1
|
Luo X, Yang J, Zhao Y, Nagayasu T, Chen J, Hu P, He Z, Li Z, Wu J, Zhao Z, Duan G, Sun X, Zhao L, Pan Y, Wang X. Engineering spatially-confined conduits to tune nerve self-organization and allodynic responses via YAP-mediated mechanotransduction. Nat Commun 2025; 16:66. [PMID: 39746959 PMCID: PMC11695937 DOI: 10.1038/s41467-024-55118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Chronic allodynia stemming from peripheral stump neuromas can persist for extended periods, significantly compromising patients' quality of life. Conventional managements for nerve stumps have demonstrated limited effectiveness in ensuring their orderly termination. In this study, we present a spatially confined conduit strategy, designed to enhance the self-organization of regenerating nerves after truncation. This innovative approach elegantly enables the autonomous slowing of axonal outgrowth in response to the gradually constricting space, concurrently suppressing neuroinflammation through YAP-mediated mechanotransduction activation. Meanwhile, the decelerating axons exhibit excellent alignment and remyelination, thereby helping to prevent failure modes in nerve self-organization, such as axonal twisting in congested regions and overgrowth beyond the conduit's capacity. Additionally, proteins associated with mechanical allodynia, including TRPA1 and CGRP, exhibit a gradual reduction in expression as spatial constraints tighten, a trend inversely validated by the administration of the YAP-targeted inhibitor Verteporfin. This spatially confined conduit strategy significantly alleviates allodynia, thus preventing autotomy behavior and reducing pain-induced gait alterations.
Collapse
Affiliation(s)
- Xiaobin Luo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Jia Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yonggang Zhao
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Tubular Goods Research Institute of CNPC, Xi'an, 710077, China
| | - Toshitatsu Nagayasu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Junlin Chen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Peilun Hu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Zhi He
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zifan Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jun Wu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Zhe Zhao
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Guman Duan
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yongwei Pan
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Bellantoni E, Marini M, Chieca M, Gabellini C, Crapanzano EL, Souza Monteiro de Araujo D, Nosi D, Roschi L, Landini L, De Siena G, Pensieri P, Mastricci A, Scuffi I, Geppetti P, Nassini R, De Logu F. Schwann cell transient receptor potential ankyrin 1 (TRPA1) ortholog in zebrafish larvae mediates chemotherapy-induced peripheral neuropathy. Br J Pharmacol 2024; 181:4859-4873. [PMID: 39238161 DOI: 10.1111/bph.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND AND PURPOSE The oxidant sensor transient receptor potential ankyrin 1 (TRPA1) channel expressed by Schwann cells (SCs) has recently been implicated in several models of neuropathic pain in rodents. Here we investigate whether the pro-algesic function of Schwann cell TRPA1 is not limited to mammals by exploring the role of TRPA1 in a model of chemotherapy-induced peripheral neuropathy (CIPN) in zebrafish larvae. EXPERIMENTAL APPROACH We used zebrafish larvae and a mouse model to test oxaliplatin-evoked nociceptive behaviours. We also performed a TRPA1 selective silencing in Schwann cells both in zebrafish larvae and mice to study their contribution in oxaliplatin-induced CIPN model. KEY RESULTS We found that zebrafish larvae and zebrafish TRPA1 (zTRPA1)-transfected HEK293T cells respond to reactive oxygen species (ROS) with nociceptive behaviours and intracellular calcium increases, respectively. TRPA1 was found to be co-expressed with the Schwann cell marker, SOX10, in zebrafish larvae. Oxaliplatin caused nociceptive behaviours in zebrafish larvae that were attenuated by a TRPA1 antagonist and a ROS scavenger. Oxaliplatin failed to produce mechanical allodynia in mice with Schwann cell TRPA1 selective silencing (Plp1+-Trpa1 mice). Comparable results were observed in zebrafish larvae where TRPA1 selective silencing in Schwann cells, using the specific Schwann cell promoter myelin basic protein (MBP), attenuated oxaliplatin-evoked nociceptive behaviours. CONCLUSION AND IMPLICATIONS These results indicate that the contribution of the oxidative stress/Schwann cell/TRPA1 pro-allodynic pathway to neuropathic pain models seems to be conserved across the animal kingdom.
Collapse
Affiliation(s)
- Elisa Bellantoni
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Martina Chieca
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Chiara Gabellini
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Erica Lucia Crapanzano
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | | | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Roschi
- LENS-European Laboratory for Nonlinear Spectroscopy, University of Florence, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Gaetano De Siena
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Pasquale Pensieri
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Alessandra Mastricci
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Irene Scuffi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
- Pain Research Center, College of Dentistry, New York University, New York, New York, USA
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Tekulapally KR, Lee JY, Kim DS, Rahman MM, Park CK, Kim YH. Dual role of transient receptor potential ankyrin 1 in respiratory and gastrointestinal physiology: From molecular mechanisms to therapeutic targets. Front Physiol 2024; 15:1413902. [PMID: 39022308 PMCID: PMC11251976 DOI: 10.3389/fphys.2024.1413902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel plays a pivotal role in the respiratory and gastrointestinal tracts. Within the respiratory system, TRPA1 exhibits diverse distribution patterns across key cell types, including epithelial cells, sensory nerves, and immune cells. Its activation serves as a frontline sensor for inhaled irritants, triggering immediate protective responses, and influencing airway integrity. Furthermore, TRPA1 has been implicated in airway tissue injury, inflammation, and the transition of fibroblasts, thereby posing challenges in conditions, such as severe asthma and fibrosis. In sensory nerves, TRPA1 contributes to nociception, the cough reflex, and bronchoconstriction, highlighting its role in both immediate defense mechanisms and long-term respiratory reflex arcs. In immune cells, TRPA1 may modulate the release of pro-inflammatory mediators, shaping the overall inflammatory landscape. In the gastrointestinal tract, the dynamic expression of TRPA1 in enteric neurons, epithelial cells, and immune cells underscores its multifaceted involvement. It plays a crucial role in gut motility, visceral pain perception, and mucosal defense mechanisms. Dysregulation of TRPA1 in both tracts is associated with various disorders such as asthma, Chronic Obstructive Pulmonary Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Disease. This review emphasizes the potential of TRPA1 as a therapeutic target and discusses the efficacy of TRPA1 antagonists in preclinical studies and their promise for addressing respiratory and gastrointestinal conditions. Understanding the intricate interactions and cross-talk of TRPA1 across different cell types provides insight into its versatile role in maintaining homeostasis in vital physiological systems, offering a foundation for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kavya Reddy Tekulapally
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Republic of Korea
| | - Dong Seop Kim
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Republic of Korea
| | - Md. Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
4
|
Yao K, Chen Z, Li Y, Dou B, Xu Z, Ma Y, Du S, Wang J, Fu J, Liu Q, Fan Z, Liu Y, Lin X, Xu Y, Fang Y, Wang S, Guo Y. TRPA1 Ion Channel Mediates the Analgesic Effects of Acupuncture at the ST36 Acupoint in Mice Suffering from Arthritis. J Inflamm Res 2024; 17:1823-1837. [PMID: 38523680 PMCID: PMC10961083 DOI: 10.2147/jir.s455699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Acupuncture (ACU) has been demonstrated to alleviate inflammatory pain. Mechanoreceptors are present in acupuncture points. When acupuncture exerts mechanical force, these ion channels open and convert the mechanical signals into biochemical signals. TRPA1 (T ransient receptor potential ankyrin 1) is capable of sensing various physical and chemical stimuli and serves as a sensor for inflammation and pain. This protein is expressed in immune cells and contributes to local defense mechanisms during early tissue damage and inflammation. In this study, we investigated the role of TRPA1 in acupuncture analgesia. Patients and Methods We injected complete Freund's adjuvant (CFA) into the mouse plantars to establish a hyperalgesia model. Immunohistochemistry and immunofluorescence analyses were performed to determine the effect of acupuncture on the TRPA1 expression in the Zusanli (ST36). We used TRPA1-/- mouse and pharmacological methods to antagonize TRPA1 to observe the effect on acupuncture analgesia. On this basis, collagenase was used to destroy collagen fibers at ST36 to observe the effect on TRPA1. Results We found that the ACU group vs the CFA group, the number of TRPA1-positive mast cells, macrophages, and fibroblasts at the ST36 increased significantly. In CFA- inflammatory pain models, the TRPA1-/- ACU vs TRPA1+/+ ACU groups, the paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) downregulated significantly. In the ACU + high-, ACU + medium-, ACU + low-dose HC-030031 vs ACU groups, the PWL and PWT were downregulated, and in carrageenan-induced inflammatory pain models were consistent with these results. We further found the ACU + collagenase vs ACU groups, the numbers of TRPA1-positive mast cells, macrophages, and fibroblasts at the ST36 were downregulated. Conclusion These findings together imply that TRPA1 plays a significant role in the analgesic effects produced via acupuncture at the ST36. This provides new evidence for acupuncture treatment of painful diseases.
Collapse
Affiliation(s)
- Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Yanwei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Yajing Ma
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Jiangshan Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Jiangjiang Fu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Qi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Zezhi Fan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Yuan Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin City, People’s Republic of China
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin City, People’s Republic of China
| |
Collapse
|
5
|
Soma C, Hitomi S, Oshima E, Hayashi Y, Soma K, Shibuta I, Tsuboi Y, Shirakawa T, Kikuiri T, Iwata K, Shinoda M. Involvement of oxidative stress in orofacial mechanical pain hypersensitivity following neonatal maternal separation in rats. Sci Rep 2023; 13:22760. [PMID: 38123836 PMCID: PMC10733350 DOI: 10.1038/s41598-023-50116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Patients with persistent pain have sometimes history of physical abuse or neglect during infancy. However, the pathogenic mechanisms underlying orofacial pain hypersensitivity associated with early-life stress remain unclear. The present study focused on oxidative stress and investigated its role in pain hypersensitivity in adulthood following early-life stress. To establish an early-life stress model, neonatal pups were separated with their mother in isolated cages for 2 weeks. The mechanical head-withdrawal threshold (MHWT) in the whisker pad skin of rats received maternal separation (MS) was lower than that of non-MS rats at postnatal week 7. In MS rats, the expression of 8-hydroxy-deoxyguanosine, a marker of DNA oxidative damage, was enhanced, and plasma antioxidant capacity, but not mitochondrial complex I activity, decreased compared with that in non-MS rats. Reactive oxygen species (ROS) inactivation and ROS-sensitive transient receptor potential ankyrin 1 (TRPA1) antagonism in the whisker pad skin at week 7 suppressed the decrease of MHWT. Corticosterone levels on day 14 increased in MS rats. Corticosterone receptor antagonism during MS periods suppressed the reduction in antioxidant capacity and MHWT. The findings suggest that early-life stress potentially induces orofacial mechanical pain hypersensitivity via peripheral nociceptor TRPA1 hyperactivation induced by oxidative stress in the orofacial region.
Collapse
Affiliation(s)
- Chihiro Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Eri Oshima
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kumi Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Yoshiyuki Tsuboi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tetsuo Shirakawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Takashi Kikuiri
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
6
|
Ślęczkowska M, Misra K, Santoro S, Gerrits MM, Hoeijmakers JGJ. Ion Channel Genes in Painful Neuropathies. Biomedicines 2023; 11:2680. [PMID: 37893054 PMCID: PMC10604193 DOI: 10.3390/biomedicines11102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain (NP) is a typical symptom of peripheral nerve disorders, including painful neuropathy. The biological mechanisms that control ion channels are important for many cell activities and are also therapeutic targets. Disruption of the cellular mechanisms that govern ion channel activity can contribute to pain pathophysiology. The voltage-gated sodium channel (VGSC) is the most researched ion channel in terms of NP; however, VGSC impairment is detected in only <20% of painful neuropathy patients. Here, we discuss the potential role of the other peripheral ion channels involved in sensory signaling (transient receptor potential cation channels), neuronal excitation regulation (potassium channels), involuntary action potential generation (hyperpolarization-activated cyclic nucleotide-gated channels), thermal pain (anoctamins), pH modulation (acid sensing ion channels), and neurotransmitter release (calcium channels) related to pain and their prospective role as therapeutic targets for painful neuropathy.
Collapse
Affiliation(s)
- Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Kaalindi Misra
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands;
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
7
|
Khan F, Joshi A, Devkota HP, Subramaniyan V, Kumarasamy V, Arora J. Dietary glucosinolates derived isothiocyanates: chemical properties, metabolism and their potential in prevention of Alzheimer's disease. Front Pharmacol 2023; 14:1214881. [PMID: 37554984 PMCID: PMC10404612 DOI: 10.3389/fphar.2023.1214881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia affecting millions of people worldwide. It is a progressive, irreversible, and incurable neurodegenerative disorder that disrupts the synaptic communication between millions of neurons, resulting in neuronal death and functional loss due to the abnormal accumulation of two naturally occurring proteins, amyloid β (Aβ) and tau. According to the 2018 World Alzheimer's Report, there is no single case of an Alzheimer's survivor; even 1 in 3 people die from Alzheimer's disease, and it is a growing epidemic across the globe fruits and vegetables rich in glucosinolates (GLCs), the precursors of isothiocyanates (ITCs), have long been known for their pharmacological properties and recently attracted increased interest for the possible prevention and treatment of neurodegenerative diseases. Epidemiological evidence from systematic research findings and clinical trials suggests that nutritional and functional dietary isothiocyanates interfere with the molecular cascades of Alzheimer's disease pathogenesis and prevent neurons from functional loss. The aim of this review is to explore the role of glucosinolates derived isothiocyanates in various molecular mechanisms involved in the progression of Alzheimer's disease and their potential in the prevention and treatment of Alzheimer's disease. It also covers the chemical diversity of isothiocyanates and their detailed mechanisms of action as reported by various in vitro and in vivo studies. Further clinical studies are necessary to evaluate their pharmacokinetic parameters and effectiveness in humans.
Collapse
Affiliation(s)
- Farhana Khan
- Laboratory of Bio-Molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Abhishek Joshi
- Laboratory of Bio-Molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Arora
- Laboratory of Bio-Molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|