read-across" approach, based on the use of mammalian data to inform toxicity predictions in wildlife species, has been proposed as an effective way to streamline the environmental safety assessment of pharmaceuticals. Yet, how effective has this approach been, and are we any closer to being able to accurately predict environmental risk based on known human risk? We discuss the main theoretical and experimental advancements achieved in the last 10 years of research in this field. We propose that a better understanding of the functional conservation of drug targets across species and of the quantitative relationship between target modulation and adverse effects should be considered as future research priorities. This pharmacodynamic focus should be complemented with the application of higher-throughput experimental and computational approaches to accelerate the prediction of internal exposure dynamics. The translation of comparative (eco)toxicology research into real-world applications, however, relies on the (limited) availability of experts with the skill set needed to navigate the complexity of the problem; hence, we also call for synergistic multistakeholder efforts to support and strengthen comparative toxicology research and education at a global level. Environ Toxicol Chem 2024;43:513-525. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luigi Margiotta-Casaluci
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stewart F Owen
- Global Sustainability, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Matthew J Winter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
4
|
Yang W, Bao Y, Hao J, Hu X, Xu T, Yin D. Effects of carbamazepine on the central nervous system of zebrafish at human therapeutic plasma levels. iScience 2023; 26:107688. [PMID: 37701572 PMCID: PMC10494213 DOI: 10.1016/j.isci.2023.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
The fish plasma model (FPM) facilitated the environmental risk assessment of human drugs by using existing data on human therapeutic plasma concentrations (HTPCs) and predicted fish plasma concentrations (FPCs). However, studies on carbamazepine (CMZ) with both the mode of action (MOA) based biological effects at molecular level (such as neurotransmitter and gene level) and measured FPCs are lacking. Bioconcentration of CMZ in adult zebrafish demonstrated that the FPM underestimated the bioconcentration factors (BCFs) in plasma at environmental CMZ exposure concentrations (1-100 μg/L). CMZ significantly increased Glu and GABA, decreased ACh and AChE as well as inhibited the transcription levels of gabra1, grin1b, grin2b, gad1b, and abat when the actual FPCs were in the ranges of 1/1000 HTPC to HTPC. It is the first read-across study of CMZ integrating MOA-based biological effects at molecular level and FPCs. This study facilitates model performance against a range of different drug classes.
Collapse
Affiliation(s)
- Weiwei Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yifan Bao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaoyang Hao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Takesono A, Dimitriadou S, Clark NJ, Handy RD, Mourabit S, Winter MJ, Kudoh T, Tyler CR. Zinc oxide nanoparticles disrupt development and function of the olfactory sensory system impairing olfaction-mediated behaviour in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 180:108227. [PMID: 37826893 DOI: 10.1016/j.envint.2023.108227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Zinc (Zn) is an essential metal present in numerous enzymes throughout the body, playing a vital role in animal and human health. However, the increasing use of zinc oxide nanomaterials (ZnONPs) in a diverse range of products has raised concerns regarding their potential impacts on health and the environment. Despite these concerns, the toxicity of ZnONP exposure on animal health remain poorly understood. To help address this knowledge gap, we have developed a highly sensitive oxidative stress (OS) biosensor zebrafish capable of detecting cell/tissue-specific OS responses to low doses of various oxidative stressors, including Zn, in a live fish embryo. Using live-imaging analysis with this biosensor zebrafish embryo, we discovered that the olfactory sensory neurons in the brain are especially sensitive to ZnOP exposure. Furthermore, through studies monitoring neutrophil migration and neuronal activation in the embryonic brain and via behaviour analysis, we have found that sub-lethal doses of ZnONPs (ranging from 0.033 to 1 mg/L nominal concentrations), which had no visible effect on embryo growth or morphology, cause significant localised inflammation, disrupting the neurophysiology of olfactory brain tissues and ultimately impaired olfaction-mediated behaviour. Collectively, these findings establish a potent and important effect mechanism for ZnONP toxicity, indicating the olfactory sensory system as the primary target for ZnONPs as an environmental toxicant in aquatic environments. Our result also highlights that even low doses of ZnONPs can have detrimental effects on the olfactory sensory system, surpassing previous expectations. The importance of olfaction in environment sensing, sex behaviours and overall fitness across species raises concerns about the potential impact of ZnONPs on olfaction-mediated brain function and behaviour in animals and humans. Our study emphasises the need for greater consideration of the potential risks associated with these nanomaterials.
Collapse
Affiliation(s)
- Aya Takesono
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom.
| | - Sylvia Dimitriadou
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Nathaniel J Clark
- Faculty of Science and Engineering, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Richard D Handy
- Faculty of Science and Engineering, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Sulayman Mourabit
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom.
| |
Collapse
|
6
|
Biechele-Speziale D, Camarillo M, Martin NR, Biechele-Speziale J, Lein PJ, Plavicki JS. Assessing CaMPARI as new approach methodology for evaluating neurotoxicity. Neurotoxicology 2023; 97:109-119. [PMID: 37244562 PMCID: PMC10527633 DOI: 10.1016/j.neuro.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Developmental exposure to environmental toxicants has been linked to the onset of neurological disorders and diseases. Despite substantial advances in the field of neurotoxicology, there remain significant knowledge gaps in our understanding of cellular targets and molecular mechanisms that mediate the neurotoxicological endpoints associated with exposure to both legacy contaminants and emerging contaminants of concern. Zebrafish are a powerful neurotoxicological model given their high degree sequence conservation with humans and the similarities they share with mammals in micro- and macro-level brain structures. Many zebrafish studies have effectively utilized behavioral assays to predict the neurotoxic potential of different compounds, but behavioral phenotypes are rarely able to predict the brain structures, cell types, or mechanisms affected by chemical exposures. Calcium-modulated photoactivatable ratiometric integrator (CaMPARI), a recently developed genetically-encoded calcium indicator, undergoes a permanent green to red switch in the presence of elevated intracellular Ca2+ concentrations and 405-nm light, which allows for a "snapshot" of brain activity in freely-swimming larvae. To determine whether behavioral results are predictive of patterns of neuronal activity, we assessed the effects of three common neurotoxicants, ethanol, 2,2',3,5',6-pentachlorobiphenyl (PCB 95), and monoethylhexyl phthalate (MEHP), on both brain activity and behavior by combining the behavioral light/dark assay with CaMPARI imaging. We demonstrate that brain activity profiles and behavioral phenotypes are not always concordant and, therefore, behavior alone is not sufficient to understand how toxicant exposure affects neural development and network dynamics. We conclude that pairing behavioral assays with functional neuroimaging tools such as CaMPARI provides a more comprehensive understanding of the neurotoxic endpoints of compounds while still offering a relatively high throughput approach to toxicity testing.
Collapse
Affiliation(s)
- Dana Biechele-Speziale
- Department of Chemistry, Brown University, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Manuel Camarillo
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Nathan R Martin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | | | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jessica S Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Turrini L, Roschi L, de Vito G, Pavone FS, Vanzi F. Imaging Approaches to Investigate Pathophysiological Mechanisms of Brain Disease in Zebrafish. Int J Mol Sci 2023; 24:9833. [PMID: 37372981 DOI: 10.3390/ijms24129833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish has become an essential model organism in modern biomedical research. Owing to its distinctive features and high grade of genomic homology with humans, it is increasingly employed to model diverse neurological disorders, both through genetic and pharmacological intervention. The use of this vertebrate model has recently enhanced research efforts, both in the optical technology and in the bioengineering fields, aiming at developing novel tools for high spatiotemporal resolution imaging. Indeed, the ever-increasing use of imaging methods, often combined with fluorescent reporters or tags, enable a unique chance for translational neuroscience research at different levels, ranging from behavior (whole-organism) to functional aspects (whole-brain) and down to structural features (cellular and subcellular). In this work, we present a review of the imaging approaches employed to investigate pathophysiological mechanisms underlying functional, structural, and behavioral alterations of human neurological diseases modeled in zebrafish.
Collapse
Affiliation(s)
- Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Roschi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy
- Interdepartmental Centre for the Study of Complex Dynamics, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Understanding CNS Effects of Antimicrobial Drugs Using Zebrafish Models. Vet Sci 2023; 10:vetsci10020096. [PMID: 36851400 PMCID: PMC9964482 DOI: 10.3390/vetsci10020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial drugs represent a diverse group of widely utilized antibiotic, antifungal, antiparasitic and antiviral agents. Their growing use and clinical importance necessitate our improved understanding of physiological effects of antimicrobial drugs, including their potential effects on the central nervous system (CNS), at molecular, cellular, and behavioral levels. In addition, antimicrobial drugs can alter the composition of gut microbiota, and hence affect the gut-microbiota-brain axis, further modulating brain and behavioral processes. Complementing rodent studies, the zebrafish (Danio rerio) emerges as a powerful model system for screening various antimicrobial drugs, including probing their putative CNS effects. Here, we critically discuss recent evidence on the effects of antimicrobial drugs on brain and behavior in zebrafish, and outline future related lines of research using this aquatic model organism.
Collapse
|
9
|
Chen WN, Shaikh MF. Second-hit pentylenetetrazole-induced seizure model in zebrafish. HANDBOOK OF ANIMAL MODELS IN NEUROLOGICAL DISORDERS 2023:217-226. [DOI: 10.1016/b978-0-323-89833-1.00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Bertram MG, Martin JM, McCallum ES, Alton LA, Brand JA, Brooks BW, Cerveny D, Fick J, Ford AT, Hellström G, Michelangeli M, Nakagawa S, Polverino G, Saaristo M, Sih A, Tan H, Tyler CR, Wong BB, Brodin T. Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biol Rev Camb Philos Soc 2022; 97:1346-1364. [PMID: 35233915 PMCID: PMC9543409 DOI: 10.1111/brv.12844] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Animal behaviour is remarkably sensitive to disruption by chemical pollution, with widespread implications for ecological and evolutionary processes in contaminated wildlife populations. However, conventional approaches applied to study the impacts of chemical pollutants on wildlife behaviour seldom address the complexity of natural environments in which contamination occurs. The aim of this review is to guide the rapidly developing field of behavioural ecotoxicology towards increased environmental realism, ecological complexity, and mechanistic understanding. We identify research areas in ecology that to date have been largely overlooked within behavioural ecotoxicology but which promise to yield valuable insights, including within- and among-individual variation, social networks and collective behaviour, and multi-stressor interactions. Further, we feature methodological and technological innovations that enable the collection of data on pollutant-induced behavioural changes at an unprecedented resolution and scale in the laboratory and the field. In an era of rapid environmental change, there is an urgent need to advance our understanding of the real-world impacts of chemical pollution on wildlife behaviour. This review therefore provides a roadmap of the major outstanding questions in behavioural ecotoxicology and highlights the need for increased cross-talk with other disciplines in order to find the answers.
Collapse
Affiliation(s)
- Michael G. Bertram
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Jake M. Martin
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Erin S. McCallum
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Lesley A. Alton
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Jack A. Brand
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Bryan W. Brooks
- Department of Environmental ScienceBaylor UniversityOne Bear PlaceWacoTexas76798‐7266U.S.A.
| | - Daniel Cerveny
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in Ceske BudejoviceZátiší 728/IIVodnany389 25Czech Republic
| | - Jerker Fick
- Department of ChemistryUmeå UniversityLinnaeus väg 10UmeåVästerbottenSE‐907 36Sweden
| | - Alex T. Ford
- Institute of Marine SciencesUniversity of PortsmouthWinston Churchill Avenue, PortsmouthHampshirePO1 2UPU.K.
| | - Gustav Hellström
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South Wales, Biological Sciences West (D26)SydneyNSW2052Australia
| | - Giovanni Polverino
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western Australia35 Stirling HighwayPerthWA6009Australia
- Department of Ecological and Biological SciencesTuscia UniversityVia S.M. in Gradi n.4ViterboLazio01100Italy
| | - Minna Saaristo
- Environment Protection Authority VictoriaEPA Science2 Terrace WayMacleodVictoria3085Australia
| | - Andrew Sih
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Hung Tan
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Charles R. Tyler
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterDevonEX4 4QDU.K.
| | - Bob B.M. Wong
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| |
Collapse
|
11
|
Wlodkowic D, Bownik A, Leitner C, Stengel D, Braunbeck T. Beyond the behavioural phenotype: Uncovering mechanistic foundations in aquatic eco-neurotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154584. [PMID: 35306067 DOI: 10.1016/j.scitotenv.2022.154584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
During the last decade, there has been an increase in awareness of how anthropogenic pollution can alter behavioural traits of diverse aquatic organisms. Apart from understanding profound ecological implications, alterations in neuro-behavioural indices have emerged as sensitive and physiologically integrative endpoints in chemical risk assessment. Accordingly, behavioural ecotoxicology and broader eco-neurotoxicology are becoming increasingly popular fields of research that span a plethora of fundamental laboratory experimentations as well as applied field-based studies. Despite mounting interest in aquatic behavioural ecotoxicology studies, there is, however, a considerable paucity in deciphering the mechanistic foundations underlying behavioural alterations upon exposure to pollutants. The behavioural phenotype is indeed the highest-level integrative neurobiological phenomenon, but at its core lie myriads of intertwined biochemical, cellular, and physiological processes. Therefore, the mechanisms that underlie changes in behavioural phenotypes can stem among others from dysregulation of neurotransmitter pathways, electrical signalling, and cell death of discrete cell populations in the central and peripheral nervous systems. They can, however, also be a result of toxicity to sensory organs and even metabolic dysfunctions. In this critical review, we outline why behavioural phenotyping should be the starting point that leads to actual discovery of fundamental mechanisms underlying actions of neurotoxic and neuromodulating contaminants. We highlight potential applications of the currently existing and emerging neurobiology and neurophysiology analytical strategies that should be embraced and more broadly adopted in behavioural ecotoxicology. Such strategies can provide new mechanistic discoveries instead of only observing the end sum phenotypic effects.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Australia.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | - Carola Leitner
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Daniel Stengel
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| |
Collapse
|
12
|
Gillies S, Verdon R, Stone V, Brown DM, Henry T, Tran L, Tucker C, Rossi AG, Tyler CR, Johnston HJ. Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology 2022; 16:333-354. [PMID: 35797989 DOI: 10.1080/17435390.2022.2088312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hazard studies for nanomaterials (NMs) commonly assess whether they activate an inflammatory response. Such assessments often rely on rodents, but alternative models are needed to support the implementation of the 3Rs principles. Zebrafish (Danio rerio) offer a viable alternative for screening NM toxicity by investigating inflammatory responses. Here, we used non-protected life stages of transgenic zebrafish (Tg(mpx:GFP)i114) with fluorescently-labeled neutrophils to assess inflammatory responses to silver (Ag) and zinc oxide (ZnO) NMs using two approaches. Zebrafish were exposed to NMs via water following a tail fin injury, or NMs were microinjected into the otic vesicle. Zebrafish were exposed to NMs at 3 days post-fertilization (dpf) and neutrophil accumulation at the injury or injection site was quantified at 0, 4, 6, 8, 24, and 48 h post-exposure. Zebrafish larvae were also exposed to fMLF, LTB4, CXCL-8, C5a, and LPS to identify a suitable positive control for inflammation induction. Aqueous exposure to Ag and ZnO NMs stimulated an enhanced and sustained neutrophilic inflammatory response in injured zebrafish larvae, with a greater response observed for Ag NMs. Following microinjection, Ag NMs stimulated a time-dependent neutrophil accumulation in the otic vesicle which peaked at 48 h. LTB4 was identified as a positive control for studies investigating inflammatory responses in injured zebrafish following aqueous exposure, and CXCL-8 for microinjection studies that assess responses in the otic vesicle. Our findings support the use of transgenic zebrafish to rapidly screen the pro-inflammatory effects of NMs, with potential for wider application in assessing chemical safety (e.g. pharmaceuticals).
Collapse
Affiliation(s)
| | | | | | | | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
13
|
Differential Electrographic Signatures Generated by Mechanistically-Diverse Seizurogenic Compounds in the Larval Zebrafish Brain. eNeuro 2022; 9:ENEURO.0337-21.2022. [PMID: 35228313 PMCID: PMC8970338 DOI: 10.1523/eneuro.0337-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
We assessed similarities and differences in the electrographic signatures of local field potentials (LFPs) evoked by different pharmacological agents in zebrafish larvae. We then compared and contrasted these characteristics with what is known from electrophysiological studies of seizures and epilepsy in mammals, including humans. Ultimately, our aim was to phenotype neurophysiological features of drug-induced seizures in larval zebrafish for expanding knowledge on the translational potential of this valuable alternative to mammalian models. LFPs were recorded from the midbrain of 4-d-old zebrafish larvae exposed to a pharmacologically diverse panel of seizurogenic compounds, and the outputs of these recordings were assessed using frequency domain analysis. This included analysis of changes occurring within various spectral frequency bands of relevance to mammalian CNS circuit pathophysiology. From these analyses, there were clear differences in the frequency spectra of drug-exposed LFPs, relative to controls, many of which shared notable similarities with the signatures exhibited by mammalian CNS circuits. These similarities included the presence of specific frequency components comparable to those observed in mammalian studies of seizures and epilepsy. Collectively, the data presented provide important information to support the value of larval zebrafish as an alternative model for the study of seizures and epilepsy. These data also provide further insight into the electrophysiological characteristics of seizures generated in nonmammalian species by the action of neuroactive drugs.
Collapse
|
14
|
de Vito G, Turrini L, Müllenbroich C, Ricci P, Sancataldo G, Mazzamuto G, Tiso N, Sacconi L, Fanelli D, Silvestri L, Vanzi F, Pavone FS. Fast whole-brain imaging of seizures in zebrafish larvae by two-photon light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1516-1536. [PMID: 35414999 PMCID: PMC8973167 DOI: 10.1364/boe.434146] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 05/27/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) enables real-time whole-brain functional imaging in zebrafish larvae. Conventional one-photon LSFM can however induce undesirable visual stimulation due to the use of visible excitation light. The use of two-photon (2P) excitation, employing near-infrared invisible light, provides unbiased investigation of neuronal circuit dynamics. However, due to the low efficiency of the 2P absorption process, the imaging speed of this technique is typically limited by the signal-to-noise-ratio. Here, we describe a 2P LSFM setup designed for non-invasive imaging that enables quintuplicating state-of-the-art volumetric acquisition rate of the larval zebrafish brain (5 Hz) while keeping low the laser intensity on the specimen. We applied our system to the study of pharmacologically-induced acute seizures, characterizing the spatial-temporal dynamics of pathological activity and describing for the first time the appearance of caudo-rostral ictal waves (CRIWs).
Collapse
Affiliation(s)
- Giuseppe de Vito
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health, Viale Pieraccini 6, Florence, Italy, 50139, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- Co-first authors with equal contribution
| | - Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
- Co-first authors with equal contribution
| | - Caroline Müllenbroich
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- School of Physics and Astronomy, Kelvin Building, University of Glasgow, G12 8QQ, Glasgow, UK
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Pietro Ricci
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Giuseppe Sancataldo
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
| | - Giacomo Mazzamuto
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Natascia Tiso
- University of Padova, Department of Biology, Via U. Bassi 58/B, Padova 35131, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Duccio Fanelli
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino 50019, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| |
Collapse
|
15
|
Takesono A, Kudoh T, Tyler CR. Application of Transgenic Zebrafish Models for Studying the Effects of Estrogenic Endocrine Disrupting Chemicals on Embryonic Brain Development. Front Pharmacol 2022; 13:718072. [PMID: 35264948 PMCID: PMC8900011 DOI: 10.3389/fphar.2022.718072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are environmental pollutants that mimic hormones and/or disrupt their function. Estrogenic EDCs (eEDCs) interfere with endogenous estrogen signalling pathway(s) and laboratory animal and human epidemiological studies have provided evidence for a causal link between exposure to them during embryonic/early life and neurological impairments. However, our understanding of the molecular and cellular mechanism(s) underlying eEDCs exposure effects on brain development, tissue architecture and function and behaviour are limited. Transgenic (TG) zebrafish models offer new approach methodologies (NAMs) to help identify the modes of action (MoAs) of EDCs and their associated impacts on tissue development and function. Estrogen biosensor TG zebrafish models have been applied to study eEDC interactions and resulting transcriptional activation (via a fluorescent reporter expression) across the entire body of the developing zebrafish embryo, including in real time. These estrogen biosensor TG zebrafish models are starting to deepen our understanding of the spatiotemporal actions of eEDCs and their resulting impacts on neurological development, brain function and behaviour. In this review, we first investigate the links between early life exposure to eEDCs and neurodevelopmental alterations in model organisms (rodents and zebrafish) and humans. We then present examples of the application of estrogen biosensor and other TG zebrafish models for elucidating the mechanism(s) underlying neurodevelopmental toxicities of eEDCs. In particular we illustrate the utility of combining estrogen biosensor zebrafish models with other TG zebrafish models for understanding the effects of eEDCs on the brain, spanning cellular processes, brain circuitry, neurophysiology and behaviour. Finally, we discuss the future prospects of TG zebrafish models as experimental models for studying more complex scenarios for exposure to contaminant mixtures on neurological development and function.
Collapse
Affiliation(s)
- Aya Takesono
- *Correspondence: Aya Takesono, ; Charles R. Tyler,
| | | | | |
Collapse
|
16
|
Takesono A, Schirrmacher P, Scott A, Green JM, Lee O, Winter MJ, Kudoh T, Tyler CR. Estrogens regulate early embryonic development of the olfactory sensory system via estrogen-responsive glia. Development 2022; 149:dev199860. [PMID: 35023540 PMCID: PMC8881738 DOI: 10.1242/dev.199860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/02/2021] [Indexed: 01/16/2023]
Abstract
Estrogens are well-known to regulate development of sexual dimorphism of the brain; however, their role in embryonic brain development prior to sex-differentiation is unclear. Using estrogen biosensor zebrafish models, we found that estrogen activity in the embryonic brain occurs from early neurogenesis specifically in a type of glia in the olfactory bulb (OB), which we name estrogen-responsive olfactory bulb (EROB) cells. In response to estrogen, EROB cells overlay the outermost layer of the OB and interact tightly with olfactory sensory neurons at the olfactory glomeruli. Inhibiting estrogen activity using an estrogen receptor antagonist, ICI182,780 (ICI), and/or EROB cell ablation impedes olfactory glomerular development, including the topological organisation of olfactory glomeruli and inhibitory synaptogenesis in the OB. Furthermore, activation of estrogen signalling inhibits both intrinsic and olfaction-dependent neuronal activity in the OB, whereas ICI or EROB cell ablation results in the opposite effect on neuronal excitability. Altering the estrogen signalling disrupts olfaction-mediated behaviour in later larval stage. We propose that estrogens act on glia to regulate development of OB circuits, thereby modulating the local excitability in the OB and olfaction-mediated behaviour.
Collapse
Affiliation(s)
- Aya Takesono
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Paula Schirrmacher
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- Department of Biological and Marine Sciences, Faculty of Science and Engineering, University of Hull, Hull HU6 7RX, UK
| | - Aaron Scott
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Jon M Green
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Okhyun Lee
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| |
Collapse
|
17
|
Shcheglovitov A, Peterson RT. Screening Platforms for Genetic Epilepsies-Zebrafish, iPSC-Derived Neurons, and Organoids. Neurotherapeutics 2021; 18:1478-1489. [PMID: 34595731 PMCID: PMC8608971 DOI: 10.1007/s13311-021-01115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/04/2023] Open
Abstract
Recent advances in molecular and cellular engineering, such as human cell reprogramming, genome editing, and patient-specific organoids, have provided unprecedented opportunities for investigating human disorders in both animals and human-based models at an improved pace and precision. This progress will inevitably lead to the development of innovative drug-screening platforms and new patient-specific therapeutics. In this review, we discuss recent advances that have been made using zebrafish and human-induced pluripotent stem cell (iPSC)-derived neurons and organoids for modeling genetic epilepsies. We also provide our prospective on how these models can potentially be combined to build new screening platforms for antiseizure and antiepileptogenic drug discovery that harness the robustness and tractability of zebrafish models as well as the patient-specific genetics and biology of iPSC-derived neurons and organoids.
Collapse
|