1
|
Pocivavsek A, Schwarcz R, Erhardt S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol Rev 2024; 76:978-1008. [PMID: 39304346 PMCID: PMC11549936 DOI: 10.1124/pharmrev.124.000239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. SIGNIFICANCE STATEMENT: Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Robert Schwarcz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Sophie Erhardt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| |
Collapse
|
2
|
Samriti, Kaur A, Kaur A, Goel RK. Ameliorative effect of diclofenac in rotenone corneal kindling model of drug-resistant epilepsy: Edge of dual COX and KMO inhibition. Brain Res 2024; 1846:149246. [PMID: 39304107 DOI: 10.1016/j.brainres.2024.149246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Epilepsy affects millions of people worldwide, about one-third patients with epilepsy exhibits resistance to available antiseizures medications, known as drug-resistant epilepsy (DRE). Mitochondrial dysfunction has been implicated as a hallmark in drug-resistant epilepsy via activation of microglial kynurenine 3-monooxygenase (KMO) and cyclooxygenase (COX) enzymes, leading to neuroinflammation and oxidative stress. Diclofenac, an equipotent non selective cyclooxygenase inhibitor, has inhibitory action on KMO enzyme and has also shown anti-inflammatory and antioxidant properties in animal models of epilepsy. These properties make it a suitable candidate for amelioration of DRE. However, its potential in drug-resistant epilepsy remained unexplored till date. In this study, dose dependent effect of diclofenac (5 mg/kg, 10 mg/kg, 20 mg/kg) has been explored in rotenone corneal kindling model of mitochondrial DRE. The results of our study revealed the induction of drug resistance to antiseizure medications and induced kynurenine 3-monooxygenase activity in rotenone corneal kindled epileptic mice in comparison to naive mice. Treatment of rotenone corneal kindled epileptic mice with diclofenac resulted in a significant decrease in drug resistance to antiseizure medications as evident by a reduction in seizure score in the treatment groups as compared to control group, in post-treatment resistance validation. The kynurenine 3-monooxygenase inhibitory activity (as evidenced by decreased levels of neurotoxic quinolinic acid) and the antioxidant effect (as evident by significantly reduced oxidative stress) in the diclofenac treated groups, emerged as a major contributor for its ameliorative action. Findings of this study suggests, diclofenac can be used as an adjunct therapy in amelioration of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Samriti
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, 147002 India.
| | - Arvinder Kaur
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, 147002 India.
| | - Arshbir Kaur
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, 147002 India.
| | - R K Goel
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, 147002 India.
| |
Collapse
|
3
|
Wan L, Shi X, Yan H, Liang Y, Liu X, Zhu G, Zhang J, Wang J, Wang M, Yang G. Abnormalities in Clostridioides and related metabolites before ACTH treatment may be associated with its efficacy in patients with infantile epileptic spasm syndrome. CNS Neurosci Ther 2024; 30:e14398. [PMID: 37553527 PMCID: PMC10805391 DOI: 10.1111/cns.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE Adrenocorticotropic hormone (ACTH) is the first-line treatment of infantile epileptic spasm syndrome (IESS). Its reported effectiveness varies, and our current understanding regarding the role of gut microbiota composition in IESS treatment response is limited. This study assessed the microbiome-metabolome association to understand the role and mechanism of gut microbiota composition in IESS treatment outcomes. METHODS Children with IESS undergoing ACTH treatment were enrolled. Pre-treatment stool and serum samples were collected for 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry, respectively. The children were divided into "responsive" and "non-responsive" groups, and gut microbiota and serum metabolome differences were analyzed. RESULTS Of the 30 patients with IESS, 14 responded to ACTH and 16 did not. The "non-responsive" group had larger maleficent Clostridioides and Peptoclostridium_phage_p630P populations (linear discriminant analysis >2; false discovery rate q < 0.05). Ten metabolites were upregulated (e.g., xanthurenic acid) and 15 were downregulated (e.g., vanillylmandelic acid) (p < 0.05). Association analysis of the gut microbiome and serum metabolome revealed that Clostridioides and Peptoclostridium_phage_p630P2 were positively correlated with linoleic and xanthurenic acids, while Clostridioides was negatively correlated with vanillylmandelic acid (p < 0.05). A classifier using differential gut bacteria and metabolites achieved an area under the receiver operating characteristic curve of 0.906 to distinguish responders from non-responders. CONCLUSION This study found significant differences in pre-treatment gut microbiota and serum metabolome between children with IESS who responded to ACTH and those who did not. Additional exploration may provide valuable information for treatment selection and potential interventions. Our results suggest that varying ACTH responses in patients with IESS may be associated with increased gut Clostridioides bacteria and kynurenine pathway alteration, but additional experiments are needed to verify this association.
Collapse
Affiliation(s)
- Lin Wan
- Senior Department of PediatricsThe Seventh Medical Center of PLA General HospitalBeijingChina
- Department of PediatricsThe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Xiuyu Shi
- Senior Department of PediatricsThe Seventh Medical Center of PLA General HospitalBeijingChina
- Department of PediatricsThe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Huimin Yan
- Senior Department of PediatricsThe Seventh Medical Center of PLA General HospitalBeijingChina
- Department of PediatricsThe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Yan Liang
- Senior Department of PediatricsThe Seventh Medical Center of PLA General HospitalBeijingChina
- Department of PediatricsThe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Xinting Liu
- Senior Department of PediatricsThe Seventh Medical Center of PLA General HospitalBeijingChina
- Department of PediatricsThe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Gang Zhu
- Senior Department of PediatricsThe Seventh Medical Center of PLA General HospitalBeijingChina
- Department of PediatricsThe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Jing Zhang
- Senior Department of PediatricsThe Seventh Medical Center of PLA General HospitalBeijingChina
- Department of PediatricsThe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Jing Wang
- Senior Department of PediatricsThe Seventh Medical Center of PLA General HospitalBeijingChina
- Department of PediatricsThe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen UniversityShenzhenChina
- Shanghai Key Laboratory of Birth Defects, Division of NeonatologyChildren's Hospital of Fudan University, National Center for Children's HealthShanghaiChina
- Marshall Laboratory of Biomedical EngineeringMedical School, Shenzhen UniversityShenzhenChina
| | - Guang Yang
- Senior Department of PediatricsThe Seventh Medical Center of PLA General HospitalBeijingChina
- Department of PediatricsThe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Zhou Z, Li K, Guo Y, Liu P, Chen Q, Fan H, Sun T, Jiang C. ROS/Electro Dual-Reactive Nanogel for Targeting Epileptic Foci to Remodel Aberrant Circuits and Inflammatory Microenvironment. ACS NANO 2023; 17:7847-7864. [PMID: 37039779 DOI: 10.1021/acsnano.3c01140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Medicinal treatment against epilepsy is faced with intractable problems, especially epileptogenesis that cannot be blocked by clinical antiepileptic drugs (AEDs) during the latency of epilepsy. Abnormal circuits of neurons interact with the inflammatory microenvironment of glial cells in epileptic foci, resulting in recurrent seizures and refractory epilepsy. Herein, we have selected phenytoin (PHT) as a model drug to derive a ROS-responsive and consuming prodrug, which is combined with an electro-responsive group (sulfonate sodium, SS) and an epileptic focus-recognizing group (α-methyl-l-tryptophan, AMT) to form hydrogel nanoparticles (i.e., a nanogel). The nanogel will target epileptic foci, release PHT in response to a high concentration of reactive oxygen species (ROS) in the microenvironment, and inhibit overexcited circuits. Meanwhile, with the clearance of ROS, the nanogel can also reduce oxidative stress and alleviate microenvironment inflammation. Thus, a synergistic regulation of epileptic lesions will be achieved. Our nanogel is expected to provide a more comprehensive strategy for antiepileptic treatment.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Keying Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Yun Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Peixin Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Hongrui Fan
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| |
Collapse
|
5
|
Peng Y, Chiu ATG, Li VWY, Zhang X, Yeung WL, Chan SHS, Tun HM. The role of the gut-microbiome-brain axis in metabolic remodeling amongst children with cerebral palsy and epilepsy. Front Neurol 2023; 14:1109469. [PMID: 36923492 PMCID: PMC10009533 DOI: 10.3389/fneur.2023.1109469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
Background Epilepsy-associated dysbiosis in gut microbiota has been previously described, but the mechanistic roles of the gut microbiome in epileptogenesis among children with cerebral palsy (CP) have yet to be illustrated. Methods Using shotgun metagenomic sequencing coupled with untargeted metabolomics analysis, this observational study compared the gut microbiome and metabolome of eight children with non-epileptic cerebral palsy (NECP) to those of 13 children with cerebral palsy with epilepsy (CPE). Among children with CPE, 8 had drug-sensitive epilepsy (DSE) and five had drug-resistant epilepsy (DRE). Characteristics at enrollment, medication history, and 7-day dietary intake were compared between groups. Results At the species level, CPE subjects had significantly lower abundances of Bacteroides fragilis and Dialister invisus but higher abundances of Phascolarctobacterium faecium and Eubacterium limosum. By contrast, DRE subjects had a significantly higher colonization of Veillonella parvula. Regarding microbial functional pathways, CPE subjects had decreased abundances of pathways for serine degradation, quinolinic acid degradation, glutamate degradation I, glycerol degradation, sulfate reduction, and nitrate reduction but increased abundances of pathways related to ethanol production. As for metabolites, CPE subjects had higher concentrations of kynurenic acid, 2-oxindole, dopamine, 2-hydroxyphenyalanine, 3,4-dihydroxyphenylglycol, L-tartaric acid, and D-saccharic acid; DRE subjects had increased concentrations of indole and homovanilic acid. Conclusions In this study, we found evidence of gut dysbiosis amongst children with cerebral palsy and epilepsy in terms of gut microbiota species, functional pathways, and metabolites. The combined metagenomic and metabolomic analyses have shed insights on the potential roles of B. fragilis and D. invisus in neuroprotection. The combined analyses have also provided evidence for the involvement of GMBA in the epilepsy-related dysbiosis of kynurenine, serotonin, and dopamine pathways and their complex interplay with neuroimmune and neuroendocrinological pathways.
Collapse
Affiliation(s)
- Ye Peng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Annie T G Chiu
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon City, Hong Kong SAR, China
| | - Vivien W Y Li
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital and Duchess of Kent Children's Hospital, Pokfulam, Hong Kong SAR, China
| | - Xi Zhang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai L Yeung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon City, Hong Kong SAR, China
| | - Sophelia H S Chan
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon City, Hong Kong SAR, China.,Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital and Duchess of Kent Children's Hospital, Pokfulam, Hong Kong SAR, China.,Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hein M Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
6
|
Novel variants in GABA A receptor subunits: A possible association with benzodiazepine resistance in patients with drug-resistant epilepsy. Epilepsy Res 2023; 189:107056. [PMID: 36469977 DOI: 10.1016/j.eplepsyres.2022.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/12/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Benzodiazepines (BDZ) such as diazepam and lorazepam are popular as first-line treatment for acute seizures due to their rapid action and high efficacy. However, long-term usage of BDZ leads to benzodiazepine resistance, a phenomenon whose underlying mechanisms are still being investigated. One of the hypothesised mechanisms contributing to BDZ resistance is the presence of mutations in benzodiazepine-sensitive receptors. While a few genetic variants have been reported previously, knowledge of relevant pathogenic variants is still scarce. We used Sanger Sequencing to detect variants in the ligand-binding domain of BDZ-sensitive GABAA receptor subunits α1-3 and 5 expressed in resected brain tissues of drug-resistant epilepsy (DRE) patients with a history of BDZ resistance and found two previously unreported predicted pathogenic frameshifting variants - NM_000807.4(GABRA2):c.367_368insG and NM_000810.4(GABRA5):c.410del - significantly enriched in these patients. The findings were further explored in resected DRE brain tissues through cellular electrophysiological experiments.
Collapse
|
7
|
Differential Levels of Tryptophan-Kynurenine Pathway Metabolites in the Hippocampus, Anterior Temporal Lobe, and Neocortex in an Animal Model of Temporal Lobe Epilepsy. Cells 2022; 11:cells11223560. [PMID: 36428989 PMCID: PMC9688794 DOI: 10.3390/cells11223560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Glutamate-receptor-mediated hyperexcitability contributes to seizure generation in temporal lobe epilepsy (TLE). Tryptophan-kynurenine pathway (TKP) metabolites regulate glutamate receptor activity under physiological conditions. This study was designed to investigate alterations in the levels of TKP metabolites and the differential regulation of glutamatergic activity by TKP metabolites in the hippocampus, anterior temporal lobe (ATL), and neocortex samples of a lithium-pilocarpine rat model of TLE. We observed that levels of tryptophan were reduced in the hippocampus and ATL samples but unaltered in the neocortex samples. The levels of kynurenic acid were reduced in the hippocampus samples and unaltered in the ATL and neocortex samples of the TLE rats. The levels of kynurenine were unaltered in all three regions of the TLE rats. The magnitude of reduction in these metabolites in all regions was unaltered in the TLE rats. The frequency and amplitude of spontaneous excitatory postsynaptic currents were enhanced in hippocampus ATL samples but not in the neocortex samples of the TLE rats. The exogenous application of kynurenic acid inhibited glutamatergic activity in the slice preparations of all these regions in both the control and the TLE rats. However, the magnitude of reduction in the frequency of kynurenic acid was higher in the hippocampus (18.44 ± 2.6% in control vs. 30.02 ± 1.5 in TLE rats) and ATL (16.31 ± 0.91% in control vs. 29.82 ± 3.08% in TLE rats) samples of the TLE rats. These findings suggest the differential regulation of glutamatergic activity by TKP metabolites in the hippocampus, ATL, and neocortex of TLE rats.
Collapse
|
8
|
Yan J, Kothur K, Innes EA, Han VX, Jones HF, Patel S, Tsang E, Webster R, Gupta S, Troedson C, Menezes MP, Antony J, Ardern-Holmes S, Tantsis E, Mohammad S, Wienholt L, Pires AS, Heng B, Guillemin GJ, Guller A, Gill D, Bandodkar S, Dale RC. Decreased cerebrospinal fluid kynurenic acid in epileptic spasms: A biomarker of response to corticosteroids. EBioMedicine 2022; 84:104280. [PMID: 36174397 PMCID: PMC9515432 DOI: 10.1016/j.ebiom.2022.104280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Epileptic (previously infantile) spasms is the most common epileptic encephalopathy occurring during infancy and is frequently associated with abnormal neurodevelopmental outcomes. Epileptic spasms have a diverse range of known (genetic, structural) and unknown aetiologies. High dose corticosteroid treatment for 4 weeks often induces remission of spasms, although the mechanism of action of corticosteroid is unclear. Animal models of epileptic spasms have shown decreased brain kynurenic acid, which is increased after treatment with the ketogenic diet. We quantified kynurenine pathway metabolites in the cerebrospinal fluid (CSF) of infants with epileptic spasms and explored clinical correlations. Methods A panel of nine metabolites in the kynurenine pathway (tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, xanthurenic acid, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid, and picolinic acid) were measured using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). CSF collected from paediatric patients less than 3 years of age with epileptic spasms (n=34, 19 males, mean age 0.85, median 0.6, range 0.3–3 yrs) were compared with other epilepsy syndromes (n=26, 9 males, mean age 1.44, median 1.45, range 0.3–3 yrs), other non-inflammatory neurological diseases (OND) (n=29, 18 males, mean age 1.47, median 1.6, range 0.1–2.9 yrs) and inflammatory neurological controls (n=12, 4 males, mean age 1.80, median 1.80, range 0.8–2.5 yrs). Findings There was a statistically significant decrease of CSF kynurenic acid in patients with epileptic spasms compared to OND (p<0.0001). In addition, the kynurenic acid/kynurenine (KYNA/KYN) ratio was lower in the epileptic spasms subgroup compared to OND (p<0.0001). Epileptic spasms patients who were steroid responders or partial steroid responders had lower KYNA/KYN ratio compared to patients who were refractory to steroids (p<0.005, p<0.05 respectively). Interpretation This study demonstrates decreased CSF kynurenic acid and KYNA/KYN in epileptic spasms, which may also represent a biomarker for steroid responsiveness. Given the anti-inflammatory and neuroprotective properties of kynurenic acid, further therapeutics able to increase kynurenic acid should be explored. Funding Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead. Prof Guillemin is funded by NHMRC Investigator grant APP1176660 and Macquarie University.
Collapse
Affiliation(s)
- Jingya Yan
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Kavitha Kothur
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Emily A Innes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Velda X Han
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Hannah F Jones
- Starship Hospital, Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Erica Tsang
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Richard Webster
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Christopher Troedson
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Manoj P Menezes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Jayne Antony
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Simone Ardern-Holmes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Esther Tantsis
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Louise Wienholt
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ananda S Pires
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Anna Guller
- Computational NeuroSurgery Lab, Macquarie University, Sydney, NSW, Australia
| | - Deepak Gill
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Sushil Bandodkar
- Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| |
Collapse
|
9
|
Sathyasaikumar KV, Pérez de la Cruz V, Pineda B, Vázquez Cervantes GI, Ramírez Ortega D, Donley DW, Severson PL, West BL, Giorgini F, Fox JH, Schwarcz R. Cellular Localization of Kynurenine 3-Monooxygenase in the Brain: Challenging the Dogma. Antioxidants (Basel) 2022; 11:315. [PMID: 35204197 PMCID: PMC8868204 DOI: 10.3390/antiox11020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Kynurenine 3-monooxygenase (KMO), a key player in the kynurenine pathway (KP) of tryptophan degradation, regulates the synthesis of the neuroactive metabolites 3-hydroxykynurenine (3-HK) and kynurenic acid (KYNA). KMO activity has been implicated in several major brain diseases including Huntington's disease (HD) and schizophrenia. In the brain, KMO is widely believed to be predominantly localized in microglial cells, but verification in vivo has not been provided so far. Here, we examined KP metabolism in the brain after depleting microglial cells pharmacologically with the colony stimulating factor 1 receptor inhibitor PLX5622. Young adult mice were fed PLX5622 for 21 days and were euthanized either on the next day or after receiving normal chow for an additional 21 days. Expression of microglial marker genes was dramatically reduced on day 22 but had fully recovered by day 43. In both groups, PLX5622 treatment failed to affect Kmo expression, KMO activity or tissue levels of 3-HK and KYNA in the brain. In a parallel experiment, PLX5622 treatment also did not reduce KMO activity, 3-HK and KYNA in the brain of R6/2 mice (a model of HD with activated microglia). Finally, using freshly isolated mouse cells ex vivo, we found KMO only in microglia and neurons but not in astrocytes. Taken together, these data unexpectedly revealed that neurons contain a large proportion of functional KMO in the adult mouse brain under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Korrapati V. Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (V.P.d.l.C.); (G.I.V.C.); (D.R.O.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (V.P.d.l.C.); (G.I.V.C.); (D.R.O.)
| | - Daniela Ramírez Ortega
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (V.P.d.l.C.); (G.I.V.C.); (D.R.O.)
| | - David W. Donley
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82071, USA; (D.W.D.); (J.H.F.)
| | - Paul L. Severson
- Plexxikon Inc., South San Francisco, CA 94080, USA; (P.L.S.); (B.L.W.)
| | - Brian L. West
- Plexxikon Inc., South San Francisco, CA 94080, USA; (P.L.S.); (B.L.W.)
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7JA, UK;
| | - Jonathan H. Fox
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82071, USA; (D.W.D.); (J.H.F.)
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA;
| |
Collapse
|
10
|
Dubey V, Dey S, Dixit AB, Tripathi M, Chandra PS, Banerjee J. Differential glutamate receptor expression and function in the hippocampus, anterior temporal lobe and neocortex in a pilocarpine model of temporal lobe epilepsy. Exp Neurol 2021; 347:113916. [PMID: 34752784 DOI: 10.1016/j.expneurol.2021.113916] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of intractable epilepsy where hyperactive glutamate receptors may contribute to the complex epileptogenic network hubs distributed among different regions. This study was designed to investigate the region-specific molecular alterations of the glutamate receptors and associated excitatory synaptic transmission in pilocarpine rat model of TLE. We recorded spontaneous excitatory postsynaptic currents (EPSCs) from pyramidal neurons in resected rat brain slices of the hippocampus, anterior temporal lobe (ATL) and neocortex. We also performed mRNA and protein expression of the glutamate receptor subunits (NR1, NR2A, NR2B, and GLUR1-4) by qPCR and immunohistochemistry. We observed significant increase in the frequency and amplitude of spontaneous EPSCs in the hippocampal and ATL samples of TLE rats than in control rats. Additionally, the magnitude of the frequency and amplitude was increased in ATL samples compared to that of the hippocampal samples of TLE rats. The mRNA level of NR1 was upregulated in both the hippocampal as well as ATL samples and that of NR2A, NR2B were upregulated only in the hippocampal samples of TLE rats than in control rats. The mRNA level of GLUR4 was upregulated in both the hippocampal as well as ATL samples of TLE rats than in control rats. Immunohistochemical analysis demonstrated that the number of NR1, NR2A, NR2B, and GLUR4 immuno-positive cells were significantly higher in the hippocampal samples whereas number of NR1 and GLUR4 immuno-positive cells were significantly higher in the ATL samples of the TLE rats than in control rats. This study demonstrated the region-specific alterations of glutamate receptor subunits in pilocarpine model of TLE, suggesting possible cellular mechanisms contributing to generation of independent epileptogenic networks in different temporal lobe structures.
Collapse
Affiliation(s)
- Vivek Dubey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Soumil Dey
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|