1
|
Maliuk A, Marghoub A, Williams CJA, Stanley E, Kéver L, Vickaryous M, Herrel A, Evans SE, Moazen M. Comparative analysis of osteoderms across the lizard body. Anat Rec (Hoboken) 2024; 307:3191-3203. [PMID: 38396371 DOI: 10.1002/ar.25418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Osteoderms (ODs) are mineralized tissue embedded within the skin and are particularly common in reptiles. They are generally thought to form a protective layer between the soft tissues of the animal and potential external threats, although other functions have been proposed. The aim of this study was to characterize OD variation across the lizard body. Adults of three lizard species were chosen for this study. After whole body CT scanning of each lizard, single ODs were extracted from 10 different anatomical regions, CT scanned, and characterized using sectioning and nanoindentation. Morphological analysis and material characterization revealed considerable diversity in OD structure across the species investigated. The scincid Tiliqua gigas was the only studied species in which ODs had a similar external morphology across the head and body. Greater osteoderm diversity was found in the gerrhosaurid Broadleysaurus major and the scincid Tribolonotus novaeguineae. Dense capping tissue, like that reported for Heloderma, was found in only one of the three species examined, B. major. Osteoderm structure can be surprisingly complex and variable, both among related taxa, and across the body of individual animals. This raises many questions about OD function but also about the genetic and developmental factors controlling OD shape.
Collapse
Affiliation(s)
- Anastasiia Maliuk
- Department of Mechanical Engineering, University College London, London, UK
- Department of Zoology, National Museum of Natural History, NAS of Ukraine, Kyiv, Ukraine
| | - Arsalan Marghoub
- Department of Mechanical Engineering, University College London, London, UK
| | - Catherine J A Williams
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
- Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Edward Stanley
- Department of Natural History, Florida Museum of Natural History, Gainesville, Florida, USA
| | - Loïc Kéver
- Département Adaptations du Vivant, UMR7179 CNRS/MNHN, Paris, France
| | - Matthew Vickaryous
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR7179 CNRS/MNHN, Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Naturhistorisches Museum Bern, Bern, Switzerland
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
2
|
Stan E, Muresan CO, Daescu E, Dumache R, Ciocan V, Ungureanu S, Costachescu D, Enache A. A Review of Histological Techniques for Differentiating Human Bone from Animal Bone. Methods Protoc 2024; 7:51. [PMID: 39051265 PMCID: PMC11270420 DOI: 10.3390/mps7040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
The first step in anthropological study is the positive identification of human remains, which can be a challenging undertaking when bones are broken. When bone pieces from different species are mixed together, it can be crucial to distinguish between them in forensic and archaeological contexts. For years, anthropology and archaeology have employed the histomorphological analysis of bones to evaluate species-specific variations. Based on variations in the dimensions and configuration of Haversian systems between the two groups, these techniques have been devised to distinguish between non-human and human bones. All of those techniques concentrate on a very particular kind of bone, zone, and segment. Histomorphometric techniques make the assumption that there are size, form, and quantity variations between non-humans and humans. The structural components of Haversian bones are significant enough to use discriminant function analysis to separate one from the other. This review proposes a comprehensive literature analysis of the various strategies or techniques available for distinguishing human from non-human bones to demonstrate that histomorphological analysis is the most effective method to be used in the case of inadequate or compromised samples.
Collapse
Affiliation(s)
- Emanuela Stan
- Department of Neuroscience, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.S.); (C.-O.M.); (R.D.); (V.C.); (S.U.); (A.E.)
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
| | - Camelia-Oana Muresan
- Department of Neuroscience, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.S.); (C.-O.M.); (R.D.); (V.C.); (S.U.); (A.E.)
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ecaterina Daescu
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
- Department I of Anatomy and Embryology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Raluca Dumache
- Department of Neuroscience, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.S.); (C.-O.M.); (R.D.); (V.C.); (S.U.); (A.E.)
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Veronica Ciocan
- Department of Neuroscience, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.S.); (C.-O.M.); (R.D.); (V.C.); (S.U.); (A.E.)
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stefania Ungureanu
- Department of Neuroscience, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.S.); (C.-O.M.); (R.D.); (V.C.); (S.U.); (A.E.)
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
| | - Dan Costachescu
- Radiology Laboratory, Emergency Municipal Clinical Hospital Timisoara, 300254 Timisoara, Romania;
- Department of Orthopedics-Traumatology, Urology, Radiology and Medical Imaging, Discipline of Radiology and Medical Imaging, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexandra Enache
- Department of Neuroscience, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.S.); (C.-O.M.); (R.D.); (V.C.); (S.U.); (A.E.)
- Institute of Legal Medicine Timisoara, 300610 Timisoara, Romania
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
3
|
Istrate B, Cojocaru FD, Henea ME, Balan V, Șindilar EV, Verestiuc L, Munteanu C, Solcan C. In Vitro and In Vivo Analysis of the Mg-Ca-Zn Biodegradable Alloys. J Funct Biomater 2024; 15:166. [PMID: 38921539 PMCID: PMC11204402 DOI: 10.3390/jfb15060166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The objective of this work was to analyze the in vitro and in vivo tests of a novel Mg-based biodegradable alloy-Mg-0.5%Ca-with various amounts of Zn (0.5, 1, 1.5, 2.0, and 3.0 wt.%). In terms of in vitro biocompatibility, MTT and Calcein-AM cell viability assays, performed on the MG-63 cell line through the extract method, revealed that all five alloy extracts are non-cytotoxic at an extraction ratio of 0.025 g alloy per mL of cell culture medium. In the in vivo histological analysis, Mg-0.5Ca-1.5Zn demonstrated exceptional potential for stimulating bone remodeling and showed excellent biocompatibility. It was observed that Mg-0.5Ca-0.5Zn, Mg-0.5Ca-1.5Zn, and Mg-0.5Ca-3Zn displayed good biocompatibility. Furthermore, the histological examination highlighted the differentiation of periosteal cells into chondrocytes and subsequent bone tissue replacement through endochondral ossification. This process highlighted the importance of the initial implant's integrity and the role of the periosteum. In summary, Mg-0.5Ca-1.5Zn stands out as a promising candidate for bone regeneration and osseointegration, supported by both in vitro and in vivo findings.
Collapse
Affiliation(s)
- Bogdan Istrate
- Mechanical Engineering, Mechatronics and Robotics Department, Mechanical Engineering Faculty, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Florina-Daniela Cojocaru
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania; (V.B.); (L.V.)
| | - Mădălina-Elena Henea
- Surgery Unit, Clinics Department, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Ion Ionescu de la Brad, 700490 Iasi, Romania; (M.-E.H.); (C.S.)
| | - Vera Balan
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania; (V.B.); (L.V.)
| | - Eusebiu-Viorel Șindilar
- Surgery Unit, Clinics Department, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Ion Ionescu de la Brad, 700490 Iasi, Romania; (M.-E.H.); (C.S.)
| | - Liliana Verestiuc
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania; (V.B.); (L.V.)
| | - Corneliu Munteanu
- Mechanical Engineering, Mechatronics and Robotics Department, Mechanical Engineering Faculty, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Technical Sciences Academy of Romania, 26 Dacia Blvd., 030167 Bucharest, Romania
| | - Carmen Solcan
- Surgery Unit, Clinics Department, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Ion Ionescu de la Brad, 700490 Iasi, Romania; (M.-E.H.); (C.S.)
| |
Collapse
|
4
|
Perillo M, Sander PM. The dinosaurs that weren't: osteohistology supports giant ichthyosaur affinity of enigmatic large bone segments from the European Rhaetian. PeerJ 2024; 12:e17060. [PMID: 38618574 PMCID: PMC11011611 DOI: 10.7717/peerj.17060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/15/2024] [Indexed: 04/16/2024] Open
Abstract
Very large unidentified elongate and rounded fossil bone segments of uncertain origin recovered from different Rhaetian (Late Triassic) fossil localities across Europe have been puzzling the paleontological community since the second half of the 19th century. Different hypotheses have been proposed regarding the nature of these fossils: (1) giant amphibian bones, (2) dinosaurian or other archosaurian long bone shafts, and (3) giant ichthyosaurian jaw bone segments. We call the latter proposal the 'Giant Ichthyosaur Hypothesis' and test it using bone histology. In presumable ichthyosaur specimens from SW England (Lilstock), France (Autun), and indeterminate cortical fragments from Germany (Bonenburg), we found a combination of shared histological features in the periosteal cortex: an unusual woven-parallel complex of strictly longitudinal primary osteons set in a novel woven-fibered matrix type with intrinsic coarse collagen fibers (IFM), and a distinctive pattern of Haversian substitution in which secondary osteons often form within primary ones. The splenial and surangular of the holotype of the giant ichthyosaur Shastasaurus sikanniensis from Canada were sampled for comparison. The results of the sampling indicate a common osteohistology with the European specimens. A broad histological comparison is provided to reject alternative taxonomic affinities aside from ichthyosaurs of the very large bone segment. Most importantly, we highlight the occurrence of shared peculiar osteogenic processes in Late Triassic giant ichthyosaurs, reflecting special ossification strategies enabling fast growth and achievement of giant size and/or related to biomechanical properties akin to ossified tendons.
Collapse
Affiliation(s)
- Marcello Perillo
- Section Paleontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany
| | - P Martin Sander
- Section Paleontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany
- The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, United States of America
| |
Collapse
|
5
|
Curry Rogers K, Martínez RN, Colombi C, Rogers RR, Alcober O. Osteohistological insight into the growth dynamics of early dinosaurs and their contemporaries. PLoS One 2024; 19:e0298242. [PMID: 38568908 PMCID: PMC10990230 DOI: 10.1371/journal.pone.0298242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/21/2024] [Indexed: 04/05/2024] Open
Abstract
Dinosauria debuted on Earth's stage in the aftermath of the Permo-Triassic Mass Extinction Event, and survived two other Triassic extinction intervals to eventually dominate terrestrial ecosystems. More than 231 million years ago, in the Upper Triassic Ischigualasto Formation of west-central Argentina, dinosaurs were just getting warmed up. At this time, dinosaurs represented a minor fraction of ecosystem diversity. Members of other tetrapod clades, including synapsids and pseudosuchians, shared convergently evolved features related to locomotion, feeding, respiration, and metabolism and could have risen to later dominance. However, it was Dinosauria that radiated in the later Mesozoic most significantly in terms of body size, diversity, and global distribution. Elevated growth rates are one of the adaptations that set later Mesozoic dinosaurs apart, particularly from their contemporary crocodilian and mammalian compatriots. When did the elevated growth rates of dinosaurs first evolve? How did the growth strategies of the earliest known dinosaurs compare with those of other tetrapods in their ecosystems? We studied femoral bone histology of an array of early dinosaurs alongside that of non-dinosaurian contemporaries from the Ischigualasto Formation in order to test whether the oldest known dinosaurs exhibited novel growth strategies. Our results indicate that the Ischigualasto vertebrate fauna collectively exhibits relatively high growth rates. Dinosaurs are among the fastest growing taxa in the sample, but they occupied this niche alongside crocodylomorphs, archosauriformes, and large-bodied pseudosuchians. Interestingly, these dinosaurs grew at least as quickly, but more continuously than sauropodomorph and theropod dinosaurs of the later Mesozoic. These data suggest that, while elevated growth rates were ancestral for Dinosauria and likely played a significant role in dinosaurs' ascent within Mesozoic ecosystems, they did not set them apart from their contemporaries.
Collapse
Affiliation(s)
- Kristina Curry Rogers
- Biology and Geology Departments, Macalester College, St. Paul, Minnesota, United States of America
| | - Ricardo N. Martínez
- Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| | - Carina Colombi
- CIGEOBIO - Centro de Investigaciones de la Geósfera y Biósfera, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de San Juan, San Juan, Argentina
| | - Raymond R. Rogers
- Geology Department, Macalester College, St. Paul, Minnesota, United States of America
| | - Oscar Alcober
- Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| |
Collapse
|
6
|
Botha J, Weiss BM, Dollman K, Barrett PM, Benson RBJ, Choiniere JN. Origins of slow growth on the crocodilian stem lineage. Curr Biol 2023; 33:4261-4268.e3. [PMID: 37714148 DOI: 10.1016/j.cub.2023.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023]
Abstract
Crocodilians grow slowly and have low metabolic rates similar to other living reptiles, but palaeohistology indicates that they evolved from an ancestor with higher growth rates.1,2,3,4,5 It remains unclear when slow growth appeared in the clade due to the sparse data on key divergences among early Mesozoic members of their stem lineage. We present new osteohistological data from a broad sample of early crocodylomorphs, evaluated in a phylogenetic context alongside other pseudosuchians. We find that the transition to slow-growing bone types during mid-late ontogeny occurred around the origin of Crocodylomorpha during the Late Triassic. Earlier-diverging pseudosuchians had high maximum growth rates, as indicated by the presence of woven bone during middle and (sometimes) late ontogeny.6,7,8,9 Large-bodied pseudosuchians in particular exhibit some of the fastest-growing bone types, giving evidence for prolonged, rapid growth. By contrast, early-branching crocodylomorphs, including a new large-bodied taxon, had slow maximum rates of bone deposition, as evidenced by the presence of predominantly parallel-fibered or lamellar bone tissue during middle-late ontogeny. Late Triassic crocodylomorphs show skeletal anatomy consistent with "active" terrestrial habits,10,11,12 and their slow growth rates reject hypotheses linking this transition with sedentary, semiaquatic lifestyles or sprawling posture. Faster-growing pseudosuchian lineages go extinct in the Triassic, whereas slow-growing crocodylomorphs do not. This contrasts with the Jurassic radiation of fast-growing dinosaurs on the bird-stem lineage,13 suggesting that the End-Triassic mass extinction initiated a divergent distribution of growth strategies that persist in present-day archosaurs.
Collapse
Affiliation(s)
- Jennifer Botha
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; GENUS: DSI-NRF Centre of Excellence in Palaeosciences, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Bailey M Weiss
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; School of Geosciences, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Kathleen Dollman
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; European Synchrotron and Radiation Facility, Experiments Division, Structure of Materials Group, BM18, Grenoble 38000, France
| | - Paul M Barrett
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Roger B J Benson
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Jonah N Choiniere
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
7
|
Anesi A, Ferretti M, Salvatori R, Bellucci D, Cavani F, Di Bartolomeo M, Palumbo C, Cannillo V. In-vivo evaluations of bone regenerative potential of two novel bioactive glasses. J Biomed Mater Res A 2023; 111:1264-1278. [PMID: 36876550 DOI: 10.1002/jbm.a.37526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Due to the aging of population, materials able to repair damaged tissues are needed. Among others, bioactive glasses (BGs) have attracted a lot of interest due to their outstanding properties both for hard and soft tissues. Here, for the first time, two new BGs, which gave very promising results in preliminary in vitro-tests, were implanted in animals in order to evaluate their regenerative potential. The new BGs, named BGMS10 and Bio_MS and containing specific therapeutic ions, were produced in granules and implanted in rabbits' femurs for up to 60 days, to test their biocompatibility and osteoconduction. Additionally, granules of 45S5 Bioglass® were employed and used as a standard reference for comparison. The results showed that, after 30 days, the two novel BGs and 45S5 displayed a similar behavior, in terms of bone amount, thickness of new bone trabeculae and affinity index. On the contrary, after 60 days, 45S5 granules were mainly surrounded by wide and scattered bone trabeculae, separated by large amounts of soft tissue, while in BGMS10 and Bio_MS the trabeculae were thin and uniformly distributed around the BG granules. This latter scenario could be considered as more advantageous, since the features of the two novel BG granules allowed for the neo-formation of a uniformly distributed bony trabeculae, predictive of more favorable mechanical behavior, compared to the less uniform coarse trabeculae, separated by large areas of soft tissue in 45S5 granules. Thus, BGMS10 and Bio_MS could be considered suitable products for tissue regeneration in the orthopedic and dental fields.
Collapse
Affiliation(s)
- A Anesi
- Laboratorio Biomateriali, Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - M Ferretti
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze - Sezione di Morfologia umana (c/o Policlinico), Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - R Salvatori
- Laboratorio Biomateriali, Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - D Bellucci
- Dipartimento di Ingegneria "Enzo Ferrari", Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - F Cavani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze - Sezione di Morfologia umana (c/o Policlinico), Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - M Di Bartolomeo
- Chirurgia Maxillo Facciale e Odontostomatologia, Dipartimento di Scienze Chirurgiche Odontostomatologiche e Materno-Infantili, Università degli Studi di Verona, Verona, Italy
| | - C Palumbo
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze - Sezione di Morfologia umana (c/o Policlinico), Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - V Cannillo
- Dipartimento di Ingegneria "Enzo Ferrari", Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Surmik D, Szczygielski T, Słowiak-Morkovina J, Sander M, Rothschild B, Duda P, Klein N. Bone abnormalities in the middle Anisian marine sauropsids from Winterswijk. J Morphol 2023; 284:e21550. [PMID: 36538608 DOI: 10.1002/jmor.21550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
While the occurrence of skeletal pathologies in Middle Triassic marine reptiles has been poorly documented until now, massive accumulations of bone remains from the Germanic Basin provide the opportunities for documentation. Herein, we describe skeletal abnormalities in the Middle Triassic bone material from the Vossenveld Formation of Winterswijk, the Netherlands. The aim of the study is to distinguish in the studied bones pathologies resulting from malady or trauma and taphonomic alterations. Furthermore, an attempt was made to assess on how the pathologies also represent paleoecological data. Our survey led to the identification of one broken and healed bone, one case of abnormal coossification, and one case of posttraumatic fibro-osseous dysplasia. While the latter two pathologies give little insight into the ecology and function of the affected animals, the fractured dentary is attributed to Nothosaurus marchicus, a common sauropterygian macropredator. It proves that the individual survived long enough to heal, despite the injury hampering its hunting potential. One abnormally shaped humerus is interpreted as postmortem taphonomic deformation, emphasizing the necessity of utilization of detailed diagnostics to distinguish actual paleopathologies from nonbiological distortion.
Collapse
Affiliation(s)
- Dawid Surmik
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | | | | | - Martin Sander
- Section Paleontology, Institute of Geosciences, University of Bonn, Bonn, Germany
| | - Bruce Rothschild
- Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| | - Piotr Duda
- Faculty of Faculty of Exact and Technical Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | - Nicole Klein
- Section Paleontology, Institute of Geosciences, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Surmik D, Słowiak-Morkovina J, Szczygielski T, Kamaszewski M, Kalita S, Teschner EM, Dróżdż D, Duda P, Rothschild BM, Konietzko-Meier D. An insight into cancer palaeobiology: does the Mesozoic neoplasm support tissue organization field theory of tumorigenesis? BMC Ecol Evol 2022; 22:143. [PMID: 36513967 PMCID: PMC9746082 DOI: 10.1186/s12862-022-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neoplasms are common across the animal kingdom and seem to be a feature plesiomorphic for metazoans, related with an increase in somatic complexity. The fossil record of cancer complements our knowledge of the origin of neoplasms and vulnerability of various vertebrate taxa. Here, we document the first undoubted record of primary malignant bone tumour in a Mesozoic non-amniote. The diagnosed osteosarcoma developed in the vertebral intercentrum of a temnospondyl amphibian, Metoposaurus krasiejowensis from the Krasiejów locality, southern Poland. RESULTS A wide array of data collected from gross anatomy, histology, and microstructure of the affected intercentrum reveals the tumour growth dynamics and pathophysiological aspects of the neoplasm formation on the histological level. The pathological process almost exclusively pertains to the periosteal part of the bone composed from a highly vascularised tissue with lamellar matrix. The unorganised arrangement of osteocyte lacunae observed in the tissue is characteristic for bone tissue types connected with static osteogenesis, and not for lamellar bone. The neoplastic bone mimics on the structural level the fast growing fibrolamellar bone, but on the histological level develops through a novel ossification type. The physiological process of bone remodelling inside the endochondral domain continued uninterrupted across the pathology of the periosteal part. CONCLUSIONS Based on the results, we discuss our case study's consistence with the Tissue Organization Field Theory of tumorigenesis, which locates the causes of neoplastic transformations in disorders of tissue architecture.
Collapse
Affiliation(s)
- Dawid Surmik
- grid.11866.380000 0001 2259 4135Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
| | - Justyna Słowiak-Morkovina
- grid.413454.30000 0001 1958 0162Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Tomasz Szczygielski
- grid.413454.30000 0001 1958 0162Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Maciej Kamaszewski
- grid.13276.310000 0001 1955 7966Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Sudipta Kalita
- grid.10388.320000 0001 2240 3300Institute of Geosciences, Section Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
| | - Elżbieta M. Teschner
- grid.10388.320000 0001 2240 3300Institute of Geosciences, Section Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany ,grid.107891.60000 0001 1010 7301Institute of Biology, University of Opole, Oleska 22, 45-052 Opole, Poland
| | - Dawid Dróżdż
- grid.413454.30000 0001 1958 0162Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Piotr Duda
- grid.11866.380000 0001 2259 4135Faculty of Exact and Technical Sciences, University of Silesia, Będzińska 39, 41-200 Sosnowiec, Poland
| | - Bruce M. Rothschild
- grid.420557.10000 0001 2110 2178Carnegie Museum of Natural History, 4400 Forbes Ave, Pittsburgh, PA 15215 USA
| | - Dorota Konietzko-Meier
- grid.10388.320000 0001 2240 3300Institute of Geosciences, Section Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
| |
Collapse
|
10
|
Parker WG, Nesbitt SJ, Irmis RB, Martz JW, Marsh AD, Brown MA, Stocker MR, Werning S. Osteology and relationships of Revueltosaurus callenderi (Archosauria: Suchia) from the Upper Triassic (Norian) Chinle Formation of Petrified Forest National Park, Arizona, United States. Anat Rec (Hoboken) 2022; 305:2353-2414. [PMID: 34585850 PMCID: PMC9544919 DOI: 10.1002/ar.24757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022]
Abstract
Once known solely from dental material and thought to represent an early ornithischian dinosaur, the early-diverging pseudosuchian Revueltosaurus callenderi is described from a minimum of 12 skeletons from a monodominant bonebed in the upper part of the Chinle Formation of Arizona. This material includes nearly the entire skeleton and possesses a combination of plesiomorphic and derived character states that help clarify ingroup relationships within Pseudosuchia. A phylogenetic analysis recovers R. callenderi in a clade with Aetosauria and Acaenasuchus geoffreyi that is named Aetosauriformes. Key autapomorphies of R. callenderi include a skull that is longer than the femur, a complete carapace of dermal armor including paramedian and lateral rows, as well as ventral osteoderms, and a tail end sheathed in bone. Histology of the femur and associated osteoderms demonstrate that R. callenderi was slow growing and that the individuals from the bonebed were not young juveniles but had not ceased growing. A review of other material assigned to Revueltosaurus concludes that the genus cannot be adequately diagnosed based on the type materials of the three assigned species and that only R. callenderi can be confidently referred to Revueltosaurus.
Collapse
Affiliation(s)
- William G. Parker
- Department of Resource Management and SciencePetrified Forest National ParkPetrified ForestArizonaUSA
| | | | - Randall B. Irmis
- Natural History Museum of UtahUniversity of UtahSalt Lake CityUtahUSA
- Department of Geology and GeophysicsUniversity of UtahSalt Lake CityUtahUSA
| | - Jeffrey W. Martz
- Department of Natural SciencesUniversity of Houston‐DowntownHoustonTexasUSA
| | - Adam D. Marsh
- Department of Resource Management and SciencePetrified Forest National ParkPetrified ForestArizonaUSA
| | - Matthew A. Brown
- Texas Vertebrate Paleontology Collections, The Jackson School of GeosciencesUniversity of Texas at AustinAustinTexasUSA
| | | | - Sarah Werning
- Department of AnatomyDes Moines UniversityDes MoinesIowaUSA
| |
Collapse
|
11
|
Chapelle KEJ, Barrett PM, Choiniere JN, Botha J. Interelemental osteohistological variation in Massospondylus carinatus and its implications for locomotion. PeerJ 2022; 10:e13918. [PMID: 36172498 PMCID: PMC9512004 DOI: 10.7717/peerj.13918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/28/2022] [Indexed: 01/19/2023] Open
Abstract
Massospondylus carinatus Owen, 1854 is an iconic basal sauropodomorph dinosaur from the Early Jurassic of southern Africa. Over 200 specimens have been referred to this taxon, spanning the entire ontogenetic series from embryo to adult. Consequently, it provides an ideal sample for investigating dinosaur developmental biology, including growth patterns and growth rates, through osteohistological analysis. Massospondylus carinatus was the first early-branching sauropodomorph dinosaur for which a femoral growth series was sampled. Since then, growth series of other non-avian dinosaur taxa have shown that growth plasticity, interelemental variation, and ontogenetic locomotory shifts can complicate our understanding of growth curves and patterns. To investigate these questions further, it is necessary to sample multiple skeletal elements from multiple individuals across a large range of sizes, something that is often hindered by the incompleteness of the fossil record. Here, we conducted a broad, multielement osteohistological study of long bones (excluding metapodials) from 27 specimens of Massospondylus carinatus that span its ontogenetic series. Our study reveals substantial variations in growth history. A cyclical woven-parallel complex is the predominant bone tissue pattern during early and mid-ontogeny, which transitions to slower forming parallel-fibred bone during very late ontogeny. The bone tissue is interrupted by irregularly spaced cyclical growth marks (CGMs) including lines of arrested growth indicating temporary cessations in growth. These CGMs show that the previously recorded femoral growth plasticity is also visible in other long bones, with a poor correlation between body size (measured by midshaft circumference) and CGM numbers. Furthermore, we found that the growth trajectory for an individual can vary depending on which limb element is studied. This makes the establishment of an accurate growth curve and determination of the onset of reproductive maturity difficult for this taxon. Finally, we found no evidence of differential growth rates in forelimb vs hindlimb samples from the same individual, providing further evidence falsifying hypothesised ontogenetic postural shifts in Massospondylus carinatus.
Collapse
Affiliation(s)
- Kimberley EJ Chapelle
- Division of Paleontology, American Museum of Natural History, New York City, New York, United States of America,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Paul M. Barrett
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, Gauteng, South Africa,Science Group, Natural History Museum, London, United Kingdom
| | - Jonah N. Choiniere
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Jennifer Botha
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa,Karoo Palaeontology Department, National Museum, Bloemfontein, Free State, South Africa
| |
Collapse
|
12
|
Ong N, Hart‐Farrar B, Tremaine K, Woodward HN. Osteohistological description of ostrich and emu long bones, with comments on markers of growth. J Anat 2022; 241:518-526. [PMID: 35412666 PMCID: PMC9296041 DOI: 10.1111/joa.13665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
Ostriches and emus are among the largest extant birds and are frequently used as modern analogs for the growth dynamics of non-avian theropod dinosaurs. These ratites quickly reach adult size in under 1 year, and as such do not typically exhibit annually deposited growth marks. Growth marks, commonly classified as annuli or lines of arrested growth (LAGs), represent reduced or halted osteogenesis, respectively, and their presence demonstrates varying degrees of developmental plasticity. Growth marks have not yet been reported from ostriches and emus, prompting authors to suggest that they have lost the plasticity required to deposit them. Here we observe the hind limb bone histology of three captive juvenile emus and one captive adult ostrich. Two of the three juvenile emus exhibit typical bone histology but the third emu, a 4.5-month-old juvenile, exhibits a regional arc of avascular tissue, which we interpret as a growth mark. As this mark is not present in the other two emus from the same cohort and it co-occurs with a contralateral broken fibula, we suggest variable biomechanical load as a potential cause. The ostrich exhibits a complete ring of avascular, hypermineralized bone with sparse, flattened osteocyte lacunae. We identify this as an annulus and interpret it as slowing of growth. In the absence of other growth marks and lacking the animal's life history, the timing and cause of this ostrich's reduced growth are unclear. Even so, these findings demonstrate that both taxa retain the ancestral developmental plasticity required to temporarily slow growth. We also discuss the potential challenges of identifying growth marks using incomplete population data sets and partial cortical sampling.
Collapse
Affiliation(s)
- Nathan Ong
- Department of Anatomy and Cell BiologyOklahoma State University Center for Health SciencesTulsaOklahomaUSA
| | - Brenna Hart‐Farrar
- Department of Anatomy and Cell BiologyOklahoma State University Center for Health SciencesTulsaOklahomaUSA
| | - Katie Tremaine
- Department of Earth ScienceMontana State UniversityBozemanMontanaUSA
- Museum of the RockiesMontana State UniversityBozemanMontanaUSA
| | - Holly N. Woodward
- Department of Anatomy and Cell BiologyOklahoma State University Center for Health SciencesTulsaOklahomaUSA
| |
Collapse
|
13
|
Grigg G, Nowack J, Bicudo JEPW, Bal NC, Woodward HN, Seymour RS. Whole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians. Biol Rev Camb Philos Soc 2022; 97:766-801. [PMID: 34894040 PMCID: PMC9300183 DOI: 10.1111/brv.12822] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The whole-body (tachymetabolic) endothermy seen in modern birds and mammals is long held to have evolved independently in each group, a reasonable assumption when it was believed that its earliest appearances in birds and mammals arose many millions of years apart. That assumption is consistent with current acceptance that the non-shivering thermogenesis (NST) component of regulatory body heat originates differently in each group: from skeletal muscle in birds and from brown adipose tissue (BAT) in mammals. However, BAT is absent in monotremes, marsupials, and many eutherians, all whole-body endotherms. Indeed, recent research implies that BAT-driven NST originated more recently and that the biochemical processes driving muscle NST in birds, many modern mammals and the ancestors of both may be similar, deriving from controlled 'slippage' of Ca2+ from the sarcoplasmic reticulum Ca2+ -ATPase (SERCA) in skeletal muscle, similar to a process seen in some fishes. This similarity prompted our realisation that the capacity for whole-body endothermy could even have pre-dated the divergence of Amniota into Synapsida and Sauropsida, leading us to hypothesise the homology of whole-body endothermy in birds and mammals, in contrast to the current assumption of their independent (convergent) evolution. To explore the extent of similarity between muscle NST in mammals and birds we undertook a detailed review of these processes and their control in each group. We found considerable but not complete similarity between them: in extant mammals the 'slippage' is controlled by the protein sarcolipin (SLN), in birds the SLN is slightly different structurally and its role in NST is not yet proved. However, considering the multi-millions of years since the separation of synapsids and diapsids, we consider that the similarity between NST production in birds and mammals is consistent with their whole-body endothermy being homologous. If so, we should expect to find evidence for it much earlier and more widespread among extinct amniotes than is currently recognised. Accordingly, we conducted an extensive survey of the palaeontological literature using established proxies. Fossil bone histology reveals evidence of sustained rapid growth rates indicating tachymetabolism. Large body size and erect stature indicate high systemic arterial blood pressures and four-chambered hearts, characteristic of tachymetabolism. Large nutrient foramina in long bones are indicative of high bone perfusion for rapid somatic growth and for repair of microfractures caused by intense locomotion. Obligate bipedality appeared early and only in whole-body endotherms. Isotopic profiles of fossil material indicate endothermic levels of body temperature. These proxies led us to compelling evidence for the widespread occurrence of whole-body endothermy among numerous extinct synapsids and sauropsids, and very early in each clade's family tree. These results are consistent with and support our hypothesis that tachymetabolic endothermy is plesiomorphic in Amniota. A hypothetical structure for the heart of the earliest endothermic amniotes is proposed. We conclude that there is strong evidence for whole-body endothermy being ancient and widespread among amniotes and that the similarity of biochemical processes driving muscle NST in extant birds and mammals strengthens the case for its plesiomorphy.
Collapse
Affiliation(s)
- Gordon Grigg
- School of Biological SciencesUniversity of QueenslandBrisbaneQLD4072Australia
| | - Julia Nowack
- School of Biological and Environmental SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFU.K.
| | | | | | - Holly N. Woodward
- Oklahoma State University Center for Health SciencesTulsaOK74107U.S.A.
| | - Roger S. Seymour
- School of Biological SciencesUniversity of AdelaideAdelaideSA5005Australia
| |
Collapse
|
14
|
Kulik ZT, Lungmus JK, Angielczyk KD, Sidor CA. Living fast in the Triassic: New data on life history in Lystrosaurus (Therapsida: Dicynodontia) from northeastern Pangea. PLoS One 2021; 16:e0259369. [PMID: 34739492 PMCID: PMC8570511 DOI: 10.1371/journal.pone.0259369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Lystrosaurus was one of the few tetrapods to survive the Permo-Triassic mass extinction, the most profound biotic crisis in Earth’s history. The wide paleolatitudinal range and high abundance of Lystrosaurus during the Early Triassic provide a unique opportunity to investigate changes in growth dynamics and longevity following the mass extinction, yet most studies have focused only on species that lived in the southern hemisphere. Here, we present the long bone histology from twenty Lystrosaurus skeletal elements spanning a range of sizes that were collected in the Jiucaiyuan Formation of northwestern China. In addition, we compare the average body size of northern and southern Pangean Triassic-aged species and conduct cranial geometric morphometric analyses of southern and northern taxa to begin investigating whether specimens from China are likely to be taxonomically distinct from South African specimens. We demonstrate that Lystrosaurus from China have larger average body sizes than their southern Pangean relatives and that their cranial morphologies are distinctive. The osteohistological examination revealed sustained, rapid osteogenesis punctuated by growth marks in some, but not all, immature individuals from China. We find that the osteohistology of Chinese Lystrosaurus shares a similar growth pattern with South African species that show sustained growth until death. However, bone growth arrests more frequently in the Chinese sample. Nevertheless, none of the long bones sampled here indicate that maximum or asymptotic size was reached, suggesting that the maximum size of Lystrosaurus from the Jiucaiyuan Formation remains unknown.
Collapse
Affiliation(s)
- Zoe T. Kulik
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Jacqueline K. Lungmus
- Smithsonian National Museum of Natural History, Washington, D.C., United States of America
| | - Kenneth D. Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, United States of America
| | - Christian A. Sidor
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
15
|
Heck CT, Woodward HN. Intraskeletal bone growth patterns in the North Island Brown Kiwi (Apteryx mantelli): Growth mark discrepancy and implications for extinct taxa. J Anat 2021; 239:1075-1095. [PMID: 34258760 PMCID: PMC8546512 DOI: 10.1111/joa.13503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Osteohistology, the study of bone microstructure, provides an important avenue for assessing extinct and extant vertebrate growth and life history. Cortical vascularity and collagen fibre organization are direct reflections of growth rate, while bone growth marks are indicative of absolute age. However, each skeletal element has its own ontogenetic trajectory and microstructure of certain bones may not be a true representation of whole body growth. Extensive comparative study of modern taxa is required to resolve intraskeletal discrepancies among age, vascularity and tissue organization in extinct vertebrates. Despite their comparative utility, studies of bone microstructure in modern taxa are severely lacking. Here, we add to a growing comparative osteohistological database by describing (1) bone tissue organization, (2) growth mark count, (3) sexually dimorphic bone (e.g. medullary bone) and (4) secondary cortical reconstruction in the bone microstructure of a 14-year-old male and 5-year-old female North Island Brown Kiwi (Apteryx mantelli). Transverse and longitudinal histological ground sections were processed and described for femora, tibiotarsi, tarsometatarsi, humeri, ulnae and radii in both kiwis. Cortical bone can generally be described as parallel-fibered tissue, interrupted by cyclical growth marks, with vascular canals oriented longitudinally within primary and secondary osteons. Tissue morphologically resembling medullary bone is present in the hindlimbs of the female, and coarse compacted cancellous bone (CCCB) is found sporadically in the male and female hindlimbs. Lines of arrested growth (LAGs) are present in all hindlimb bones of both kiwi, but remodelling has obliterated all LAGs in the male ulnae and radii. LAG count varies intraskeletally, but large weight bearing elements such as femora and tibiotarsi have less remodelling and, thus, higher number of LAGs. LAG count did not match absolute age in any skeletal element; a maximum of seven LAGs are present in the male kiwi and a maximum of seven LAGs in the female kiwi. The tissue organization within the forelimbs and hindlimbs is reflective of the protracted growth strategy of the North Island Brown Kiwi and congruent with previous studies of the kiwi. LAGs were highly variable throughout the skeleton of the kiwi and a decoupling of age and LAG deposition is apparent from the male kiwi samples. Excess LAGs in the 5-year-old female kiwi may be a product of hatching, egg laying or captivity. Regardless, LAG count variation in the kiwi stresses the importance of intraskeletal sampling when assessing growth patterns of extinct taxa. An extensive ontogenetic sampling of kiwi is necessary for future investigations of bone growth patterns, CCCB formation, medullary bone and LAG deposition and obliteration in these elusive birds.
Collapse
Affiliation(s)
- Christian T. Heck
- Department of Biomedical SciencesOklahoma State University – Center for Health SciencesTulsaOKUSA
| | - Holly N. Woodward
- Department of Biomedical SciencesOklahoma State University – Center for Health SciencesTulsaOKUSA
| |
Collapse
|
16
|
Monfroy QT, Kundrát M, O’Connor JK, Hai‐Lu Y, Marone F, Stampanoni M, Šmajda B. Synchrotron microtomography‐based osteohistology of
Gansus yumenensis
: new data on the evolution of uninterrupted bone deposition in basal birds. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Quentin T. Monfroy
- Department of Animal Physiology Institute of Biology and Ecology Faculty of Sciences Pavol Jozef Šafárik University in Košice Košice Slovakia
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group Centre for Interdisciplinary Biosciences, Technology and Innovation Park Pavol Jozef Šafárik University in Košice Košice Slovakia
| | - Martin Kundrát
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group Centre for Interdisciplinary Biosciences, Technology and Innovation Park Pavol Jozef Šafárik University in Košice Košice Slovakia
| | | | - You Hai‐Lu
- Key Laboratory of Vertebrate Evolution and Human Origins Institute of Vertebrate Paleontology and Paleoanthropology Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Life and Paleoenvironment Beijing China
- College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
| | - Federica Marone
- Swiss Light Source Paul Scherrer Institut Villigen Switzerland
| | - Marco Stampanoni
- Swiss Light Source Paul Scherrer Institut Villigen Switzerland
- Institute for Biomedical Engineering ETH Zürich Zurich Switzerland
| | - Beňadik Šmajda
- Department of Animal Physiology Institute of Biology and Ecology Faculty of Sciences Pavol Jozef Šafárik University in Košice Košice Slovakia
| |
Collapse
|
17
|
Calderón T, Arnold W, Stalder G, Painer J, Köhler M. Labelling experiments in red deer provide a general model for early bone growth dynamics in ruminants. Sci Rep 2021; 11:14074. [PMID: 34234258 PMCID: PMC8263734 DOI: 10.1038/s41598-021-93547-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023] Open
Abstract
Growth rates importantly determine developmental time and are, therefore, a key variable of a species' life history. A widely used method to reconstruct growth rates and to estimate age at death in extant and particularly in fossil vertebrates is the analysis of bone tissue apposition rates. Lines of arrested growth (LAGs) are of special interest here, as they indicate a halt in bone growth. However, although of great importance, the time intervals between, and particularly the reason of growth arrests remains unknown. Therefore, experiments are increasingly called for to calibrate growth rates with tissue types and life history events, and to provide reliable measurements of the time involved in the formation of LAGs. Based on in vivo bone labelling, we calibrated periods of bone tissue apposition, growth arrest, drift and resorption over the period from birth to post-weaning in a large mammal, the red deer. We found that bone growth rates tightly matched the daily weight gain curve, i.e. decreased with age, with two discrete periods of growth rate disruption that coincided with the life history events birth and weaning, that were visually recognisable in bone tissue as either partial LAGs or annuli. Our study identified for the first time in a large mammal a general pattern for juvenile bone growth rates, including periods of growth arrest. The tight correlation between daily weight gain and bone tissue apposition suggests that the red deer bone growth model is valid for ruminants in general where the daily weight gain curve is comparable.
Collapse
Affiliation(s)
- Teresa Calderón
- Institut Català de Paleontologia Miquel Crusafont (ICP), Edifici Z, Universitat Autònoma de Barcelona, C/ de Les Columnes, s/n., 08193, Bellaterra, Barcelona, Spain.
| | - Walter Arnold
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Johanna Painer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Meike Köhler
- Institut Català de Paleontologia Miquel Crusafont (ICP), Edifici Z, Universitat Autònoma de Barcelona, C/ de Les Columnes, s/n., 08193, Bellaterra, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
18
|
Cullen TM, Canale JI, Apesteguía S, Smith ND, Hu D, Makovicky PJ. Osteohistological analyses reveal diverse strategies of theropod dinosaur body-size evolution. Proc Biol Sci 2020; 287:20202258. [PMID: 33234083 PMCID: PMC7739506 DOI: 10.1098/rspb.2020.2258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/22/2020] [Indexed: 08/24/2023] Open
Abstract
The independent evolution of gigantism among dinosaurs has been a topic of long-standing interest, but it remains unclear if gigantic theropods, the largest bipeds in the fossil record, all achieved massive sizes in the same manner, or through different strategies. We perform multi-element histological analyses on a phylogenetically broad dataset sampled from eight theropod families, with a focus on gigantic tyrannosaurids and carcharodontosaurids, to reconstruct the growth strategies of these lineages and test if particular bones consistently preserve the most complete growth record. We find that in skeletally mature gigantic theropods, weight-bearing bones consistently preserve extensive growth records, whereas non-weight-bearing bones are remodelled and less useful for growth reconstruction, contrary to the pattern observed in smaller theropods and some other dinosaur clades. We find a heterochronic pattern of growth fitting an acceleration model in tyrannosaurids, with allosauroid carcharodontosaurids better fitting a model of hypermorphosis. These divergent growth patterns appear phylogenetically constrained, representing extreme versions of the growth patterns present in smaller coelurosaurs and allosauroids, respectively. This provides the first evidence of a lack of strong mechanistic or physiological constraints on size evolution in the largest bipeds in the fossil record and evidence of one of the longest-living individual dinosaurs ever documented.
Collapse
Affiliation(s)
- Thomas M. Cullen
- Nauganee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Dr., Chicago, IL 60605, USA
- Paleontology, North Carolina Museum of Natural Sciences, 11 W. Jones St, Raleigh, NC 27601, USA
- Department of Biological Sciences, North Carolina State University, 100 Brooks Ave., Raleigh, NC 27607, USA
| | - Juan I. Canale
- CONICET, Área Laboratorio e Investigación, Museo Municipal ‘Ernesto Bachmann’, Villa El Chocón, Neuquén, Argentina
| | - Sebastián Apesteguía
- CONICET, Área de Paleontología, Fundación de Historia Natural Félix de Azara, CEBBAD, Universidad Maimónides, Hidalgo 775, 1405 Ciudad Autónoma de Buenos Aires, Argentina
| | - Nathan D. Smith
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007, USA
| | - Dongyu Hu
- Shenyang Normal University, Paleontological Museum of Liaoning, Key Laboratory for Evolution of Past Life and Change of Past Environment, Liaoning Province and Ministry of Natural Resources, 253 North Huanghe Street, 110034 Shenyang, People's Republic of China
| | - Peter J. Makovicky
- Nauganee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Dr., Chicago, IL 60605, USA
- Department of Earth and Environmental Sciences, University of Minnesota, 116 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Botha J. The paleobiology and paleoecology of South African Lystrosaurus. PeerJ 2020; 8:e10408. [PMID: 33282563 PMCID: PMC7694564 DOI: 10.7717/peerj.10408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Lystrosaurus was one of the few tetrapods to survive the end-Permian mass extinction (EPME), the most catastrophic biotic crisis in Phanerozoic history. The significant increased abundance of this genus during the post-extinction Early Triassic recovery period has made Lystrosaurus an iconic survivor taxon globally and ideal for studying changes in growth dynamics during a mass extinction. There is potential evidence of a Lilliput effect in Lystrosaurus in South Africa as the two Triassic species that became highly abundant after the EPME are relatively smaller than the two Permian species. In order to test this hypothesis a detailed examination of the body size and life history of Permo-Triassic Lystrosaurus is required. In this study, the basal skull length and growth patterns of the four South African Lystrosaurus species from the Karoo Basin, L. maccaigi, L. curvatus, L. murrayi and L. declivis, were examined using cranial measurements and bone histology. The basal skull length measurements show that the Triassic species are smaller than the Permian species and supports previous studies. The osteohistology examination of all four species reveal rapidly forming fibrolamellar bone tissues during early to mid-ontogeny. Growth marks are common in L. maccaigi and L. curvatus, but rare and inconsistent in the purely Triassic L. murrayi and L. declivis. The inconsistency of the growth marks in these latter two taxa suggests the presence of developmental plasticity. This feature may have been advantageous in allowing these species to alter their growth patterns in response to environmental cues in the post-extinction Early Triassic climate. An overall transition to slower forming parallel-fibered bone is observed in the largest individuals of L. maccaigi, but absent from the limb bones of the other species. The absence of such bone tissue or outer circumferential lamellae in L. curvatus, L. murrayi and L. declivis indicates that even the largest collected specimens do not represent fully grown individuals. Although L. murrayi and L. declivis are smaller in size, the lack of a growth asymptote in the largest specimens indicates that adult individuals would have been notably larger and may have been similar in size to large L. maccaigi and L. curvatus when fully grown. Thus, the previously described Lilliput effect, recognized by some authors in the Karoo fossil record (such as the therocephalian Moschorhinus kitchingi), may be a product of high juvenile excess mortality in the Triassic rather than a strict "dwarfing" of Lystrosaurus species. The lifestyle of Lystrosaurus was also re-examined. Although previous studies have proposed an aquatic lifestyle for the genus, the similar morphology and bone microanatomy to several other large terrestrial Permo-Triassic dicynodonts supports a fully terrestrial mode of life.
Collapse
Affiliation(s)
- Jennifer Botha
- Department of Karoo Palaeontology, National Museum, Bloemfontein, Free State, South Africa.,Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
20
|
Williams KA, Gostling NJ, Steer JW, Oreffo ROC, Schneider P. Quantifying intracortical bone microstructure: A critical appraisal of 2D and 3D approaches for assessing vascular canals and osteocyte lacunae. J Anat 2020; 238:653-668. [PMID: 33090473 PMCID: PMC7855084 DOI: 10.1111/joa.13325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 02/04/2023] Open
Abstract
Describing and quantifying vascular canal orientation and volume of osteocyte lacunae in bone is important in studies of bone growth, mechanics, health and disease. It is also an important element in analysing fossil bone in palaeohistology, key to understanding the growth, life and death of extinct animals. Often, bone microstructure is studied using two-dimensional (2D) sections, and three-dimensional (3D) shape and orientation of structures are estimated by modelling the structures using idealised geometries based on information from their cross sections. However, these methods rely on structures meeting strict geometric assumptions. Recently, 3D methods have been proposed which could provide a more accurate and robust approach to bone histology, but these have not been tested in direct comparison with their 2D counterparts in terms of accuracy and sensitivity to deviations from model assumptions. We compared 2D and 3D methodologies for estimating key microstructural traits using a combination of experimental and idealised test data sets. We generated populations of cylinders (canals) and ellipsoids (osteocyte lacunae), varying the cross-sectional aspect ratios of cylinders and orientation of ellipsoids to test sensitivity to deviations from cylindricality and longitudinal orientation, respectively. Using published methods, based on 2D sections and 3D data sets, we estimated cylinder orientation and ellipsoid volume. We applied the same methods to six CT data sets of duck cortical bone, using the full volumes for 3D measurements and single CT slices to represent 2D sections. Using in silico test data sets that did deviate from ideal cylinders and ellipsoids resulted in inaccurate estimates of cylinder or canal orientation, and reduced accuracy in estimates of ellipsoid and lacunar volume. These results highlight the importance of using appropriate 3D imaging and quantitative methods for quantifying volume and orientation of 3D structures and offer approaches to significantly enhance our understanding of bone physiology based on accurate measures for bone microstructures.
Collapse
Affiliation(s)
- Katherine A. Williams
- Bioengineering Science Research GroupFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Neil J. Gostling
- School of Biological SciencesFaculty of Environmental and Biological SciencesUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Joshua W. Steer
- Bioengineering Science Research GroupFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Richard O. C. Oreffo
- Bone and Joint Research GroupCentre for Human DevelopmentStem Cells and RegenerationInstitute of Developmental SciencesFaculty of MedicineUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Philipp Schneider
- Bioengineering Science Research GroupFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
21
|
Schachner ER, Irmis RB, Huttenlocker AK, Sanders K, Cieri RL, Fox M, Nesbitt SJ. Osteology of the Late Triassic Bipedal Archosaur Poposaurus gracilis (Archosauria: Pseudosuchia) from Western North America. Anat Rec (Hoboken) 2020; 303:874-917. [PMID: 31814308 DOI: 10.1002/ar.24298] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 11/10/2022]
Abstract
Poposaurus gracilis is a bipedal pseudosuchian archosaur that has been poorly understood since the discovery of the holotype fragmentary partial postcranial skeleton in 1915. Poposaurus. gracilis is a member of Poposauroidea, an unusually morphologically divergent clade of pseudosuchians containing taxa that are bipedal, quadrupedal, toothed, edentulous, and some individuals with elongated thoracic neural spines (i.e., sails). In 2003, a well preserved, fully articulated, and nearly complete postcranial skeleton of P. gracilis was discovered with some fragmentary cranial elements from the Upper Triassic Chinle Formation of Grand Staircase-Escalante National Monument of southern Utah, USA. The aim of this work is to describe the osteology of this specimen in detail and compare P. gracilis to other closely related pseudosuchian archosaurs. The open neurocentral sutures throughout the majority of the vertebral column, the small size of this individual, and the presence of seven evenly spaced cyclic growth marks in the histologically sectioned femur indicate that this specimen was a skeletally immature juvenile, or subadult when it died. The pes of P. gracilis contains multiple skeletal adaptations and osteological correlates for soft tissue structures that support a hypothesis of digitigrady for this taxon. When coupled with the numerous postcranial characters associated with cursoriality, and the many anatomical traits convergent with theropod dinosaurs, this animal likely occupied a similar ecological niche with contemporaneous theropods during the Late Triassic Period. Anat Rec, 303:874-917, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Randall B Irmis
- Natural History Museum of Utah, University of Utah, Salt Lake City, Utah
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah
| | - Adam K Huttenlocker
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kent Sanders
- Department of Diagnostic Imaging, North Canyon Medical Center, Gooding, Idaho
| | - Robert L Cieri
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Marilyn Fox
- Department of Vertebrate Paleontology, Yale Peabody Museum, Yale University, New Haven, Connecticut
| | | |
Collapse
|
22
|
Davesne D, Schmitt AD, Fernandez V, Benson RBJ, Sanchez S. Three-dimensional characterization of osteocyte volumes at multiple scales, and its relationship with bone biology and genome evolution in ray-finned fishes. J Evol Biol 2020; 33:808-830. [PMID: 32144878 DOI: 10.1111/jeb.13612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Osteocytes, cells embedded within the bone mineral matrix, inform on key aspects of vertebrate biology. In particular, a relationship between volumes of the osteocytes and bone growth and/or genome size has been proposed for several tetrapod lineages. However, the variation in osteocyte volume across different scales is poorly characterized and mostly relies on incomplete, two-dimensional information. In this study, we characterize the variation of osteocyte volumes in ray-finned fishes (Actinopterygii), a clade including more than half of modern vertebrate species in which osteocyte biology is poorly known. We use X-ray synchrotron micro-computed tomography (SRµCT) to achieve a three-dimensional visualization of osteocyte lacunae and direct measurement of their size (volumes). Our specimen sample is designed to characterize variation in osteocyte lacuna morphology at three scales: within a bone, among the bones of one individual and among species. At the intra-bone scale, we find that osteocyte lacunae vary noticeably in size between zones of organized and woven bone (being up to six times larger in woven bone), and across cyclical bone deposition. This is probably explained by differences in bone deposition rate, with larger osteocyte lacunae contained in bone that deposits faster. Osteocyte lacuna volumes vary 3.5-fold among the bones of an individual, and this cannot readily be explained by variation in bone growth rate or other currently observable factors. Finally, we find that genome size provides the best explanation of variation in osteocyte lacuna volume among species: actinopterygian taxa with larger genomes (polyploid taxa in particular) have larger osteocyte lacunae (with a ninefold variation in median osteocyte volume being measured). Our findings corroborate previous two-dimensional studies in tetrapods that also observed similar patterns of intra-individual variation and found a correlation with genome size. This opens new perspectives for further studies on bone evolution, physiology and palaeogenomics in actinopterygians, and vertebrates as a whole.
Collapse
Affiliation(s)
- Donald Davesne
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Armin D Schmitt
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Vincent Fernandez
- European Synchrotron Radiation Facility, Grenoble, France.,Imaging and Analysis Centre, Natural History Museum, London, UK
| | | | - Sophie Sanchez
- European Synchrotron Radiation Facility, Grenoble, France.,Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Jentgen-Ceschino B, Stein K, Fischer V. Case study of radial fibrolamellar bone tissues in the outer cortex of basal sauropods. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190143. [PMID: 31928196 DOI: 10.1098/rstb.2019.0143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The histology of sauropod long bones often appears uniform and conservative along their evolutionary tree. One of the main aspects of their bone histology is to exhibit a fibrolamellar complex in the cortex of their long bones. Here, we report another bone tissue, the radial fibrolamellar bone (RFB), in the outer cortex of the humeri of a young adult cf. Isanosaurus (Early to Late Jurassic, Thailand) and an adult Spinophorosaurus nigerensis (Early to Middle Jurassic, Niger) that do not exhibit any pathological feature on the bone surface. Its location within the cortex is unexpected, because RFB is a rapidly deposited bone tissue that would rather be expected early in the ontogeny. A palaeopathological survey was conducted for these sampled specimens. Observed RFB occurrences are regarded as spiculated periosteal reactive bone, which is an aggressive form of periosteal reaction. A 'hair-on-end' pattern of neoplasmic origin (resembling a Ewing's sarcoma) is favoured for cf. Isanosaurus, while a sunburst pattern of viral or neoplasmic origin (resembling an avian osteopetrosis or haemangioma) is favoured for Spinophorosaurus. This study highlights the importance of bone histology in assessing the frequency and nature of palaeopathologies. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Benjamin Jentgen-Ceschino
- Department of Geology, Université de Liège, 14 Allée du 6 Aout, Liège 4000, Belgium.,Earth System Science - AMGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Koen Stein
- Earth System Science - AMGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.,Royal Belgian Institute of Natural Sciences, Directorate 'Earth and History of Life', Rue Vautier 29, 1000 Brussels, Belgium
| | - Valentin Fischer
- Department of Geology, Université de Liège, 14 Allée du 6 Aout, Liège 4000, Belgium
| |
Collapse
|
24
|
Grunmeier O, D'Emic MD. Scaling of statically derived osteocyte lacunae in extant birds: implications for palaeophysiological reconstruction. Biol Lett 2019; 15:20180837. [PMID: 30940024 DOI: 10.1098/rsbl.2018.0837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Osteocytes are mature versions of osteoblasts, bone-forming cells that develop in two ways: via 'static' osteogenesis, differentiating and ossifying tissue in situ to form a scaffold upon which other bone can form, or 'dynamic' osteogenesis, migrating to infill or lay down bone around neurovasculature. A previous study regressed the volume of osteocyte lacunae derived from dynamic osteogenesis (DO) of a broad sample of extant bird species against body mass, the growth rate constant ( k), mass-specific metabolic rate, genome size, and erythrocyte size. There were significant relationships with body mass, growth rate, metabolic rate, and genome size, with the latter being the strongest. Using the same avian histological dataset, we measured over 3800 osteocyte lacunar axes derived from static osteogenesis (SO) in order to look for differences in the strength of form-function relationships inferred for DO-derived lacunae at the cellular and tissue levels. The relationship between osteocyte lacunar volume and body mass was stronger when measuring SO lacunae, whereas relationships between osteocyte lacunar volume versus growth rate and basal metabolic rate disappeared. The relationship between osteocyte lacuna volume and genome size remained significant and moderately strong when measuring SO lacunae, whereas osteocyte lacuna volume was still unrelated to erythrocyte size. Our results indicate that growth and metabolic rate signals are contained in avian DO but not SO osteocyte lacunae, suggesting that the former should be used in estimating these parameters in extinct animals.
Collapse
Affiliation(s)
- Orvil Grunmeier
- Department of Biology, Adelphi University , Garden City, NY 11530 , USA
| | - Michael D D'Emic
- Department of Biology, Adelphi University , Garden City, NY 11530 , USA
| |
Collapse
|
25
|
Boitsova EA, Skutschas PP, Sennikov AG, Golubev VK, Masuytin VV, Masuytina OA. Bone histology of two pareiasaurs from Russia (Deltavjatia rossica and Scutosaurus karpinskii) with implications for pareiasaurian palaeobiology. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Pareiasaurs were one of the main clades of large herbivorous tetrapods in Middle–Late Permian continental ecosystems. Despite abundant pareiasaur material, many aspects of their biology remain poorly known. This paper provides a description of ontogenetic changes in long-bone and rib microanatomy/histology of two Upper Permian pareiasaurs from Russia, Deltavjatia rossica and Scutosaurus karpinskii. Analysis of a growth series of bones of Deltavjatia and Scutosaurus revealed rapid and cyclical growth early in ontogeny (as indicated by fast-growing fibrolamellar bone with lines of arrested growth). This was followed by a change in the growth pattern (as indicated by an outer avascular layer of lamellar bone in the cortex) and a decrease in the growth rate after 50% of maximum body size was reached in Deltavjatia and 75% in Scutosaurus (larger body sizes in Scutosaurus were attained through an extended initial period of fast skeletal growth). The study confirms that the bones of all pareiasaurs are histologically and microanatomically uniform [spongious (porous) microstructure and a very thin compact cortex] and indicate a similar growth strategy (a short initial period of rapid and cyclical growth followed by a long period of slow growth). The microanatomical characteristics of pareiasaurs do not provide a clear indication of their lifestyle.
Collapse
Affiliation(s)
- Elizaveta A Boitsova
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Pavel P Skutschas
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Andrey G Sennikov
- Borissiak Paleontological Institute of the Russian Academy of Sciences, Moscow, Russia
- Kazan Federal University, Kazan, Tatarstan, Russia
| | - Valeriy K Golubev
- Borissiak Paleontological Institute of the Russian Academy of Sciences, Moscow, Russia
- Kazan Federal University, Kazan, Tatarstan, Russia
| | | | | |
Collapse
|
26
|
Faure-Brac MG, Pelissier F, Cubo J. The influence of plane of section on the identification of bone tissue types in amniotes with implications for paleophysiological inferences. J Morphol 2019; 280:1282-1291. [DOI: 10.1002/jmor.21030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/28/2019] [Accepted: 06/09/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Mathieu G. Faure-Brac
- Sorbonne Université, MNHN, CNRS, Centre de Recherche en Paléontologie-Paris (CR2P); Paris France
| | - François Pelissier
- Sorbonne Université, MNHN, CNRS, Centre de Recherche en Paléontologie-Paris (CR2P); Paris France
| | - Jorge Cubo
- Sorbonne Université, MNHN, CNRS, Centre de Recherche en Paléontologie-Paris (CR2P); Paris France
| |
Collapse
|
27
|
Griffin CT, Bano LS, Turner AH, Smith ND, Irmis RB, Nesbitt SJ. Integrating gross morphology and bone histology to assess skeletal maturity in early dinosauromorphs: new insights from Dromomeron (Archosauria: Dinosauromorpha). PeerJ 2019; 7:e6331. [PMID: 30775169 PMCID: PMC6375289 DOI: 10.7717/peerj.6331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding growth patterns is central to properly interpreting paleobiological signals in tetrapods, but assessing skeletal maturity in some extinct clades may be difficult when growth patterns are poorly constrained by a lack of ontogenetic series. To overcome this difficulty in assessing the maturity of extinct archosaurian reptiles—crocodylians, birds and their extinct relatives—many studies employ bone histology to observe indicators of the developmental stage reached by a given individual. However, the relationship between gross morphological and histological indicators of maturity has not been examined in most archosaurian groups. In this study, we examined the gross morphology of a hypothesized growth series of Dromomeron romeri femora (96.6–144.4 mm long), the first series of a non-dinosauriform dinosauromorph available for such a study. We also histologically sampled several individuals in this growth series. Previous studies reported that D. romeri lacks well-developed rugose muscle scars that appear during ontogeny in closely related dinosauromorph taxa, so integrating gross morphology and histological signal is needed to determine reliable maturity indicators for early bird-line archosaurs. We found that, although there are small, linear scars indicating muscle attachment sites across the femur, the only rugose muscle scar that appears during ontogeny is the attachment of the M. caudofemoralis longus, and only in the largest-sampled individual. This individual is also the only femur with histological indicators that asymptotic size had been reached, although smaller individuals possess some signal of decreasing growth rates (e.g., decreasing vascular density). The overall femoral bone histology of D. romeri is similar to that of other early bird-line archosaurs (e.g., woven-bone tissue, moderately to well-vascularized, longitudinal vascular canals). All these data indicate that the lack of well-developed femoral scars is autapomorphic for this species, not simply an indication of skeletal immaturity. We found no evidence of the high intraspecific variation present in early dinosaurs and other dinosauriforms, but a limited sample size of other early bird-line archosaur growth series make this tentative. The evolutionary history and phylogenetic signal of gross morphological features must be considered when assessing maturity in extinct archosaurs and their close relatives, and in some groups corroboration with bone histology or with better-known morphological characters is necessary.
Collapse
Affiliation(s)
| | - Lauren S Bano
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Nathan D Smith
- The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Randall B Irmis
- Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA.,Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
28
|
Palaeohistology and life history evolution in cave bears, Ursus spelaeus sensu lato. PLoS One 2018; 13:e0206791. [PMID: 30462690 PMCID: PMC6248942 DOI: 10.1371/journal.pone.0206791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/19/2018] [Indexed: 01/29/2023] Open
Abstract
The abundance of skeletal remains of cave bears in Pleistocene deposits can offer crucial information on the biology and life history of this megafaunal element. The histological study of 62 femora from 23 different European localities and comparisons with specimens of five extant ursid species revealed novel data on tissue types and growth patterns. Cave bear’s femoral bone microstructure is characterized by a fibrolamellar complex with increasing amounts of parallel-fibered and lamellar bone towards the outer cortex. Remodelling of the primary bone tissue initially occurs close to the perimedullary margin of the bone cortex around the linea aspera. Although similar histological traits can be observed in many extant bear species, the composition of the fibrolamellar complex can vary greatly. Cave bears reached skeletal maturity between the ages of 10 and 14, which is late compared to other bear species. There is a significant correlation between altitude and growth, which reflects the different body sizes of cave bears from different altitudes.
Collapse
|
29
|
McPhee BW, Benson RB, Botha-Brink J, Bordy EM, Choiniere JN. A Giant Dinosaur from the Earliest Jurassic of South Africa and the Transition to Quadrupedality in Early Sauropodomorphs. Curr Biol 2018; 28:3143-3151.e7. [DOI: 10.1016/j.cub.2018.07.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/30/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
|
30
|
Bo X, Wu M, Xiao H, Wang H. Transcriptome analyses reveal molecular mechanisms that regulate endochondral ossification in amphibian Bufo gargarizans during metamorphosis. Biochim Biophys Acta Gen Subj 2018; 1862:2632-2644. [PMID: 30076880 DOI: 10.1016/j.bbagen.2018.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND A developmental transition from aquatic to terrestrial existence is one of the most important events in the evolution of terrestrial vertebrates. Amphibian metamorphosis is a classic model to study this transition. The development of the vertebrate skeleton can reflect its evolutionary history. Endochondral ossification serves a vital role in skeletal development. Thus, we sought to unravel molecular mechanisms that regulate endochondral ossification during Bufo gargarizans metamorphosis. METHODS The alizarin red-alcian blue double staining method was used to visualize the skeletal development of B. gargarizans during metamorphosis. RNA sequencing (RNA-seq) was used to explore the transcriptome of B. gargarizans in four key developmental stages during metamorphosis. Real-time quantitative PCR (RT-qPCR) was used to validate the expression patterns of endochondral ossification related genes. RESULTS Endochondral ossification increased gradually in skeletal system of B. gargarizans during metamorphosis. A total of 137,264 unigenes were assembled and 44,035 unigenes were annotated. 10,352 differentially expressed genes (DEGs) were further extracted among four key developmental stages. In addition, 28 endochondral ossification related genes were found by searching for DEG libraries in B. gargarizans. Of the 28 genes, 10 genes were validated using RT-qPCR. CONCLUSIONS The exquisite coordination of the 28 genes is essential for regulation of endochondral ossification during B. gargarizans metamorphosis. GENERAL SIGNIFICANCE The present study will not only provide an invaluable genomic resource and background for further research of endochondral ossification in amphibians but will also aid in enhancing our understanding of the evolution of terrestrial vertebrates.
Collapse
Affiliation(s)
- Xiaoxue Bo
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui Xiao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
31
|
Legendre LJ, Botha-Brink J. Digging the compromise: investigating the link between limb bone histology and fossoriality in the aardvark ( Orycteropus afer). PeerJ 2018; 6:e5216. [PMID: 30018860 PMCID: PMC6045922 DOI: 10.7717/peerj.5216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/21/2018] [Indexed: 01/07/2023] Open
Abstract
Bone microstructure has long been known as a powerful tool to investigate lifestyle-related biomechanical constraints, and many studies have focused on identifying such constraints in the limb bones of aquatic or arboreal mammals in recent years. The limb bone microstructure of fossorial mammals, however, has not been extensively described. Furthermore, so far, studies on this subject have always focused on the bone histology of small burrowers, such as subterranean rodents or true moles. Physiological constraints associated with digging, however, are known to be strongly influenced by body size, and larger burrowers are likely to exhibit a histological profile more conspicuously influenced by fossorial activity. Here, we describe for the first time the limb bone histology of the aardvark (Orycteropus afer), the largest extant burrowing mammal. The general pattern is very similar for all six sampled limb bones (i.e., humerus, radius, ulna, femur, tibia, and fibula). Most of the cortex at midshaft is comprised of compacted coarse cancellous bone (CCCB), an endosteal tissue formed in the metaphyses through the compaction of bony trabeculae. Conversely, the periosteal bone is highly resorbed in all sections, and is reduced to a thin outer layer, suggesting a pattern of strong cortical drift. This pattern contrasts with that of most large mammals, in which cortical bone is of mostly periosteal origin, and CCCB, being a very compliant bone tissue type, is usually resorbed or remodeled during ontogeny. The link between histology and muscle attachment sites, as well as the influence of the semi-arid environment and ant-eating habits of the aardvark on its bone microstructure, are discussed. We hypothesize that the unusual histological profile of the aardvark is likely the outcome of physiological constraints due to both extensive digging behavior and strong metabolic restrictions. Adaptations to fossoriality are thus the result of a physiological compromise between limited food availability, an environment with high temperature variability, and the need for biomechanical resistance during digging. These results highlight the difficulties of deciphering all factors potentially involved in bone formation in fossorial mammals. Even though the formation and maintaining of CCCB through ontogeny in the aardvark cannot be unambiguously linked with its fossorial habits, a high amount of CCCB has been observed in the limb bones of other large burrowing mammals. The inclusion of such large burrowers in future histological studies is thus likely to improve our understanding of the functional link between bone growth and fossorial lifestyle in an evolutionary context.
Collapse
Affiliation(s)
- Lucas J Legendre
- Karoo Palaeontology Department, National Museum, Bloemfontein, South Africa
| | - Jennifer Botha-Brink
- Karoo Palaeontology Department, National Museum, Bloemfontein, South Africa.,Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
32
|
Botha-Brink J, Bento Soares M, Martinelli AG. Osteohistology of Late Triassic prozostrodontian cynodonts from Brazil. PeerJ 2018; 6:e5029. [PMID: 29967724 PMCID: PMC6026457 DOI: 10.7717/peerj.5029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/31/2018] [Indexed: 11/20/2022] Open
Abstract
The Prozostrodontia includes a group of Late Triassic-Early Cretaceous eucynodonts plus the clade Mammaliaformes, in which Mammalia is nested. Analysing their growth patterns is thus important for understanding the evolution of mammalian life histories. Obtaining material for osteohistological analysis is difficult due to the rare and delicate nature of most of the prozostrodontian taxa, much of which comprises mostly of crania or sometimes even only teeth. Here we present a rare opportunity to observe the osteohistology of several postcranial elements of the basal prozostrodontid Prozostrodon brasiliensis, the tritheledontid Irajatherium hernandezi, and the brasilodontids Brasilodon quadrangularis and Brasilitherium riograndensis from the Late Triassic of Brazil (Santa Maria Supersequence). Prozostrodon and Irajatherium reveal similar growth patterns of rapid early growth with annual interruptions later in ontogeny. These interruptions are associated with wide zones of slow growing bone tissue. Brasilodon and Brasilitherium exhibit a mixture of woven-fibered bone tissue and slower growing parallel-fibered and lamellar bone. The slower growing bone tissues are present even during early ontogeny. The relatively slower growth in Brasilodon and Brasilitherium may be related to their small body size compared to Prozostrodon and Irajatherium. These brasilodontids also exhibit osteohistological similarities with the Late Triassic/Early Jurassic mammaliaform Morganucodon and the Late Cretaceous multituberculate mammals Kryptobaatar and Nemegtbaatar. This may be due to similar small body sizes, but may also reflect their close phylogenetic affinities as Brasilodon and Brasilitherium are the closest relatives to Mammaliaformes. However, when compared with similar-sized extant placental mammals, they may have grown more slowly to adult size as their osteohistology shows it took more than one year for growth to attenuate. Thus, although they exhibit rapid juvenile growth, the small derived, brasilodontid prozostrodontians still exhibit an extended growth period compared to similar-sized extant mammals.
Collapse
Affiliation(s)
- Jennifer Botha-Brink
- Department of Karoo Palaeontology, National Museum, Bloemfontein, South Africa.,Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - Marina Bento Soares
- Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Agustín G Martinelli
- Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
33
|
Fleischle CV, Wintrich T, Sander PM. Quantitative histological models suggest endothermy in plesiosaurs. PeerJ 2018; 6:e4955. [PMID: 29892509 PMCID: PMC5994164 DOI: 10.7717/peerj.4955] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022] Open
Abstract
Background Plesiosaurs are marine reptiles that arose in the Late Triassic and survived to the Late Cretaceous. They have a unique and uniform bauplan and are known for their very long neck and hydrofoil-like flippers. Plesiosaurs are among the most successful vertebrate clades in Earth’s history. Based on bone mass decrease and cosmopolitan distribution, both of which affect lifestyle, indications of parental care, and oxygen isotope analyses, evidence for endothermy in plesiosaurs has accumulated. Recent bone histological investigations also provide evidence of fast growth and elevated metabolic rates. However, quantitative estimations of metabolic rates and bone growth rates in plesiosaurs have not been attempted before. Methods Phylogenetic eigenvector maps is a method for estimating trait values from a predictor variable while taking into account phylogenetic relationships. As predictor variable, this study employs vascular density, measured in bone histological sections of fossil eosauropterygians and extant comparative taxa. We quantified vascular density as primary osteon density, thus, the proportion of vascular area (including lamellar infillings of primary osteons) to total bone area. Our response variables are bone growth rate (expressed as local bone apposition rate) and resting metabolic rate (RMR). Results Our models reveal bone growth rates and RMRs for plesiosaurs that are in the range of birds, suggesting that plesiosaurs were endotherm. Even for basal eosauropterygians we estimate values in the range of mammals or higher. Discussion Our models are influenced by the availability of comparative data, which are lacking for large marine amniotes, potentially skewing our results. However, our statistically robust inference of fast growth and fast metabolism is in accordance with other evidence for plesiosaurian endothermy. Endothermy may explain the success of plesiosaurs consisting in their survival of the end-Triassic extinction event and their global radiation and dispersal.
Collapse
Affiliation(s)
- Corinna V Fleischle
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Tanja Wintrich
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - P Martin Sander
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.,Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, USA
| |
Collapse
|
34
|
Prondvai E, Godefroit P, Adriaens D, Hu DY. Intraskeletal histovariability, allometric growth patterns, and their functional implications in bird-like dinosaurs. Sci Rep 2018; 8:258. [PMID: 29321475 PMCID: PMC5762864 DOI: 10.1038/s41598-017-18218-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/06/2017] [Indexed: 12/30/2022] Open
Abstract
With their elongated forelimbs and variable aerial skills, paravian dinosaurs, a clade also comprising modern birds, are in the hotspot of vertebrate evolutionary research. Inferences on the early evolution of flight largely rely on bone and feather morphology, while osteohistological traits are usually studied to explore life-history characteristics. By sampling and comparing multiple homologous fore- and hind limb elements, we integrate for the first time qualitative and quantitative osteohistological approaches to get insight into the intraskeletal growth dynamics and their functional implications in five paravian dinosaur taxa, Anchiornis, Aurornis, Eosinopteryx, Serikornis, and Jeholornis. Our qualitative assessment implies a considerable diversity in allometric/isometric growth patterns among these paravians. Quantitative analyses show that neither taxa nor homologous elements have characteristic histology, and that ontogenetic stage, element size and the newly introduced relative element precocity only partially explain the diaphyseal histovariability. Still, Jeholornis, the only avialan studied here, is histologically distinct from all other specimens in the multivariate visualizations raising the hypothesis that its bone tissue characteristics may be related to its superior aerial capabilities compared to the non-avialan paravians. Our results warrant further research on the osteohistological correlates of flight and developmental strategies in birds and bird-like dinosaurs.
Collapse
Affiliation(s)
- Edina Prondvai
- Evolutionary Morphology of Vertebrates, Department of Biology, Ghent University, Ghent, Belgium.
| | - Pascal Godefroit
- Royal Belgian Institute of Natural Sciences, Directorate 'Earth and History of Life', Brussels, Belgium
| | - Dominique Adriaens
- Evolutionary Morphology of Vertebrates, Department of Biology, Ghent University, Ghent, Belgium
| | - Dong-Yu Hu
- Paleontological Institute, Shenyang Normal University, Key Laboratory for Evolution of Past Life in Northeast Asia, Ministry of Land and Resources, Shenyang, China
| |
Collapse
|
35
|
Wintrich T, Hayashi S, Houssaye A, Nakajima Y, Sander PM. A Triassic plesiosaurian skeleton and bone histology inform on evolution of a unique body plan. SCIENCE ADVANCES 2017; 3:e1701144. [PMID: 29242826 PMCID: PMC5729018 DOI: 10.1126/sciadv.1701144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/16/2017] [Indexed: 05/31/2023]
Abstract
Secondary marine adaptation is a major pattern in amniote evolution, accompanied by specific bone histological adaptations. In the aftermath of the end-Permian extinction, diverse marine reptiles evolved early in the Triassic. Plesiosauria is the most diverse and one of the longest-lived clades of marine reptiles, but its bone histology is least known among the major marine amniote clades. Plesiosaurians had a unique and puzzling body plan, sporting four evenly shaped pointed flippers and (in most clades) a small head on a long, stiffened neck. The flippers were used as hydrofoils in underwater flight. A wide temporal, morphological, and morphometric gap separates plesiosaurians from their closest relatives (basal pistosaurs, Bobosaurus). For nearly two centuries, plesiosaurians were thought to appear suddenly in the earliest Jurassic after the end-Triassic extinctions. We describe the first Triassic plesiosaurian, from the Rhaetian of Germany, and compare its long bone histology to that of later plesiosaurians sampled for this study. The new taxon is recovered as a basal member of the Pliosauridae, revealing that diversification of plesiosaurians was a Triassic event and that several lineages must have crossed into the Jurassic. Plesiosaurian histology is strikingly uniform and different from stem sauropterygians. Histology suggests the concurrent evolution of fast growth and an elevated metabolic rate as an adaptation to cruising and efficient foraging in the open sea. The new specimen corroborates the hypothesis that open ocean life of plesiosaurians facilitated their survival of the end-Triassic extinctions.
Collapse
Affiliation(s)
- Tanja Wintrich
- Bereich Paläontologie, Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, Nussallee 8, 53115 Bonn, Germany
| | - Shoji Hayashi
- Osaka Museum of Natural History, Nagai Park 1-23, Higashi-Sumiyoshi-ku, Osaka 546-0034, Japan
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Alexandra Houssaye
- UMR 7179 CNRS/Muséum National d’Histoire Naturelle, Départment Adaptations du Vivant, 57 rue Cuvier CP-55, 75005 Paris, France
| | - Yasuhisa Nakajima
- Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8564, Japan
| | - P. Martin Sander
- Bereich Paläontologie, Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, Nussallee 8, 53115 Bonn, Germany
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
| |
Collapse
|
36
|
Cerda IA, Chinsamy A, Pol D, Apaldetti C, Otero A, Powell JE, Martínez RN. Novel insight into the origin of the growth dynamics of sauropod dinosaurs. PLoS One 2017; 12:e0179707. [PMID: 28654696 PMCID: PMC5487048 DOI: 10.1371/journal.pone.0179707] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 06/02/2017] [Indexed: 11/19/2022] Open
Abstract
Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies.
Collapse
Affiliation(s)
- Ignacio Alejandro Cerda
- CONICET-Instituto de Investigaciónen Paleobiología y Geología, Universidad Nacional de Río Negro, Museo Carlos Ameghino, Cipolletti, Río Negro, Argentina
| | - Anusuya Chinsamy
- University of Cape Town, Department of Biological Sciences, South Africa
| | - Diego Pol
- CONICET- Museo Paleontológico Egidio Feruglio, Trelew, Chubut, Argentina
| | - Cecilia Apaldetti
- CONICET- Museo Paleontológico Egidio Feruglio, Trelew, Chubut, Argentina
- IMCN-Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| | - Alejandro Otero
- CONICET-División Paleontología de Vertebrados, Museo de La Plata, La Plata, Argentina
| | - Jaime Eduardo Powell
- CONICET-Facultad de Ciencias Naturales Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Ricardo Nestor Martínez
- IMCN-Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| |
Collapse
|
37
|
Warshaw J, Bromage TG, Terranova CJ, Enlow DH. Collagen Fiber Orientation in Primate Long Bones. Anat Rec (Hoboken) 2017; 300:1189-1207. [PMID: 28205407 DOI: 10.1002/ar.23571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 01/31/2016] [Accepted: 02/10/2016] [Indexed: 11/07/2022]
Abstract
Studies of variation in orientation of collagen fibers within bone have lead to the proposition that these are preferentially aligned to accommodate different kinds of load, with tension best resisted by fibers aligned longitudinally relative to the load, and compression best resisted by transversely aligned fibers. However, previous studies have often neglected to consider the effect of developmental processes, including constraints on collagen fiber orientation (CFO), particularly in primary bone. Here we use circularly polarized light microscopy to examine patterns of CFO in cross-sections from the midshaft femur, humerus, tibia, radius, and ulna in a range of living primate taxa with varied body sizes, phylogenetic relationships and positional behaviors. We find that a preponderance of longitudinally oriented collagen is characteristic of both periosteal primary and intracortically remodeled bone. Where variation does occur among groups, it is not simply understood via interpretations of mechanical loads, although prioritized adaptations to tension and/or shear are considered. While there is some suggestion that CFO may correlate with body size, this relationship is neither consistent nor easily explicable through consideration of size-related changes in mechanical adaptation. The results of our study indicate that there is no clear relationship between CFO and phylogenetic status. One of the principle factors accounting for the range of variation that does exist is primary tissue type, where slower depositing bone is more likely to comprise a larger proportion of oblique to transverse collagen fibers. Anat Rec, 300:1189-1207, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Johanna Warshaw
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Timothy G Bromage
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York.,Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York
| | - Carl J Terranova
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Donald H Enlow
- Thomas Hill Emeritus Professor, Department of Orthodontics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
38
|
Cubo J, Hui M, Clarac F, Quilhac A. Static osteogenesis does not precede dynamic osteogenesis in periosteal ossification of Pleurodeles
(Caudata, Amphibia) and Pogona
(Squamata, Lepidosauria). J Morphol 2017; 278:621-628. [DOI: 10.1002/jmor.20659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/15/2016] [Accepted: 01/06/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Jorge Cubo
- Sorbonne Universités UPMC Univ Paris 6, CNRS, Institut des Sciences de la Terre de Paris (ISTeP); 4 place Jussieu - BC 19 Paris 75005 France
| | - Mylaine Hui
- Sorbonne Universités UPMC Univ Paris 6, CNRS, Institut des Sciences de la Terre de Paris (ISTeP); 4 place Jussieu - BC 19 Paris 75005 France
| | - François Clarac
- Sorbonne Universités UPMC Univ Paris 6, CNRS, Institut des Sciences de la Terre de Paris (ISTeP); 4 place Jussieu - BC 19 Paris 75005 France
- Département Histoire de la Terre, Museum National D'histoire Naturelle; UMR 7207 (CR2P), Sorbonne Universités, Muséum National d'Histoire Naturelle (MNHN)/CNRS/UPMC; Bâtiment De Géologie Paris Cedex 05 F-75231 France
| | - Alexandra Quilhac
- Sorbonne Universités UPMC Univ Paris 6, CNRS, Institut des Sciences de la Terre de Paris (ISTeP); 4 place Jussieu - BC 19 Paris 75005 France
| |
Collapse
|
39
|
Nacarino-Meneses C, Jordana X, Köhler M. Histological variability in the limb bones of the Asiatic wild ass and its significance for life history inferences. PeerJ 2016; 4:e2580. [PMID: 27761353 PMCID: PMC5068390 DOI: 10.7717/peerj.2580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/18/2016] [Indexed: 02/02/2023] Open
Abstract
The study of bone growth marks (BGMs) and other histological traits of bone tissue provides insights into the life history of present and past organisms. Important life history traits like longevity or age at maturity, which could be inferred from the analysis of these features, form the basis for estimations of demographic parameters that are essential in ecological and evolutionary studies of vertebrates. Here, we study the intraskeletal histological variability in an ontogenetic series of Asiatic wild ass (Equus hemionus) in order to assess the suitability of several skeletal elements to reconstruct the life history strategy of the species. Bone tissue types, vascular canal orientation and BGMs have been analyzed in 35 cross-sections of femur, tibia and metapodial bones of 9 individuals of different sexes, ages and habitats. Our results show that the number of BGMs recorded by the different limb bones varies within the same specimen. Our study supports that the femur is the most reliable bone for skeletochronology, as already suggested. Our findings also challenge traditional beliefs with regard to the meaning of deposition of the external fundamental system (EFS). In the Asiatic wild ass, this bone tissue is deposited some time after skeletal maturity and, in the case of the femora, coinciding with the reproductive maturity of the species. The results obtained from this research are not only relevant for future studies in fossil Equus, but could also contribute to improve the conservation strategies of threatened equid species.
Collapse
Affiliation(s)
- Carmen Nacarino-Meneses
- Department of Evolutionary Biology, Institut Català de Paleontologia Miquel Crusafont (ICP) , Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona , Spain
| | - Xavier Jordana
- Department of Evolutionary Biology, Institut Català de Paleontologia Miquel Crusafont (ICP) , Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona , Spain
| | - Meike Köhler
- Department of Evolutionary Biology, Institut Català de Paleontologia Miquel Crusafont (ICP), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Animal Biology, Plant Biology and Ecology (BABVE), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
40
|
Dumont M, de Buffrénil V, Miján I, Lambert O. Structure and growth pattern of the bizarre hemispheric prominence on the rostrum of the fossil beaked whaleGlobicetus hiberus(Mammalia, Cetacea, Ziphiidae). J Morphol 2016; 277:1292-308. [DOI: 10.1002/jmor.20575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/01/2016] [Accepted: 06/18/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Maïtena Dumont
- Departement Ecologie et Gestion de la Biodiversite; UMR CNRS/MNHN 7179, ‘Mécanismes Adaptatifs: des Organismes aux Communautés’; 55 rue Buffon Paris 75005 France
| | - Vivian de Buffrénil
- Département Histoire de la Terre; Muséum National d'Histoire Naturelle, CNRS-UMR 7207 (CR2P), Bâtiment de Géologie CC 48; 57 rue Cuvier F-75231 Paris Cedex 05 France
| | - Ismael Miján
- Departement Marine Mammal; Sociedade Galega de Historia Natural; Praza De Canido S/N E-15401 Ferrol España
| | - Olivier Lambert
- Institut Royal des Sciences Naturelles de Belgique; D.O. Terre et Histoire de la Vie; 29 rue Vautier B-1000 Bruxelles Belgique
| |
Collapse
|
41
|
Barrera JW, Le Cabec A, Barak MM. The orthotropic elastic properties of fibrolamellar bone tissue in juvenile white-tailed deer femora. J Anat 2016; 229:568-76. [PMID: 27231028 DOI: 10.1111/joa.12500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 10/21/2022] Open
Abstract
Fibrolamellar bone is a transient primary bone tissue found in fast-growing juvenile mammals, several species of birds and large dinosaurs. Despite the fact that this bone tissue is prevalent in many species, the vast majority of bone structural and mechanical studies are focused on human osteonal bone tissue. Previous research revealed the orthotropic structure of fibrolamellar bone, but only a handful of experiments investigated its elastic properties, mostly in the axial direction. Here we have performed for the first time an extensive biomechanical study to determine the elastic properties of fibrolamellar bone in all three orthogonal directions. We have tested 30 fibrolamellar bone cubes (2 × 2 × 2 mm) from the femora of five juvenile white-tailed deer (Odocoileus virginianus) in compression. Each bone cube was compressed iteratively, within its elastic region, in the axial, transverse and radial directions, and bone stiffness (Young's modulus) was recorded. Next, the cubes were kept for 7 days at 4 °C and then compressed again to test whether bone stiffness had significantly deteriorated. Our results demonstrated that bone tissue in the deer femora has an orthotropic elastic behavior where the highest stiffness was in the axial direction followed by the transverse and the radial directions (21.6 ± 3.3, 17.6 ± 3.0 and 14.9 ± 1.9 Gpa, respectively). Our results also revealed a slight non-significant decrease in bone stiffness after 7 days. Finally, our sample size allowed us to establish that population variance was much bigger in the axial direction than the radial direction, potentially reflecting bone adaptation to the large diversity in loading activity between individuals in the loading direction (axial) compared with the normal (radial) direction. This study confirms that the mechanically well-studied human transverse-isotropic osteonal bone is just one possible functional adaptation of bone tissue and that other vertebrate species use an orthotropic bone tissue structure which is more suitable for their mechanical requirements.
Collapse
Affiliation(s)
- John W Barrera
- Department of Biology, Winthrop University, Rock Hill, SC, USA
| | - Adeline Le Cabec
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Meir M Barak
- Department of Biology, Winthrop University, Rock Hill, SC, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
42
|
Pan P, Chen J, Fan T, Hu Y, Wu T, Zhang Q. Facile preparation of biphasic-induced magnetic icariin-loaded composite microcapsules by automated in situ click technology. Colloids Surf B Biointerfaces 2015; 140:50-59. [PMID: 26735894 DOI: 10.1016/j.colsurfb.2015.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/12/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Abstract
This research aims to prepare the biphasic-induced magnetic composite microcapsules (BIMCM) as a promising environmental stimuli-responsive delivery vehicle to dispose the problem of drug burst effect. The paper presented a novel automated in situ click technology of magnetic chitosan/nano hydroxyapatite (CS/nHA) microcapsules. Fe3O4 magnetic nanoparticles (MNP) and nHA were simultaneously in situ crystallized by one-step process. Icariin (ICA), a plant-derived flavonol glycoside, was combined to study drug release properties of BIMCM. BIMCM were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Thermal gravimetric analysis/Differential Scanning Calorimetry(TGA/DSC) in order to reveal their component and surface morphology as well as the role of the in situ generated Fe3O4 MNP and nHA. The magnetic test showed the BIMCM were super-paramagnetic. Both in situ generated Fe3O4 MNP and nHA serve as stable inorganic crosslinkers in BIMCM to form many intermolecular crosslinkages for the movability of the CS chains. This makes ICA loaded microcapsules take on a sustained release behavior and results in the self-adjusting of surface morphology, decreasing of swelling and degradation rates. In addition, in vitro tests were systematically carried out to examine the biocompatibility of the microcapsules by MTT test, Wright-Giemsa dying assay and AO/EB fluorescent staining method. These results demonstrated that successful introduction of the in situ click Fe3O4 MNP provided an alternative strategy because of magnetic sensitivity and sustained release. As such, the novel ICA loaded biphasic-induced magnetic CS/nHA/MNP microcapsules are expected to find potential applications in drug delivery system for bone repair.
Collapse
Affiliation(s)
- Panpan Pan
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Jingdi Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Tiantang Fan
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Yimin Hu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Tao Wu
- Department of Emergency, Guangdong General Hospital of Chinese People's Armed Police Force, Guangzhou Medical University, Guangzhou 510507, China
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China; Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
43
|
Kolb C, Scheyer TM, Veitschegger K, Forasiepi AM, Amson E, Van der Geer AAE, Van den Hoek Ostende LW, Hayashi S, Sánchez-Villagra MR. Mammalian bone palaeohistology: a survey and new data with emphasis on island forms. PeerJ 2015; 3:e1358. [PMID: 26528418 PMCID: PMC4627922 DOI: 10.7717/peerj.1358] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/07/2015] [Indexed: 01/31/2023] Open
Abstract
The interest in mammalian palaeohistology has increased dramatically in the last two decades. Starting in 1849 via descriptive approaches, it has been demonstrated that bone tissue and vascularisation types correlate with several biological variables such as ontogenetic stage, growth rate, and ecology. Mammalian bone displays a large variety of bone tissues and vascularisation patterns reaching from lamellar or parallel-fibred to fibrolamellar or woven-fibred bone, depending on taxon and individual age. Here we systematically review the knowledge and methods on cynodont and mammalian bone microstructure as well as palaeohistology and discuss potential future research fields and techniques. We present new data on the bone microstructure of two extant marsupial species and of several extinct continental and island placental mammals. Extant marsupials display mainly parallel-fibred primary bone with radial and oblique but mainly longitudinal vascular canals. Three juvenile specimens of the dwarf island hippopotamid Hippopotamus minor from the Late Pleistocene of Cyprus show reticular to plexiform fibrolamellar bone. The island murid Mikrotia magna from the Late Miocene of Gargano, Italy displays parallel-fibred primary bone with reticular vascularisation and strong remodelling in the middle part of the cortex. Leithia sp., the dormouse from the Pleistocene of Sicily, is characterised by a primary bone cortex consisting of lamellar bone and a high amount of compact coarse cancellous bone. The bone cortex of the fossil continental lagomorph Prolagus oeningensis and three fossil species of insular Prolagus displays mainly parallel-fibred primary bone and reticular, radial as well as longitudinal vascularisation. Typical for large mammals, secondary bone in the giant rhinocerotoid Paraceratherium sp. from the Late Oligocene of Turkey is represented by dense Haversian bone. The skeletochronological features of Sinomegaceros yabei, a large-sized deer from the Pleistocene of Japan closely related to Megaloceros, indicate a high growth rate. These examples and the synthesis of existing data show the potential of bone microstructure to reveal essential information on life history evolution. The bone tissue and the skeletochronological data of the sampled island species suggest the presence of various modes of bone histological modification and mammalian life history evolution on islands to depend on factors of island evolution such as island size, distance from mainland, climate, phylogeny, and time of evolution.
Collapse
Affiliation(s)
- Christian Kolb
- Paläontologisches Institut und Museum, Universität Zürich , Zürich , Switzerland
| | - Torsten M Scheyer
- Paläontologisches Institut und Museum, Universität Zürich , Zürich , Switzerland
| | - Kristof Veitschegger
- Paläontologisches Institut und Museum, Universität Zürich , Zürich , Switzerland
| | - Analia M Forasiepi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Centro Científico y Tecnológico , Mendoza , Argentina
| | - Eli Amson
- Paläontologisches Institut und Museum, Universität Zürich , Zürich , Switzerland
| | - Alexandra A E Van der Geer
- Department of Geology, Naturalis Biodiversity Center , Leiden , The Netherlands ; Department of Historical Geology and Palaeontology, National and Kapodistrian University of Athens , Zografou , Greece
| | | | | | | |
Collapse
|
44
|
Dewaele L, Tsogtbaatar K, Barsbold R, Garcia G, Stein K, Escuillié F, Godefroit P. Perinatal Specimens of Saurolophus angustirostris (Dinosauria: Hadrosauridae), from the Upper Cretaceous of Mongolia. PLoS One 2015; 10:e0138806. [PMID: 26466354 PMCID: PMC4605499 DOI: 10.1371/journal.pone.0138806] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/03/2015] [Indexed: 12/02/2022] Open
Abstract
Background The Late Cretaceous Nemegt Formation, Gobi Desert, Mongolia has already yielded abundant and complete skeletons of the hadrosaur Saurolophus angustirostris, from half-grown to adult individuals. Methodology/Principal Findings Herein we describe perinatal specimens of Saurolophus angustirostris, associated with fragmentary eggshell fragments. The skull length of these babies is around 5% that of the largest known S. angustirostris specimens, so these specimens document the earliest development stages of this giant hadrosaur and bridge a large hiatus in our knowledge of the ontogeny of S. angustirostris. Conclusions/Significance The studied specimens are likely part of a nest originally located on a riverbank point bar. The perinatal specimens were buried by sediment carried by the river current presumably during the wet summer season. Perinatal bones already displayed diagnostic characters for Saurolophus angustirostris, including premaxillae with a strongly reflected oral margin and upturned premaxillary body in lateral aspect. The absence of a supracranial crest and unfused halves of the cervical neural arches characterize the earliest stages in the ontogeny of S. angustirostris. The eggshell fragments associated with the perinatal individuals can be referred to the Spheroolithus oogenus and closely resemble those found in older formations (e.g. Barun Goyot Fm in Mongolia) or associated with more basal hadrosauroids (Bactrosaurus-Gilmoreosaurus in the Iren Dabasu Fm, Inner Mongolia, China). This observation suggests that the egg microstructure was similar in basal hadrosauroids and more advanced saurolophines. Competing Interests One of the authors (FE) is employed by the commercial organization Eldonia. Eldonia provided support in the form of a salary for FE, but did not have any additional role or influence in the study design, data collection and analysis, decision to publish, or preparation of the manuscript and it does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.
Collapse
Affiliation(s)
- Leonard Dewaele
- Directorate 'Earth and History of Life', Royal Belgian Institute of Natural Sciences, rue Vautier 29, B-1000, Brussels, Belgium; Research Unit Palaeontology, Department Geology and Soil Sciences, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Khishigjav Tsogtbaatar
- Institute of Paleontology and Geology, Mongolian Academy of Sciences, Ulaanbaatar, 210-351, Mongolia
| | - Rinchen Barsbold
- Institute of Paleontology and Geology, Mongolian Academy of Sciences, Ulaanbaatar, 210-351, Mongolia
| | - Géraldine Garcia
- Université de Poitiers, IPHEP, UMR CNRS 7262, 6 rue M. Brunet, 86073, Poitiers cedex 9, France
| | - Koen Stein
- Earth System Science, AMGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | | - Pascal Godefroit
- Directorate 'Earth and History of Life', Royal Belgian Institute of Natural Sciences, rue Vautier 29, B-1000, Brussels, Belgium
| |
Collapse
|
45
|
Rensberger JM, Martínez RN. Bone cells in birds show exceptional surface area, a characteristic tracing back to saurischian dinosaurs of the late Triassic. PLoS One 2015; 10:e0119083. [PMID: 25830561 PMCID: PMC4382344 DOI: 10.1371/journal.pone.0119083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/27/2015] [Indexed: 11/23/2022] Open
Abstract
Background Dinosaurs are unique among terrestrial tetrapods in their body sizes, which range from less than 3 gm in hummingbirds to 70,000 kg or more in sauropods. Studies of the microstructure of bone tissue have indicated that large dinosaurs, once believed to be slow growing, attained maturity at rates comparable to or greater than those of large mammals. A number of structural criteria in bone tissue have been used to assess differences in rates of osteogenesis in extinct taxa, including counts of lines of arrested growth and the density of vascular canals. Methodology/Principal Findings Here, we examine the density of the cytoplasmic surface of bone-producing cells, a feature which may set an upper limit to the rate of osteogenesis. Osteocyte lacunae and canaliculi, the cavities in bone containing osteocytes and their extensions, were measured in thin-sections of primary (woven and parallel fibered) bone in a diversity of tetrapods. The results indicate that bone cell surfaces are more densely organized in the Saurischia (extant birds, extinct Mesozoic Theropoda and Sauropodomorpha) than in other tetrapods, a result of denser branching of the cell extensions. The highest postnatal growth rates among extant tetrapods occur in modern birds, the only surviving saurischians, and the finding of exceptional cytoplasmic surface area of the cells that produce bone in this group suggests a relationship with bone growth rate. In support of this relationship is finding the lowest cell surface density among the saurischians examined in Dinornis, a member of a group of ratites that evolved in New Zealand in isolation from mammalian predators and show other evidence of lowered maturation rates.
Collapse
Affiliation(s)
- John M. Rensberger
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Ricardo N. Martínez
- Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| |
Collapse
|
46
|
Kolb C, Scheyer TM, Lister AM, Azorit C, de Vos J, Schlingemann MAJ, Rössner GE, Monaghan NT, Sánchez-Villagra MR. Growth in fossil and extant deer and implications for body size and life history evolution. BMC Evol Biol 2015; 15:19. [PMID: 25887855 PMCID: PMC4332446 DOI: 10.1186/s12862-015-0295-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
Background Body size variation within clades of mammals is widespread, but the developmental and life-history mechanisms by which this variation is achieved are poorly understood, especially in extinct forms. An illustrative case study is that of the dwarfed morphotypes of Candiacervus from the Pleistocene of Crete versus the giant deer Megaloceros giganteus, both in a clade together with Dama dama among extant species. Histological analyses of long bones and teeth in a phylogenetic context have been shown to provide reliable estimates of growth and life history patterns in extant and extinct mammals. Results Similarity of bone tissue types across the eight species examined indicates a comparable mode of growth in deer, with long bones mainly possessing primary plexiform fibrolamellar bone. Low absolute growth rates characterize dwarf Candiacervus sp. II and C. ropalophorus compared to Megaloceros giganteus displaying high rates, whereas Dama dama is characterized by intermediate to low growth rates. The lowest recorded rates are those of the Miocene small stem cervid Procervulus praelucidus. Skeletal maturity estimates indicate late attainment in sampled Candiacervus and Procervulus praelucidus. Tooth cementum analysis of first molars of two senile Megaloceros giganteus specimens revealed ages of 16 and 19 years whereas two old dwarf Candiacervus specimens gave ages of 12 and 18 years. Conclusions There is a rich histological record of growth across deer species recorded in long bones and teeth, which can be used to understand ontogenetic patterns within species and phylogenetic ones across species. Growth rates sensu Sander & Tückmantel plotted against the anteroposterior bone diameter as a proxy for body mass indicate three groups: one with high growth rates including Megaloceros, Cervus, Alces, and Dama; an intermediate group with Capreolus and Muntiacus; and a group showing low growth rates, including dwarf Candiacervus and Procervulus. Dwarf Candiacervus, in an allometric context, show an extended lifespan compared to other deer of similar body size such as Mazama which has a maximum longevity of 12 years in the wild. Comparison with other clades of mammals reveals that changes in size and life history in evolution have occurred in parallel, with various modes of skeletal tissue modification. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0295-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Kolb
- Paläontologisches Institut und Museum der Universität Zürich, Karl Schmid-Strasse 4, CH-8006, Zürich, Switzerland.
| | - Torsten M Scheyer
- Paläontologisches Institut und Museum der Universität Zürich, Karl Schmid-Strasse 4, CH-8006, Zürich, Switzerland.
| | - Adrian M Lister
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Concepcion Azorit
- Department of Animal and Vegetal Biology and Ecology, Faculty of Experimental Sciences, University of Jaén, Jaén, 23071, Spain.
| | - John de Vos
- Naturalis Biodiversity Center, Postbus 9517, 2300, RA Leiden, The Netherlands.
| | - Margaretha A J Schlingemann
- Department of Integrative Zoology, IBL, Leiden University, Sylviusweg 72, Postbus 9505, 2300, RA Leiden, The Netherlands.
| | - Gertrud E Rössner
- Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Strasse 10, D-80333, München, Germany.
| | - Nigel T Monaghan
- National Museum of Ireland-Natural History, Merrion Street, Dublin 2, Ireland.
| | - Marcelo R Sánchez-Villagra
- Paläontologisches Institut und Museum der Universität Zürich, Karl Schmid-Strasse 4, CH-8006, Zürich, Switzerland.
| |
Collapse
|
47
|
Skutschas P, Stein K. Long bone histology of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan. J Anat 2015; 226:334-47. [PMID: 25682890 DOI: 10.1111/joa.12281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 11/29/2022] Open
Abstract
Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and 'salamander A') has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions.
Collapse
Affiliation(s)
- Pavel Skutschas
- Vertebrate Zoology Department, Biological Faculty, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | |
Collapse
|
48
|
Cullen TM, Evans DC, Ryan MJ, Currie PJ, Kobayashi Y. Osteohistological variation in growth marks and osteocyte lacunar density in a theropod dinosaur (Coelurosauria: Ornithomimidae). BMC Evol Biol 2014; 14:231. [PMID: 25421260 PMCID: PMC4269922 DOI: 10.1186/s12862-014-0231-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022] Open
Abstract
Background Osteohistological examinations of fossil vertebrates have utilized a number of proxies, such as counts and spacing of lines of arrested growth (LAGs) and osteocyte lacunar densities (OLD), in order to make inferences related to skeletochronology and mass-specific growth rates. However, many of these studies rely on samplings of isolated bones from single individuals. These analyses do not take individual variation into account, and as a result may lead to misleading inferences of the physiology of extinct organisms. This study uses a multi-element, multi-individual sampling of ornithomimid dinosaurs to test the amount of individual variation in the aforementioned osteohistological indicators. Based on these results we also assess the conclusions of previous studies that tested paleohistological hypotheses using isolated elements. Results LAG number was found to be consistent within the hind limb bones of each individual, with the exception of the fibula, which preserves one additional LAG. Considerable differences in LAG spacing were found between elements of the sampled individuals, with larger variation found in elements of the foot compared with the femur, fibula, and tibia. Osteocyte lacunar density ranged between 29000 and 42000 osteocyte lacunae per mm3, and was found to vary more between hind limb bones of an individual and within bones, than between the average values of individuals. Conclusions The variation between hind limb elements in LAG number and LAG spacing suggests that direct comparisons of these elements may be misleading, and that LAG spacing is not a reliable proxy for mass-specific growth rates of an individual. Sampling of multiple bones should be performed as an internal check of model-based LAG retro-calculation and growth equations. The observation that osteocyte lacunar density varies more between individual bone elements than between average individual values suggests that the choice of sampled element can greatly influence the result, and care should be taken to not bias interpretations of the physiology of fossil tetrapods. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0231-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas M Cullen
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
| | - David C Evans
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada. .,Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, ON, M5S 2C6, Canada.
| | - Michael J Ryan
- Department of Vertebrate Paleontology, Cleveland Museum of Natural History, Cleveland, OH, 44106-1767, U.S.A.
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Yoshitsugu Kobayashi
- Hokkaido University Museum, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
49
|
|
50
|
Medullary bone-like tissue in the mandibular symphyses of a pterosaur suggests non-reproductive significance. Sci Rep 2014. [DOI: 10.1038/srep06253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|