1
|
Jung YH, Chae CW, Han HJ. The potential role of gut microbiota-derived metabolites as regulators of metabolic syndrome-associated mitochondrial and endolysosomal dysfunction in Alzheimer's disease. Exp Mol Med 2024; 56:1691-1702. [PMID: 39085351 PMCID: PMC11372123 DOI: 10.1038/s12276-024-01282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 08/02/2024] Open
Abstract
Although the role of gut microbiota (GMB)-derived metabolites in mitochondrial and endolysosomal dysfunction in Alzheimer's disease (AD) under metabolic syndrome remains unclear, deciphering these host-metabolite interactions represents a major public health challenge. Dysfunction of mitochondria and endolysosomal networks (ELNs) plays a crucial role in metabolic syndrome and can exacerbate AD progression, highlighting the need to study their reciprocal regulation for a better understanding of how AD is linked to metabolic syndrome. Concurrently, metabolic disorders are associated with alterations in the composition of the GMB. Recent evidence suggests that changes in the composition of the GMB and its metabolites may be involved in AD pathology. This review highlights the mechanisms of metabolic syndrome-mediated AD development, focusing on the interconnected roles of mitochondrial dysfunction, ELN abnormalities, and changes in the GMB and its metabolites. We also discuss the pathophysiological role of GMB-derived metabolites, including amino acids, fatty acids, other metabolites, and extracellular vesicles, in mediating their effects on mitochondrial and ELN dysfunction. Finally, this review proposes therapeutic strategies for AD by directly modulating mitochondrial and ELN functions through targeting GMB metabolites under metabolic syndrome.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Cho JH, Chae CW, Lim JR, Jung YH, Han SJ, Yoon JH, Park JY, Han HJ. Sodium butyrate ameliorates high glucose-suppressed neuronal mitophagy by restoring PRKN expression via inhibiting the RELA-HDAC8 complex. Autophagy 2024; 20:1505-1522. [PMID: 38409852 PMCID: PMC11210903 DOI: 10.1080/15548627.2024.2323785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Damaged mitochondria accumulation in diabetes is one of the main features that contribute to increased incidence of cognitive impairment by inducing apoptosis. Butyrate is a major metabolite produced by microbiota that has neuroprotective effects by regulating mitochondrial function. However, detailed mechanisms underlying how butyrate can regulate neuronal mitophagy remain unclear. Here, we examined the regulatory effects of sodium butyrate (NaB) on high glucose-induced mitophagy dysregulation, neuronal apoptosis, and cognitive impairment and its underlying mechanisms in human-induced pluripotent stem cell-derived neurons, SH-SY5Ys, and streptozotocin (STZ)-induced diabetic mice. In our results, diabetic mice showed gut-microbiota dysbiosis, especially a decreased number of butyrate-producing bacteria and reduced NaB plasma concentration. NaB ameliorated high glucose-induced neuronal mitochondrial dysfunction by recovering PRKN/Parkin-mediated mitophagy. High glucose-induced reactive oxygen species (ROS) and -inhibited PRKAA/AMPKα stimulated the RELA/p65-HDAC8 complex, which downregulated PRKN protein expression by binding to the PRKN promoter region. NaB restored PRKN expression by blocking RELA nuclear translocation and directly inhibiting HDAC8 in the nucleus. In addition, HDAC8 overexpression inhibited the positive effect of NaB on high glucose-induced mitophagy dysfunction and neuronal apoptosis. Oral administration of NaB improved cognitive impairment in diabetic mice by restoring mitophagy in the hippocampus. Taken together, NaB ameliorates neuronal mitophagy through PRKN restoration by inhibiting RELA-HDAC8 complexes, suggesting that NaB is an important substance for protecting neuronal apoptosis in diabetes-associated cognitive impairment.
Collapse
Affiliation(s)
- Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Su Jong Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
3
|
Wilson KA, Bar S, Dammer EB, Carrera EM, Hodge BA, Hilsabeck TAU, Bons J, Brownridge GW, Beck JN, Rose J, Granath-Panelo M, Nelson CS, Qi G, Gerencser AA, Lan J, Afenjar A, Chawla G, Brem RB, Campeau PM, Bellen HJ, Schilling B, Seyfried NT, Ellerby LM, Kapahi P. OXR1 maintains the retromer to delay brain aging under dietary restriction. Nat Commun 2024; 15:467. [PMID: 38212606 PMCID: PMC10784588 DOI: 10.1038/s41467-023-44343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Dietary restriction (DR) delays aging, but the mechanism remains unclear. We identified polymorphisms in mtd, the fly homolog of OXR1, which influenced lifespan and mtd expression in response to DR. Knockdown in adulthood inhibited DR-mediated lifespan extension in female flies. We found that mtd/OXR1 expression declines with age and it interacts with the retromer, which regulates trafficking of proteins and lipids. Loss of mtd/OXR1 destabilized the retromer, causing improper protein trafficking and endolysosomal defects. Overexpression of retromer genes or pharmacological restabilization with R55 rescued lifespan and neurodegeneration in mtd-deficient flies and endolysosomal defects in fibroblasts from patients with lethal loss-of-function of OXR1 variants. Multi-omic analyses in flies and humans showed that decreased Mtd/OXR1 is associated with aging and neurological diseases. mtd/OXR1 overexpression rescued age-related visual decline and tauopathy in a fly model. Hence, OXR1 plays a conserved role in preserving retromer function and is critical for neuronal health and longevity.
Collapse
Affiliation(s)
- Kenneth A Wilson
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sudipta Bar
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Brian A Hodge
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Tyler A U Hilsabeck
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Jennifer N Beck
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Jacob Rose
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | | | - Grace Qi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Jianfeng Lan
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Guanxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Afilliated Hospital of Guilin Medican University, Guilin, 541001, Guanxi, China
| | - Alexandra Afenjar
- Assistance Publique des Hôpitaux de Paris, Unité de Génétique Clinique, Hôpital Armand Trousseau, Groupe Hospitalier Universitaire, Paris, 75012, France
- Département de Génétique et Embryologie Médicale, CRMR des Malformations et Maladies Congénitales du Cervelet, GRC ConCer-LD, Sorbonne Universités, Hôpital Trousseau, Paris, 75012, France
| | - Geetanjali Chawla
- RNA Biology Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institute of Eminence, NH91, Tehsil Dadri, G. B. Nagar, 201314, Uttar Pradesh, India
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Saint-Justine Research Center, CHU Sainte-Justine, Montreal, QC, H3T 1J4, Canada
| | - Hugo J Bellen
- Departments of Molecular and Human Genetics and Neuroscience, Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Chae CW, Jung YH, Han HJ. Transcription Factor EB-Mediated Lysosomal Function Regulation for Determining Stem Cell Fate under Metabolic Stress. Mol Cells 2023; 46:727-735. [PMID: 38052487 PMCID: PMC10701302 DOI: 10.14348/molcells.2023.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
Stem cells require high amounts of energy to replicate their genome and organelles and differentiate into numerous cell types. Therefore, metabolic stress has a major impact on stem cell fate determination, including self-renewal, quiescence, and differentiation. Lysosomes are catabolic organelles that influence stem cell function and fate by regulating the degradation of intracellular components and maintaining cellular homeostasis in response to metabolic stress. Lysosomal functions altered by metabolic stress are tightly regulated by the transcription factor EB (TFEB) and TFE3, critical regulators of lysosomal gene expression. Therefore, understanding the regulatory mechanism of TFEB-mediated lysosomal function may provide some insight into stem cell fate determination under metabolic stress. In this review, we summarize the molecular mechanism of TFEB/TFE3 in modulating stem cell lysosomal function and then elucidate the role of TFEB/TFE3-mediated transcriptional activity in the determination of stem cell fate under metabolic stress.
Collapse
Affiliation(s)
- Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Korea
- These authors contributed equally to this work
| | - Young Hyun Jung
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- These authors contributed equally to this work
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Lee HJ, Chae CW, Han HJ. Enhancing the therapeutic efficacy of mesenchymal stem cell transplantation in diabetes: Amelioration of mitochondrial dysfunction-induced senescence. Biomed Pharmacother 2023; 168:115759. [PMID: 37865993 DOI: 10.1016/j.biopha.2023.115759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Mesenchymal stem cell (MSC) transplantation offers significant potential for the treatment of diabetes mellitus (DM) and its complications. However, hyperglycemic conditions can induce senescence and dysfunction in both transplanted and resident MSCs, thereby limiting their therapeutic potential. Mitochondrial dysfunction and oxidative stress are key contributors to this process in MSCs exposed to hyperglycemia. As such, strategies aimed at mitigating mitochondrial dysfunction could enhance the therapeutic efficacy of MSC transplantation in DM. In this review, we provide an updated overview of how mitochondrial dysfunction mediates MSC senescence. We present experimental evidence for the molecular mechanisms behind high glucose-induced mitochondrial dysfunction in MSCs, which include impairment of mitochondrial biogenesis, mitochondrial calcium regulation, the mitochondrial antioxidant system, mitochondrial fusion-fission dynamics, mitophagy, and intercellular mitochondrial transfer. Furthermore, we propose potential pharmacological candidates that could improve the efficacy of MSC transplantation by enhancing mitochondrial function in patients with DM and related complications.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of South Korea; Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Republic of South Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Chae CW, Yoon JH, Lim JR, Park JY, Cho JH, Jung YH, Choi GE, Lee HJ, Han HJ. TRIM16-mediated lysophagy suppresses high-glucose-accumulated neuronal Aβ. Autophagy 2023; 19:2752-2768. [PMID: 37357416 PMCID: PMC10472864 DOI: 10.1080/15548627.2023.2229659] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023] Open
Abstract
ABBREVIATIONS Aβ: amyloid β; AD: Alzheimer disease; AMPK: 5' adenosine monophosphate-activated protein kinase; CTSB: cathepsin B; CTSD: cathepsin D; DM: diabetes mellitus; ESCRT: endosomal sorting complex required for transport; FBXO27: F-box protein 27; iPSC-NDs: induced pluripotent stem cell-derived neuronal differentiated cells; LAMP1: lysosomal-associated membrane protein 1; LMP: lysosomal membrane permeabilization; LRSAM1: leucine rich repeat and sterile alpha motif containing 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; p-MAPT/tau: phosphorylated microtubule associated protein tau; ROS: reactive oxygen species; STZ: streptozotocin; TFE3: transcription factor E3; TFEB: transcription factor EB; TRIM16: tripartite motif containing 16; UBE2QL1: ubiquitin conjugating enzyme E2 Q family like 1; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, South Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, South Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Qu M, Zuo L, Zhang M, Cheng P, Guo Z, Yang J, Li C, Wu J. High glucose induces tau hyperphosphorylation in hippocampal neurons via inhibition of ALKBH5-mediated Dgkh m 6A demethylation: a potential mechanism for diabetic cognitive dysfunction. Cell Death Dis 2023; 14:385. [PMID: 37385994 PMCID: PMC10310746 DOI: 10.1038/s41419-023-05909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Tau hyperphosphorylation in hippocampal neurons has an important pathogenetic role in the development of diabetic cognitive dysfunction. N6-methyladenosine (m6A) methylation is the most common modification of eukaryotic mRNA and is involved in regulating diverse biological processes. However, the role of m6A alteration in tau hyperphosphorylation of hippocampus neurons has not been reported. We found lower ALKBH5 expression in the hippocampus of diabetic rats and in HN-h cells with high-glucose intervention, accompanied by tau hyperphosphorylation. ALKBH5 overexpression significantly reversed tau hyperphosphorylation in high-glucose-stimulated HN-h cells. Furthermore, we found and confirmed by m6A-mRNA epitope transcriptome microarray and transcriptome RNA sequencing coupled with methylated RNA immunoprecipitation that ALKBH5 regulates the m6A modification of Dgkh mRNA. High glucose inhibited the demethylation modification of Dgkh by ALKBH5, resulting in decreases in Dgkh mRNA and protein levels. Overexpression of Dgkh reversed tau hyperphosphorylation in HN-h cells after high-glucose stimulation. Overexpression of Dgkh by adenovirus suspension injection into the bilateral hippocampus of diabetic rats significantly ameliorated tau hyperphosphorylation and diabetic cognitive dysfunction. In addition, ALKBH5 targeted Dgkh to activate PKC-α, leading to tau hyperphosphorylation under high-glucose conditions. The results of this study reveal that high glucose suppresses the demethylation modification of Dgkh by ALKBH5, which downregulates Dgkh and leads to tau hyperphosphorylation through activation of PKC-α in hippocampal neurons. These findings may indicate a new mechanism and a novel therapeutic target for diabetic cognitive dysfunction.
Collapse
Affiliation(s)
- Minli Qu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linhui Zuo
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengru Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Cheng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhanjun Guo
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junya Yang
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Changjun Li
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Huang J, Gan J, Wang J, Zheng M, Xiao H. VPS72, a member of VPS protein family, can be used as a new prognostic marker for hepatocellular carcinoma. Immun Inflamm Dis 2023; 11:e856. [PMID: 37249275 PMCID: PMC10201960 DOI: 10.1002/iid3.856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Vacuolar protein sorting (VPS) plays a crucial role in intracellular molecular transport between organelles. However, studies have indicated a correlation between VPSs and tumorigenesis and the development of several cancers. Nevertheless, the association between VPSs and hepatocellular carcinoma (HCC) remains unclear. METHODS By analyzing databases such as The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC), we investigated the differences in VPSs expression between normal tissue and HCC transcriptomes. Furthermore, we examined the relationship between VPSs expression and overall survival (OS) in patients with HCC. Univariate and multivariate Cox analyses were employed to assess the prognostic value of VPS72 as an independent factor, and the correlation between VPS72 and the tumor immune microenvironment was also analyzed. RESULTS We observed significant overexpression of 28 VPSs in HCC tissues compared to normal tissues. The mRNA expression of VPSs displayed a negative correlation with OS, while exhibiting a positive correlation with tumor grade and stage. Additionally, both univariate and multivariate Cox analyses identified VPS72 as a potential independent risk factor for HCC prognosis. Overexpression of VPS72 demonstrated a positive correlation with various clinicopathological factors associated with poor prognosis, as well as the infiltration levels of immune cells. CONCLUSION Therefore, our research shows that VPSs participate in HCC occurrence and development, especially VPS72, which may act as a potential target for HCC treatment and prognosis biomarker.
Collapse
Affiliation(s)
- Jian Huang
- Department of General surgeryJiujiang First People's HospitalJiujiangChina
| | - Jin Gan
- Department of General surgeryJiujiang First People's HospitalJiujiangChina
| | - Jian Wang
- Department of Hepato‐Biliary‐Pancreatic SurgeryPingxiang People's HospitalPingxiangChina
| | - Min Zheng
- Department of rehabilitationLushan People's HospitalJiujiangChina
| | - Han Xiao
- Department of General surgeryJiujiang First People's HospitalJiujiangChina
- Department of Hepato‐Biliary‐Pancreatic SurgeryJiujiang First People's HospitalJiujiangChina
| |
Collapse
|
9
|
Melatonin-mediated FKBP4 downregulation protects against stress-induced neuronal mitochondria dysfunctions by blocking nuclear translocation of GR. Cell Death Dis 2023; 14:146. [PMID: 36810730 PMCID: PMC9943853 DOI: 10.1038/s41419-023-05676-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
The physiological crosstalk between glucocorticoid and melatonin maintains neuronal homeostasis in regulating circadian rhythms. However, the stress-inducing level of glucocorticoid triggers mitochondrial dysfunction including defective mitophagy by increasing the activity of glucocorticoid receptors (GRs), leading to neuronal cell death. Melatonin then suppresses glucocorticoid-induced stress-responsive neurodegeneration; however, the regulatory mechanism of melatonin, i.e., associated proteins involved in GR activity, has not been elucidated. Therefore, we investigated how melatonin regulates chaperone proteins related to GR trafficking into the nucleus to suppress glucocorticoid action. In this study, the effects of glucocorticoid on suppressing NIX-mediated mitophagy, followed by mitochondrial dysfunction, neuronal cell apoptosis, and cognitive deficits were reversed by melatonin treatment by inhibiting the nuclear translocation of GRs in both SH-SY5Y cells and mouse hippocampal tissue. Moreover, melatonin selectively suppressed the expression of FKBP prolyl isomerase 4 (FKBP4), which is a co-chaperone protein that works with dynein, to reduce the nuclear translocation of GRs among the chaperone proteins and nuclear trafficking proteins. In both cells and hippocampal tissue, melatonin upregulated melatonin receptor 1 (MT1) bound to Gαq, which triggered the phosphorylation of ERK1. The activated ERK then enhanced DNA methyltransferase 1 (DNMT1)-mediated hypermethylation of FKBP52 promoter, reducing GR-mediated mitochondrial dysfunction and cell apoptosis, the effects of which were reversed by knocking down DNMT1. Taken together, melatonin has a protective effect against glucocorticoid-induced defective mitophagy and neurodegeneration by enhancing DNMT1-mediated FKBP4 downregulation that reduced the nuclear translocation of GRs.
Collapse
|
10
|
The Prognostic Value and the Oncogenic and Immunological Roles of Vacuolar Protein Sorting Associated Protein 26 A in Pancreatic Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24043486. [PMID: 36834898 PMCID: PMC9964486 DOI: 10.3390/ijms24043486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The identification of the prognostic markers and therapeutic targets might benefit the diagnosis and treatment of pancreatic adenocarcinoma (PAAD), one of the most aggressive malignancies. Vacuolar protein sorting associated protein 26 A (VPS26A) is a candidate prognosis gene for hepatocellular carcinoma, but its expression and function in PAAD remain unknown. The mRNA and protein expression of VPS26A in PAAD was explored and validated by bioinformatics and immunohistochemical analysis. The correlation between VPS26A expression and various clinical parameters, genetic status, diagnostic and prognostic value, survival and immune infiltration were evaluated, and the co-expressed gene-set enrichment analysis for VPS26A was performed. Cytologic and molecular experiments were further carried out to investigate the role and potential mechanism of VPS26A in PAAD. The mRNA and protein levels of VPS26A were elevated in PAAD tissues. High VPS26A expression was associated with the advanced histological type, tumor stage simplified, smoking status and tumor mutational burden score, and the poor prognosis of PAAD patients. VPS26A expression was significantly correlated with immune infiltration and immunotherapy response. VPS26A-co-expressed genes were mainly enriched in the regulation of cell adhesion and actin cytoskeleton and the immune-response-regulating signaling pathway. Our experiments further demonstrated that VPS26A promoted the proliferation, migration and invasion potentials of PAAD cell lines through activating the EGFR/ERK signaling. Our study suggested that VPS26A could be a potential biomarker and a therapeutic target for PAAD through comprehensive regulation of its growth, migration and immune microenvironment.
Collapse
|
11
|
Wang Y, Hu H, Liu X, Guo X. Hypoglycemic medicines in the treatment of Alzheimer's disease: Pathophysiological links between AD and glucose metabolism. Front Pharmacol 2023; 14:1138499. [PMID: 36909158 PMCID: PMC9995522 DOI: 10.3389/fphar.2023.1138499] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's Disease (AD) is a global chronic disease in adults with beta-amyloid (Aβ) deposits and hyperphosphorylated tau protein as the pathologic characteristics. Although the exact etiology of AD is still not fully elucidated, aberrant metabolism including insulin signaling and mitochondria dysfunction plays an important role in the development of AD. Binding to insulin receptor substrates, insulin can transport through the blood-brain barrier (BBB), thus mediating insulin signaling pathways to regulate physiological functions. Impaired insulin signaling pathways, including PI3K/Akt/GSK3β and MAPK pathways, could cause damage to the brain in the pathogenesis of AD. Mitochondrial dysfunction and overexpression of TXNIP could also be causative links between AD and DM. Some antidiabetic medicines may have benefits in the treatment of AD. Metformin can be beneficial for cognition improvement in AD patients, although results from clinical trials were inconsistent. Exendin-4 may affect AD in animal models but there is a lack of clinical trials. Liraglutide and dulaglutide could also benefit AD patients in adequate clinical studies but not semaglutide. Dipeptidyl peptidase IV inhibitors (DPP4is) such as saxagliptin, vildagliptin, linagliptin, and sitagliptin could boost cognitive function in animal models. And SGLT2 inhibitors such as empagliflozin and dapagliflozin were also considerably protective against new-onset dementia in T2DM patients. Insulin therapy is a promising therapy but some studies indicated that it may increase the risk of AD. Herbal medicines are helpful for cognitive function and neuroprotection in the brain. For example, polyphenols, alkaloids, glycosides, and flavonoids have protective benefits in cognition function and glucose metabolism. Focusing on glucose metabolism, we summarized the pharmacological mechanism of hypoglycemic drugs and herbal medicines. New treatment approaches including antidiabetic synthesized drugs and herbal medicines would be provided to patients with AD. More clinical trials are needed to produce definite evidence for the effectiveness of hypoglycemic medications.
Collapse
Affiliation(s)
- Yixuan Wang
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hao Hu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Liu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiangyu Guo
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Yoshida S, Hasegawa T. Beware of Misdelivery: Multifaceted Role of Retromer Transport in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:897688. [PMID: 35601613 PMCID: PMC9120357 DOI: 10.3389/fnagi.2022.897688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Retromer is a highly integrated multimeric protein complex that mediates retrograde cargo sorting from endosomal compartments. In concert with its accessory proteins, the retromer drives packaged cargoes to tubular and vesicular structures, thereby transferring them to the trans-Golgi network or to the plasma membrane. In addition to the endosomal trafficking, the retromer machinery participates in mitochondrial dynamics and autophagic processes and thus contributes to cellular homeostasis. The retromer components and their associated molecules are expressed in different types of cells including neurons and glial cells, and accumulating evidence from genetic and biochemical studies suggests that retromer dysfunction is profoundly involved in the pathogenesis of neurodegenerative diseases including Alzheimer’s Disease and Parkinson’s disease. Moreover, targeting retromer components could alleviate the neurodegenerative process, suggesting that the retromer complex may serve as a promising therapeutic target. In this review, we will provide the latest insight into the regulatory mechanisms of retromer and discuss how its dysfunction influences the pathological process leading to neurodegeneration.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Takafumi Hasegawa,
| |
Collapse
|