1
|
Novianto D, Hadi UK, Soviana S, Supriyono, Kaewthamasorn M, Darusman HS. Modeling of the Habitat Characteristics and Ecological Niche of the Asian Tiger Mosquito in a Fine-Scale Area of a Primate Research Center Using the Maximum Entropy Model. Zoonoses Public Health 2024. [PMID: 39614337 DOI: 10.1111/zph.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 12/01/2024]
Abstract
INTRODUCTION Aedes-borne diseases, such as Zika and Chikungunya, originate from an enzootic cycle in which non-human primates (NHPs) function as reservoirs. This study aimed to analyze the characteristic habitat and ecological niche models of Aedes albopictus within the confines of a Primate Research Center (PRC), to assess its potential as a site for zoonotic arbovirus transmission. Additionally, this study aimed to construct a comprehensive map to delineate the risks of arbovirus transmission. METHODS A 1-year direct field survey was conducted from January to December 2022 in the PRC to obtain comprehensive data on the presence of larvae, including their conditions, habitat types, and physicochemical characteristics. Larval collection was meticulously performed at potential breeding sites using a 350 ml dipper and pipette. Information on the ecological niche was compiled based on a combination of general environmental variables and mosquito presence data obtained from direct field surveys using the Maximum Entropy (MaxEnt) model. RESULTS In total, 120 presence points for Ae. albopictus larvae were obtained from the PRC area, with 23.02% of the larvae found in buckets as artificial habitats, and 18.25% found in bromeliad plants as natural habitat types. Larvae of Ae. albopictus occupy artificial habitats that are not turbid, exposed to direct sunlight, and devoid of predators. The abundances and occurrences of Ae. albopictus larvae was found to be significantly influenced by pH and total dissolved solids. This study showed that the PRC was a suitable habitat for breeding Ae. albopictus larvae, with the distance to buildings emerging as a significant environmental variable in the species distribution model CONCLUSIONS: The fine-scale empirical model developed for Ae. albopictus and its habitat characteristics not only provide insights into the suitability of vector habitats, but can also be used assess the risk of arbovirus transmission, potentially informing strategies for controlling mosquito breeding sites within the PRC.
Collapse
Affiliation(s)
- Dimas Novianto
- Division of Medical Entomology and Parasitology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
- Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Upik Kesumawati Hadi
- Division of Medical Entomology and Parasitology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Susi Soviana
- Division of Medical Entomology and Parasitology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Supriyono
- Division of Medical Entomology and Parasitology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Huda Shalahudin Darusman
- Division of Physiology and Pharmacology, School of Veterinary and Biomedical Sciences, IPB University, Bogor, Indonesia
- Primate Research Centre, Institute of Research and Community Service, IPB University, Bogor, Indonesia
| |
Collapse
|
2
|
García-Del Río M, Castaño-Vázquez F, Martínez J, Martínez-de la Puente J, Cantarero A, García-Velasco J, Merino Y, Merino S. Nestling sex and behaviour determine the host preference of insect vectors in avian nests. Mol Ecol 2024; 33:e17517. [PMID: 39193885 DOI: 10.1111/mec.17517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Sexual differences in pathogen prevalence in wildlife often arise from varying susceptibility influenced by factors such as sex hormones and exposure to pathogens. In the case of vector-borne pathogens, host selection by insect vectors determines the exposure of hosts to infections, largely affecting the transmission of these infectious diseases. We identify the blood-feeding patterns of insect vectors in Blue Tit (Cyanistes caeruleus) nestlings in a 3-year study. Blood from both nestlings and insect vectors (Culicoides spp. and Simuliidae) captured inside nest-boxes were used to molecularly determine the sex of the host. We then compared the sex-ratios of the nestlings that had been bitten and those of the complete brood in each nest. We found that males were bitten more frequently than females in 2021, when males weighed less in comparison to other years. Additionally, we molecularly identified bitten nestlings individually by genotyping the DNA of blood obtained from both, the vector's abdomen and nestlings of each brood in 2022. Nestlings more frequently bitten by vectors were males, weighed less and were closest to the nest entrance. To our knowledge this is the first study identifying the nestling selection by insect vectors in bird nests under natural conditions. These results contribute to understanding the mechanisms of host selection by insect vectors, shedding light on pathogen transmission and offering insights into the observed sex-biased infections in wildlife populations.
Collapse
Affiliation(s)
- Marina García-Del Río
- Department of Evolutionary Ecology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | | | - Javier Martínez
- Department of Biomedicine and Biotechnology (Parasitology), Pharmacy School, Alcalá de Henares University, Madrid, Spain
| | - Josué Martínez-de la Puente
- Department of Conservation Biology and Global Change, Doñana Biological Station, Spanish National Research Council (CSIC), Sevilla, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
| | - Alejandro Cantarero
- Department of Physiology, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Javier García-Velasco
- Department of Evolutionary Ecology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Yago Merino
- Missouri Valley College, Marshall, Missouri, USA
| | - Santiago Merino
- Department of Evolutionary Ecology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Zhuo Y, Li LY, Zhang Y, Zhang XL, Liu JH, Deng YP, Liu GH. Survey of mosquito species in intensive pig farms in Hunan province, China. Trop Anim Health Prod 2024; 56:233. [PMID: 39096351 DOI: 10.1007/s11250-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
Mosquitoes (Diptera: Culicidae) are one of the most studied groups of arthropods worldwide due to their high transmission capacity for pathogens, including viruses and parasites. During June to October 2022, the prevalence of mosquito species in 12 intensive pig farms from 12 representative administrative regions in Hunan province of China was investigated using traps with ultraviolet light. All collected mosquitoes were counted and identified to species according to morphological and molecular methods. A total of 4,443 mosquito specimens were collected in the pig farms, and they represented one family, four genera and nine species. Culex pipiens pipiens (24%) was the most common mosquito species, followed by Armigeres subalbatus (23.4%) and Culex tritaeniorhynchus (20.6%). Phylogenetic analyses based on mitochondrial cox1 sequences revealed all mosquito species from present study grouping into distinct monophyletic groups corresponding to nine known mosquito species with strongly supported. The results of the present investigation have implications for the ongoing control of mosquito infestation in pig farms in Hunan province, China. This is the first report of mosquito populations in intensive pig farms in Hunan province, China.
Collapse
Affiliation(s)
- Yu Zhuo
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Le-Yan Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yu Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xue-Ling Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jin-Hui Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan province, 410128, China
| | - Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
4
|
Veiga J, Baltà O, Figuerola J. Does bird life-history influence the prevalence of ticks? A citizen science study in North East Spain. One Health 2024; 18:100718. [PMID: 38644969 PMCID: PMC11026695 DOI: 10.1016/j.onehlt.2024.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
After mosquitoes, ticks are among the most important vector of pathogens of concern for animal and public health, but unless mosquitoes ticks remain attached to their hosts for long time periods providing an opportunity to analyse their role in the dispersal and dynamics of different zoonotic pathogens. Given their interest in public health it is important to understand which factors affect their incidence in different hosts and to stablish effective surveillance programs to determine the risk of transmission and spill-over of zoonotic pathogens. Taking benefit of a large network of volunteer ornithologists, we analysed the life-history traits associated to the presence of ticks using information of 620,609 individuals of 231 avian species. Bird phylogeny, locality and year explained a large amount of variance in tick prevalence. Non-colonial species non breeding in grasslands and non-spending the non-breeding season as gregarious groups or isolated individuals (e.g. thrushes, quails and finches) had the higher prevalence of ticks and appear as good candidates for zoonosis surveillance programs based on the analyses of ticks collected from wild birds. Ringers underestimated tick prevalence but can be considered as an important source of information of ticks for public and animal health surveillance programs if properly trained for the detection and collection of the different tick development phases.
Collapse
Affiliation(s)
- Jesus Veiga
- Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Oriol Baltà
- Institut Català d'Ornitologia, Barcelona, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana – CSIC, Sevilla, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
5
|
Goiri F, González MA, Cevidanes A, Barandika JF, García-Peréz AL. Mosquitoes in urban green spaces and cemeteries in northern Spain. Parasit Vectors 2024; 17:168. [PMID: 38566167 PMCID: PMC10986117 DOI: 10.1186/s13071-024-06263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Mosquitoes inhabiting urban green spaces and cemeteries in Europe represent a crucial facet of public health concern and contribute to the ecological balance. As urbanization intensifies, these areas increasingly serve as vital habitats for various mosquito species, fostering breeding grounds and increasing the risk of disease transmission. METHODS A study was conducted in the three main cities (inland, coastal, and estuarine) of the Basque Country, northern Spain, to investigate the species composition, abundance, dynamic populations, larval habitats, and host preferences of mosquitoes in urban green spaces and cemeteries. CDC traps and dipping were used to collect mosquitoes for 2 years (2019-2020). RESULTS A total of 21 mosquito species were identified, with Culex pipiens s.l. being the most abundant and widespread. The three ecological forms of Cx. pipiens were found, and Cx. pipiens pipiens was the most common in both green areas and cemeteries. Morphological identification together with molecular tools identified 65 COI sequences with high homology. The highest species richness was found in the inland city, followed by the coastal city and the estuarine city. Mosquito abundance was significantly higher in green areas compared to cemeteries and in the coastal and estuarine cities compared to the inland city. The investigation of larval breeding sites highlighted the dominance of Cx. pipiens s.l., particularly in semi-artificial ponds, diverse water-holding containers (tyres and buckets) and drainage systems in green areas; in cemeteries, most of the larvae were found in flowerpots and funerary urns. Seasonal activity exhibited variable peaks in mosquito abundance in the different cities, with a notable increase in July or August. Additionally, blood meal analysis revealed that Cx. pipiens s.l. fed on several common urban avian species. CONCLUSIONS Studies on mosquitoes are essential to understand their role in disease transmission and to design targeted and sustainable management strategies to mitigate the associated risks.
Collapse
Affiliation(s)
- Fátima Goiri
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Mikel A González
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Doñana Biological Station, Spanish National Research Council (EBD-CSIC), Seville, Spain
- CIBER de Epidemiología y Salud Pública (CIBER ESP), Madrid, Spain
| | - Aitor Cevidanes
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jesús F Barandika
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ana L García-Peréz
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain.
| |
Collapse
|
6
|
Giraldo D, McMeniman CJ. Quantifying Mosquito Host Preference. Cold Spring Harb Protoc 2024; 2024:107663. [PMID: 37612146 DOI: 10.1101/pdb.top107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The most dangerous mosquito species for human health are those that blood feed preferentially and frequently on humans (anthropophilic mosquitoes). These include prolific disease vectors such as the African malaria mosquito Anopheles gambiae and yellow fever mosquito Aedes aegypti The chemosensory basis for anthropophilic behavior exhibited by these disease vectors, as well as the factors that drive interindividual differences in human attractiveness to mosquitoes, remain largely uncharacterized. Here, we concisely review established methods to quantify mosquito interspecific and intraspecific host preference in the laboratory, as well as semi-field and field environments. Experimental variables for investigator consideration during assays of mosquito host preference across these settings are highlighted.
Collapse
Affiliation(s)
- Diego Giraldo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
7
|
Garrido M, Minard G, Veiga J, Martínez-de la Puente J. Editorial: Ecological interactions between mosquitoes and their microbiota: implications for pathogen transmission. Front Microbiol 2024; 15:1395348. [PMID: 38605712 PMCID: PMC11008769 DOI: 10.3389/fmicb.2024.1395348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Affiliation(s)
- Mario Garrido
- Department of Parasitology, University of Granada, Campus Universitario de Cartuja, Granada, Spain
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Jesús Veiga
- Department of Parasitology, University of Granada, Campus Universitario de Cartuja, Granada, Spain
| | - Josué Martínez-de la Puente
- Department of Conservation Biology and Global Change, Doñana Biological Station (EBD, CSIC), Seville, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
8
|
Rengifo-Correa L, Rodríguez-Moreno Á, Becker I, Falcón-Lezama JA, Tapia-Conyer R, Sánchez-Montes S, Suzán G, Stephens CR, González-Salazar C. Risk of a vector-borne endemic zoonosis for wildlife: Hosts, large-scale geography, and diversity of vector-host interactions for Trypanosoma cruzi. Acta Trop 2024; 251:107117. [PMID: 38184291 DOI: 10.1016/j.actatropica.2024.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Drivers for wildlife infection are multiple and complex, particularly for vector-borne diseases. Here, we studied the role of host competence, geographic area provenance, and diversity of vector-host interactions as drivers of wild mammal infection risk to Trypanosoma cruzi, the aetiological agent of Chagas disease. We performed a systematic sampling of wild mammals in 11 states of Mexico, from 2017 to 2018. We tested the positivity of T. cruzi with the Tc24 marker in tissues samples for 61 wild mammal species (524 specimens sampled). 26 mammal species were positive for T. cruzi, of which 11 are new hosts recorded in Mexico 75 specimens were positive and 449 were negative for T. cruzi infection, yielding an overall prevalence of 14.3%. The standardized infection risk of T. cruzi of our examined specimens was similar, no matter the host species or their geographic origins. Additionally, we used published data of mammal positives for T. cruzi to complement records of T. cruzi infection in wild mammals and inferred a trophic network of Triatoma spp. (vectors) and wild mammal species in Mexico, using spatial data-mining modelling. Infection with T. cruzi was not homogeneously distributed in the inferred trophic network. This information allowed us to develop a predictive model for T. cruzi infection risk for wild mammals in Mexico, considering risk as a function of the diversity of vector-host spatial associations in a large-scale geographic context, finding that the addition of competent vectors to a multi-host parasite system amplifies host infection risk. The diversity of vector-host interactions per se constitutes a relevant driver of infection risk because hosts and vectors are not isolated from each other.
Collapse
Affiliation(s)
- Laura Rengifo-Correa
- C3-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Santander, Colombia
| | - Ángel Rodríguez-Moreno
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ingeborg Becker
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Jorge Abelardo Falcón-Lezama
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Roberto Tapia-Conyer
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sokani Sánchez-Montes
- Facultad de Ciencias Biológicas y Agropecuarias Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano 92870, Mexico
| | - Gerardo Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Christopher R Stephens
- C3-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; ICN-Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Constantino González-Salazar
- ICAyCC-Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
9
|
Shaw KE, Cloud RE, Syed R, Civitello DJ. Parasite transmission in size-structured populations. Ecology 2024; 105:e4221. [PMID: 38032549 PMCID: PMC10842837 DOI: 10.1002/ecy.4221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Host heterogeneity can affect parasite transmission, but determining underlying traits and incorporating them into transmission models remains challenging. Body size is easily measured and affects numerous ecological interactions, including transmission. In the snail-schistosome system, larger snails have a higher exposure to parasites but lower susceptibility to infection per parasite. We quantified the effect of size-based heterogeneity on population-level transmission by conducting transmission trials in differently size-structured snail populations and competing size-dependent transmission models. Populations with greater proportions of large snails had lower prevalence, and small snails were shielded from infection by co-occurring large conspecifics. Furthermore, a fully dependent transmission model that incorporated body size in both exposure and susceptibility outperformed other candidate models considered. Incorporating traits such as body size, which are affected by and directly affect host ecology, into transmission models could yield insights into natural dynamics and disease mitigation in many systems.
Collapse
Affiliation(s)
- Kelsey E Shaw
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Rebecca E Cloud
- School of Integrative Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Raeyan Syed
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
10
|
González MA, Goiri F, Cevidanes A, Hernández-Triana LM, Barandika JF, García-Pérez AL. Mosquito community composition in two major stopover aquatic ecosystems used by migratory birds in northern Spain. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:616-629. [PMID: 37134155 DOI: 10.1111/mve.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are common bloodsucking Diptera frequently found in aquatic environments, which are valuable ecosystems for many animal species, particularly migrating birds. Therefore, interactions between these animal species and mosquitoes may play a critical role in pathogen transmission. During 2018-2019, mosquitoes were collected from two aquatic ecosystems in northern Spain using different methodologies and identified using classical morphology and molecular tools. A total of 1529 males and females of 22 native mosquito species (including eight new records for the region) were trapped using CO2 -baited Centers for Disease Control and Prevention (CDC) traps and sweep netting. Among the blood-fed female mosquitoes, 11 vertebrate host species-six mammals and five birds-were identified using DNA barcoding. The developmental sites of eight mosquito species were determined across nine microhabitats, and 11 mosquito species were caught landing on humans. The flight period varied among mosquito species, with some peaking in the spring and others in the summer. Our study highlights the advantages of mosquito sampling using various techniques to comprehensively characterise species composition and abundance. Information on the trophic preferences, biting behaviour and influence of climatic variables on the ecology of mosquitoes is also provided.
Collapse
Affiliation(s)
- Mikel A González
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
- Applied Zoology and Animal Conservation Research Group (ZAP), Department of Biology, University of the Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Fátima Goiri
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Aitor Cevidanes
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Luis M Hernández-Triana
- Vector-Borne Diseases Research Group, Virology Department, Animal and Plant Health Agency, Addlestone, UK
| | - Jesús F Barandika
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ana L García-Pérez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
11
|
Zhou Y, Deng D, Chen R, Lai C, Chen Q. Effects of antennal segments defects on blood-sucking behavior in Aedes albopictus. PLoS One 2023; 18:e0276036. [PMID: 37561778 PMCID: PMC10414602 DOI: 10.1371/journal.pone.0276036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
After mating, female mosquitoes need a blood meal to promote the reproductive process. When mosquitoes bite infected people and animals, they become infected with germs such as viruses and parasites. Mosquitoes rely on many cues for host selection and localization, among which the trace chemical cues emitted by the host into the environment are considered to be the most important, and the sense of smell is the main way to perceive these trace chemical cues. However, the current understanding of the olfactory mechanism is not enough to meet the needs of mosquito control. Unlike previous studies that focused on the olfactory receptor recognition spectrum to reveal the olfactory mechanism of mosquito host localization. In this paper, based on the observation that mosquitoes with incomplete antennae still can locate the host and complete blood feeding in the laboratory, we proposed that there may be some protection or compensation mechanism in the 13 segments of antennae flagella, and only when the antennae are missing to a certain threshold will it affect the mosquito's ability to locate the host. Through rational-designed behavioral experiments, we found that the 6th and 7th flagellomeres on the Aedes albopictus antenna are important in the olfactory detection of host searching. This study preliminarily screened antennal segments important for host localization of Ae. albopictus, and provided a reference for subsequent cell biology and molecular biology studies on these segments. Meanwhile, the morphology and distribution of sensilla on each antenna flagellomere were also analyzed and discussed in this paper.
Collapse
Affiliation(s)
- Yiyuan Zhou
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongyang Deng
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Rong Chen
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chencen Lai
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
- Department of Nosocomial Infection, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Chen
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
12
|
Verhulst NO, Juurlink M, Wondwosen B, Rugaimukamu S, Hill SR, Ignell R, Koenraadt CJM, Spitzen J. Fermenting molasses and a synthetic odour blend to attract blood-fed Anopheles coluzzii. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:228-237. [PMID: 36346219 DOI: 10.1111/mve.12622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 05/18/2023]
Abstract
Collecting blood-fed mosquitoes to monitor pathogen presence or to gather information on the host blood meal is often challenging. Fermenting molasses can be used to produce carbon dioxide to attract host-seeking mosquitoes, however, earlier work indicated that it may also attract blood-fed mosquitoes in the field. In the current study, these field results were validated in an experimental setting using a large cage setup with Anopheles coluzzii (Diptera, Culicidae). Blood-fed mosquitoes were indeed attracted to fermenting molasses with the highest attraction at 72 hours post feeding, which was used for subsequent experiments. Next, it was tested if fermentation of molasses is required for attraction, and whether it acts as an oviposition attractant, increases egg laying, or increases mosquito survival. The compounds that could be responsible for attraction were identified by combined electrophysiology and chemical analyses and formulated into a synthetic blend. Fermenting molasses attracted blood-fed mosquitoes in the large cage study, while fermenting sugar and non-fermenting molasses did not. The fecundity of blood-fed mosquitoes increased after feeding on fermenting molasses, however, compounds emanating from molasses did not trigger oviposition. The synthetic blend attracted blood-fed mosquitoes and may be used to determine mosquito host selection and for xenomonitoring, as 'flying syringes' to detect non-vector borne pathogens.
Collapse
Affiliation(s)
- Niels O Verhulst
- National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science, University of Zürich, Zürich, Switzerland
| | - Malou Juurlink
- Laboratory of Entomology, Wageningen University, Wageningen, Gelderland, The Netherlands
| | - Betelehem Wondwosen
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Oromia, Ethiopia
| | - Sapience Rugaimukamu
- Laboratory of Entomology, Wageningen University, Wageningen, Gelderland, The Netherlands
| | - Sharon R Hill
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Skåne County, Sweden
| | - Rickard Ignell
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Skåne County, Sweden
| | | | - Jeroen Spitzen
- Laboratory of Entomology, Wageningen University, Wageningen, Gelderland, The Netherlands
| |
Collapse
|
13
|
Kwapong SS, Asare KK, Kusi KA, Pappoe F, Ndam N, Tahar R, Poinsignon A, Amoah LE. Mosquito bites and stage-specific antibody responses against Plasmodium falciparum in southern Ghana. Malar J 2023; 22:126. [PMID: 37061695 PMCID: PMC10105943 DOI: 10.1186/s12936-023-04557-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/07/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The human host elicits specific immune responses after exposure to various life stages of the malaria parasite as well as components of mosquito saliva injected into the host during a mosquito bite. This study describes differences in IgG responses against antigens derived from the sporozoite (PfCSP), asexual stage parasite (PfEBA175) and the gametocyte (Pfs230), in addition to an Anopheles gambiae salivary gland antigen (gSG6-P1), in two communities in Ghana with similar blood stage malaria parasite prevalence. METHODS This study used archived plasma samples collected from an earlier cross-sectional study that enrolled volunteers aged from 6 months to 70 years from Simiw, peri-urban community (N = 347) and Obom, rural community (N = 291). An archived thick and thin blood smear for microscopy was used for the estimation of Plasmodium parasite density and species and DNA extraction from blood spots and P. falciparum confirmation was performed using PCR. This study used the stored plasma samples to determine IgG antibody levels to P. falciparum and Anopheles salivary antigens using indirect ELISA. RESULTS Individuals from Simiw had significantly higher levels of IgG against mosquito gSG6-P1 [median (95%CI)] [2.590 (2.452-2.783) ng/mL] compared to those from Obom [2.119 (1.957-2.345) ng/mL], p < 0.0001. Both IgG responses against Pfs230proC (p = 0.0006), and PfCSP (p = 0.002) were significantly lower in volunteers from Simiw compared to the participants from Obom. The seroprevalence of PfEBA-175.5R (p = 0.8613), gSG6-P1 (p = 0.0704), PfCSP (p = 0.7798) IgG were all similar in Obom and Simiw. However, Pfs230 seroprevalence was significantly higher at Obom compared to Simiw (p = 0.0006). Spearman correlation analysis showed no significant association between IgG responses against gSG6-P1, PfCSP, Pfs230proC and PfEBA-175.5R and parasite density at both Obom and Simiw (p > 0.05). CONCLUSION In conclusion, the study showed that participants from Simiw had higher concentrations of circulating gSG6-P1 IgG antibodies but lower concentrations of P. falciparum antibodies, PfCSP IgG and Pfs230proC IgG compared to participants from Obom.
Collapse
Affiliation(s)
- Sebastian Shine Kwapong
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwame Kumi Asare
- Department of Biomedical Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
- Biomedical and Clinical Research Centre, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Faustina Pappoe
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Nicaise Ndam
- MERIT, IRD, Université de Paris Cité, 75006, Paris, France
| | - Rachida Tahar
- MERIT, IRD, Université de Paris Cité, 75006, Paris, France
| | - Anne Poinsignon
- IRD, CNRS, MIVEGEC, University of Montpellier, 34000, Montpellier, France
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
14
|
Ang S, Liang J, Zheng W, Zhang Z, Li J, Yan Z, Wong WL, Zhang K, Chen M, Wu P. Novel Matrine Derivatives as Potential Larvicidal Agents against Aedes albopictus: Synthesis, Biological Evaluation, and Mechanistic Analysis. Molecules 2023; 28:molecules28073035. [PMID: 37049799 PMCID: PMC10096473 DOI: 10.3390/molecules28073035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
A large number of studies have shown that matrine (MA) possesses various pharmacological activities and is one of the few natural, plant-derived pesticides with the highest prospects for promotion and application. Fifty-eight MA derivatives were prepared, including 10 intermediates and 48 target compounds in 3 series, to develop novel mosquitocidal agents. Compounds 4b, 4e, 4f, 4m, 4n, 6e, 6k, 6m, and 6o showed good larvicidal activity against Aedes albopictus, which is both a highly aggressive mosquito and an important viral vector that can transmit a wide range of pathogens. Dipping methods and a bottle bioassay were used for insecticidal activity evaluation. The LC50 values of 4e, 4m, and 6m reached 147.65, 140.08, and 205.79 μg/mL, respectively, whereas the LC50 value of MA was 659.34 μg/mL. Structure–activity relationship analysis demonstrated that larvicidal activity could be improved by the unsaturated heterocyclic groups introduced into the carboxyl group after opening the D ring. The MA derivatives with oxidized N-1 lost their mosquitocidal activities, indicating that the bareness of N-1 is crucial to maintain their anti-mosquito activity. However, the activity was not greatly influenced by introducing a cyan group at C-6 or a benzene sulfonyl group at N-16. Additionally, compounds 4e and 4m exhibited good inhibitory activities against acetylcholinesterase with inhibitory rates of 59.12% and 54.30%, respectively, at a concentration of 250 μg/mL, whereas the inhibitory rate of MA was 9.88%. Therefore, the structural modification and mosquitocidal activity of MA and its derivatives obtained here pave the way for those seeking strong mosquitocidal agents of plant origin.
Collapse
Affiliation(s)
- Song Ang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jinfeng Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jinxuan Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhenping Yan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (K.Z.); (M.C.); (P.W.); Tel.: +86-13822330019 (K.Z.); +86-18312066545 (M.C.); +86-18825179347 (P.W.)
| | - Min Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (K.Z.); (M.C.); (P.W.); Tel.: +86-13822330019 (K.Z.); +86-18312066545 (M.C.); +86-18825179347 (P.W.)
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (K.Z.); (M.C.); (P.W.); Tel.: +86-13822330019 (K.Z.); +86-18312066545 (M.C.); +86-18825179347 (P.W.)
| |
Collapse
|
15
|
Sun D, Chen Y, Wang L, Hu X, Wu Q, Liu Y, Liu P, Zeng X, Li S, Wang G, Zhang Y. Surveillance and Control of Malaria Vectors in Hainan Province, China from 1950 to 2021: A Retrospective Review. Trop Med Infect Dis 2023; 8:tropicalmed8030131. [PMID: 36977132 PMCID: PMC10051372 DOI: 10.3390/tropicalmed8030131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Malaria is a serious mosquito-borne tropical disease impacting populations in tropical regions across the world. Malaria was previously hyperendemic in Hainan Province. Due to large-scale anti-malarial intervention, malaria elimination in the province was achieved in 2019. This paper reviews the literature on the ecology, bionomics, and control of malaria vectors in Hainan from 1951 to 2021. We searched PubMed, and the China national knowledge infrastructure (CNKI) database for relevant articles published and included three other important books published in Chinese or English in order to summarize research on species, distribution, vectorial capacity, ecology, the resistance of malaria vectors to insecticides, and malaria vector control in Hainan Province. A total of 239 references were identified, 79 of which met the criteria for inclusion in our review. A total of six references dealt with the salivary gland infection of Anophelines, six with vectorial capacity, 41 with mosquito species and distribution, seven with seasonality, three with blood preference, four with nocturnal activity, two with flight distance, 13 with resistance to insecticides, and 14 with vector control. Only 16 published papers met the criteria of addressing malaria vectors in Hainan over the last 10 years (2012–2021). Anopheles dirus and Anopheles minimus are primary malaria vectors, mainly distributed in the southern and central areas of Hainan. Indoor residual spraying with DDT and the use of ITNs with pyrethroid insecticides were the main interventions taken for malaria control. Previous studies on ecology, bionomics, and resistance of vectors provided scientific evidence for optimizing malaria vector control and contributed to malaria elimination in Hainan Province. We hope our study will contribute to preventing malaria reestablishment caused by imported malaria in Hainan. Research on malaria vectors should be updated to provide scientific evidence for malaria vector control strategies post-elimination as the ecology, bionomics, and resistance of vectors to insecticides may change with changes in the environment.
Collapse
Affiliation(s)
- Dingwei Sun
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Yan Chen
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Lu Wang
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Ximin Hu
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Qun Wu
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Ying Liu
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Puyu Liu
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Xuexia Zeng
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Shangan Li
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Guangze Wang
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence:
| |
Collapse
|
16
|
Fikrig K, Rose N, Burkett-Cadena N, Kamgang B, Leisnham PT, Mangan J, Ponlawat A, Rothman SE, Stenn T, McBride CS, Harrington LC. Aedes albopictus host odor preference does not drive observed variation in feeding patterns across field populations. Sci Rep 2023; 13:130. [PMID: 36599854 DOI: 10.1038/s41598-022-26591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Laboratory and field-based studies of the invasive mosquito Aedes albopictus demonstrate its competency to transmit over twenty different pathogens linked to a broad range of vertebrate hosts. The vectorial capacity of Ae. albopictus to transmit these pathogens remains unclear, partly due to knowledge gaps regarding its feeding behavior. Blood meal analyses from field-captured specimens have shown vastly different feeding patterns, with a wide range of anthropophagy (human feeding) and host diversity. To address this knowledge gap, we asked whether differences in innate host preference may drive observed variation in Ae. albopictus feeding patterns in nature. Low generation colonies (F2-F4) were established with field-collected mosquitoes from three populations with high reported anthropophagy (Thailand, Cameroon, and Florida, USA) and three populations in the United States with low reported anthropophagy (New York, Maryland, and Virginia). The preference of these Ae. albopictus colonies for human versus non-human animal odor was assessed in a dual-port olfactometer along with control Ae. aegypti colonies already known to show divergent behavior in this assay. All Ae. albopictus colonies were less likely (p < 0.05) to choose the human-baited port than the anthropophilic Ae. aegypti control, instead behaving similarly to zoophilic Ae. aegypti. Our results suggest that variation in reported Ae. albopictus feeding patterns are not driven by differences in innate host preference, but may result from differences in host availability. This work is the first to compare Ae. albopictus and Ae. aegypti host preference directly and provides insight into differential vectorial capacity and human feeding risk.
Collapse
Affiliation(s)
| | - Noah Rose
- Princeton University, Princeton, NJ, USA
| | | | - Basile Kamgang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | | | | | - Alongkot Ponlawat
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | | | | | | |
Collapse
|
17
|
Cardo MV, Carbajo AE, Mozzoni C, Kliger M, Vezzani D. Blood feeding patterns of the Culex pipiens complex in equestrian land uses and their implications for arboviral encephalitis risk in temperate Argentina. Zoonoses Public Health 2022; 70:256-268. [PMID: 36575644 DOI: 10.1111/zph.13021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022]
Abstract
Blood feeding patterns of mosquitoes are a key component in the dynamics of arboviral encephalitides transmission. In temperate Argentina, the members of the Culex pipiens complex include Cx. pipiens molestus, Cx. quinquefasciatus and their hybrids. To characterize their blood feeding patterns, adult resting mosquitoes were collected monthly during the warm season in urban and rural equestrian fields. The availability of birds and domestic mammals per site was characterized. The blood source and the complex member were successfully identified for 89 specimens using PCR. Blood of 19 vertebrate species was isolated including four mammals (most common feeds from dog, Canus lupus 19% of the blood meals; and horse, Equus caballus 18%) and 15 birds (picazuro pigeon, Patagioenas picazuro 11%; eared dove, Zenaida auriculata 10%; chicken, Gallus gallus 9%). The Forage Ratio (FR), calculated as the proportion of feeds taken from a given host species with respect to that host availability in the environment, suggested preference for dog by all members of the complex (FR ≥4.5). On the contrary, FR values suggested avoidance for horse by Cx. quinquefasciatus and the hybrid (FR ≤0.8), and a use proportional to its abundance by Cx. pipiens molestus (FR = 1.1-1.2 in urban and rural sites, respectively). FR values suggesting preference were obtained for avian species of the orders Passeriformes (7 species in total) and Columbiformes (5) by all members of the complex (FR ≥ 3.3), whereas values for monk parakeet (Myiopsitta monachus, Psiitaciformes) suggested avoidance by Cx. quinquefasciatus in urban sites (FR = 0.4) and by Cx. pipiens molestus in rural sites (FR = 0.3) but not in urban sites (FR = 1.4). A mammal-bird index (MBI, from -1 all avian to +1 all mammalian blood meals) was calculated for each member of the complex and urbanization category. Values were negative for Cx. quinquefasciatus (MBIurban = -0.60, MBIrural = -0.33) and positive for Cx. pipiens molestus (MBIurban = 0.20, MBIrural = 0.60), indicating a higher proportion of feeds taken on birds and mammals, respectively, regardless of the urbanization category. In temperate Argentina, the members of the Cx. pipiens complex fed both on horses and on birds, thus representing a real risk of transmission of arboviral encephalitides from avian enzootic cycles to horse epizootics.
Collapse
Affiliation(s)
- María Victoria Cardo
- Ecología de Enfermedades Transmitidas por Vectores (2eTV), Instituto de Investigación e Ingeniería Ambiental-IIIA, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Aníbal Eduardo Carbajo
- Ecología de Enfermedades Transmitidas por Vectores (2eTV), Instituto de Investigación e Ingeniería Ambiental-IIIA, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Marlene Kliger
- Ecología de Enfermedades Transmitidas por Vectores (2eTV), Instituto de Investigación e Ingeniería Ambiental-IIIA, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Darío Vezzani
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable, Facultad de Ciencias Exactas, UNCPBA-CICPBA, Tandil, Provincia de Buenos Aires, Argentina
| |
Collapse
|
18
|
Evolutionary consequences of vector-borne transmission: how using vectors shapes host, vector and pathogen evolution. Parasitology 2022; 149:1667-1678. [PMID: 36200511 PMCID: PMC10090782 DOI: 10.1017/s0031182022001378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transmission mode is a key factor that influences host–parasite coevolution. Vector-borne pathogens are among the most important disease agents for humans and wildlife due to their broad distribution, high diversity, prevalence and lethality. They comprise some of the most important and widespread human pathogens, such as yellow fever, leishmania and malaria. Vector-borne parasites (in this review, those transmitted by blood-feeding Diptera) follow unique transmission routes towards their vertebrate hosts. Consequently, each part of this tri-partite (i.e. parasite, vector and host) interaction can influence co- and counter-evolutionary pressures among antagonists. This mode of transmission may favour the evolution of greater virulence to the vertebrate host; however, pathogen–vector interactions can also have a broad spectrum of fitness costs to the insect vector. To complete their life cycle, vector-borne pathogens must overcome immune responses from 2 unrelated organisms, since they can activate responses in both vertebrate and invertebrate hosts, possibly creating a trade-off between investments against both types of immunity. Here, we assess how dipteran vector-borne transmission shapes the evolution of hosts, vectors and the pathogens themselves. Hosts, vectors and pathogens co-evolve together in a constant antagonistic arms race with each participant's primary goal being to maximize its performance and fitness.
Collapse
|
19
|
Kar S, Mondal B, Ghosh J, Mazumdar SM, Mazumdar A. Host preference of bluetongue virus vectors, Culicoides species associated with livestock in West Bengal, India: Potential relevance on bluetongue epidemiology. Acta Trop 2022; 235:106648. [PMID: 35961406 DOI: 10.1016/j.actatropica.2022.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
Determination of host choice of Culicoides species (Diptera: Ceratopogonidae), the vectors of bluetongue virus (BTV), is pivotal to ascertain the role of each species in the transmission of pathogens, pest management and enumeration of disease prediction models. Host preference of livestock associated Culicoides midges was investigated in West Bengal, India with four replicates of a 3 × 3 Latin square design during August and September 2021. Adult Culicoides were mouth aspirated from three BTV hosts viz., cattle, sheep and goats. Mouth aspirating was validated by the sweep net collections. The host-baited collections recorded seven Culicoides species; with the highest landing rate on cattle (n = 5,667; 92.9%) followed by sheep (n = 365; 6.0%) and goat (n = 67; 1.1%). Based on the Jacob's selectivity index, all midge species, except for Culicoides fulvus Sen & Das Gupta, encountered, preferred cattle over other mammalian hosts. Culicoides oxystoma Kieffer, the subgenus Trithecoides Wirth & Hubert and Culicoides actoni Smith, predominated on the ventral region (belly/flank) of the cattle. However, Culicoides peregrinus Kieffer and C. actoni were observed to be prevalent in the leg region of sheep. A significantly higher percentage of female (99.9%) with only 0.3% of male were trapped in aspiration based animal baited collections. On the other hand sweep net and light trap catch comprises of 50.7%, 89.7% female and 49.2%, 10.2% male respectively. Surprisingly, DNA based blood meal analysis revealed human blood from the midges trapped in UV-LED light traps. Supplying the first evidence that Culicoides similis Carter, Ingram & Macfie, C. fulvus and Culicoides palpifer Das Gupta & Ghosh, feed on humans.
Collapse
Affiliation(s)
- Surajit Kar
- Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, West Bengal 713104, India
| | - Biswajit Mondal
- Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, West Bengal 713104, India
| | - Joydeep Ghosh
- Tata Consultancy Services, Ecospace 2A, AA II, Newtown, West Bengal 700135, India
| | | | - Abhijit Mazumdar
- Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, West Bengal 713104, India.
| |
Collapse
|
20
|
Pigeault R, Chevalier M, Cozzarolo CS, Baur M, Arlettaz M, Cibois A, Keiser A, Guisan A, Christe P, Glaizot O. Determinants of haemosporidian single- and co-infection risks in western palearctic birds. Int J Parasitol 2022; 52:617-627. [PMID: 35760376 DOI: 10.1016/j.ijpara.2022.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Understanding the drivers of infection risk helps us to detect the most at-risk species in a community and identify species whose intrinsic characteristics could act as potential reservoirs of pathogens. This knowledge is crucial if we are to predict the emergence and evolution of infectious diseases. To date, most studies have only focused on infections caused by a single parasite, leaving out co-infections. Yet, co-infections are of paramount importance in understanding the ecology and evolution of host-parasite interactions due to the wide range of effects they can have on host fitness and on the evolutionary trajectories of parasites. Here, we used a multinomial Bayesian phylogenetic modelling framework to explore the extent to which bird ecology and phylogeny impact the probability of being infected by one genus (hereafter single infection) or by multiple genera (hereafter co-infection) of haemosporidian parasites. We show that while nesting and migration behaviors influenced both the probability of being single- and co-infected, species position along the slow-fast life-history continuum and geographic range size were only pertinent in explaining variation in co-infection risk. We also found evidence for a phylogenetic conservatism regarding both single- and co-infections, indicating that phylogenetically related bird species tend to have similar infection patterns. This phylogenetic signal was four times stronger for co-infections than for single infections, suggesting that co-infections may act as a stronger selective pressure than single infections. Overall, our study underscores the combined influence of hosts' evolutionary history and attributes in determining infection risk in avian host communities. These results also suggest that co-infection risk might be under stronger deterministic control than single infection risk, potentially paving the way toward a better understanding of the emergence and evolution of infectious diseases.
Collapse
Affiliation(s)
- Romain Pigeault
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Laboratoire EBI, Equipe EES, UMR CNRS 7267, 86000 Poitiers, France.
| | - Mathieu Chevalier
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Ifremer, Centre de Bretagne, DYNECO-LEBCO, CS 10070, 29280 Plouzané, France
| | - Camille-Sophie Cozzarolo
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Biogéosciences, UMR 6282 CNRS, université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Molly Baur
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | | | - Alice Cibois
- Natural History Museum of Geneva, C.P. 6434, CH-1211 Genève 6, Switzerland
| | - André Keiser
- Musée cantonal de zoologie, CH-1014 Lausanne, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | - Olivier Glaizot
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Musée cantonal de zoologie, CH-1014 Lausanne, Switzerland
| |
Collapse
|
21
|
Marzal A, Magallanes S, Garcia-Longoria L. Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour. BIOLOGY 2022; 11:726. [PMID: 35625454 PMCID: PMC9138572 DOI: 10.3390/biology11050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Vector-borne infectious diseases (e.g., malaria, dengue fever, and yellow fever) result from a parasite transmitted to humans and other animals by blood-feeding arthropods. They are major contributors to the global disease burden, as they account for nearly a fifth of all infectious diseases worldwide. The interaction between vectors and their hosts plays a key role driving vector-borne disease transmission. Therefore, identifying factors governing host selection by blood-feeding insects is essential to understand the transmission dynamics of vector-borne diseases. Here, we review published information on the physical and chemical stimuli (acoustic, visual, olfactory, moisture and thermal cues) used by mosquitoes and other haemosporidian vectors to detect their vertebrate hosts. We mainly focus on studies on avian malaria and related haemosporidian parasites since this animal model has historically provided important advances in our understanding on ecological and evolutionary process ruling vector-borne disease dynamics and transmission. We also present relevant studies analysing the capacity of feather and skin symbiotic bacteria in the production of volatile compounds with vector attractant properties. Furthermore, we review the role of uropygial secretions and symbiotic bacteria in bird-insect vector interactions. In addition, we present investigations examining the alterations induced by haemosporidian parasites on their arthropod vector and vertebrate host to enhance parasite transmission. Finally, we propose future lines of research for designing successful vector control strategies and for infectious disease management.
Collapse
Affiliation(s)
- Alfonso Marzal
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain;
- Grupo de Investigación y Sostenibilidad Ambiental, Universidad Nacional Federico Villarreal, Lima 15007, Peru
| | - Sergio Magallanes
- Department of Wetland Ecology, Biological Station (EBD-CSIC), Avda, Américo Vespucio 26, 41092 Sevilla, Spain;
| | - Luz Garcia-Longoria
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain;
| |
Collapse
|
22
|
de Angeli Dutra D, Fecchio A, Braga ÉM, Poulin R. Migratory behaviour does not alter cophylogenetic congruence between avian hosts and their haemosporidian parasites. Parasitology 2022; 149:1-8. [PMID: 35393002 PMCID: PMC10090587 DOI: 10.1017/s0031182022000154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/07/2022]
Abstract
Parasites display various degrees of host specificity, reflecting different coevolutionary histories with their hosts. Avian hosts follow multiple migration patterns representing short but also long distances. As parasites infecting migratory birds are subjected to multiple environmental and biotic changes through their flyways, migration may disrupt or strengthen cophylogenetic congruence between hosts and parasites. On the one hand, parasites might adapt to a single migratory host, evolving to cope with the specific challenges associated with the multiple habitats occupied by the host. On the other, as migrants can introduce parasites into new habitats, higher rates of host switching could also disrupt cophylogenetic patterns. We analysed whether migratory behaviour shapes avian haemosporidian parasite–host cophylogenetic congruence by testing if contributions of host–parasite links to overall congruence differ among resident and short-, variable- and long-distance migrants globally and within South America only. On both scales, we found significant overall cophylogenetic congruence by testing whether overall congruence differed between haemosporidian lineages and bird species. However, we found no difference in contribution towards congruence among links involving resident vs migratory hosts in both models. Thus, migratory behaviour neither weakens nor strengthens bird–haemosporidian cophylogenetic congruence, suggesting that other avian host traits are more influential in generating phylogenetic congruence in this host–parasite system.
Collapse
Affiliation(s)
| | - Alan Fecchio
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Stromsky VE, Hajkazemian M, Vaisbourd E, Mozūraitis R, Noushin Emami S. Plasmodium metabolite HMBPP stimulates feeding of main mosquito vectors on blood and artificial toxic sources. Commun Biol 2021; 4:1161. [PMID: 34620990 PMCID: PMC8497504 DOI: 10.1038/s42003-021-02689-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Recent data show that parasites manipulate the physiology of mosquitoes and human hosts to increase the probability of transmission. Here, we investigate phagostimulant activity of Plasmodium-metabolite, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), in the primary vectors of multiple human diseases, Anopheles coluzzii, An. arabiensis, An. gambiae s.s., Aedes aegypti, and Culex pipiens/Culex torrentium complex species. The addition of 10 µM HMBPP to blood meals significantly increased feeding in all the species investigated. Moreover, HMBPP also exhibited a phagostimulant property in plant-based-artificial-feeding-solution made of beetroot juice adjusted to neutral pH similar to that of blood. The addition of AlbuMAXTM as a lipid/protein source significantly improved the feeding rate of An. gambiae s.l. females providing optimised plant-based-artificial-feeding-solution for delivery toxins to control vector populations. Among natural and synthetic toxins tested, only fipronil sulfone did not reduce feeding. Overall, the toxic-plant-based-artificial-feeding-solution showed potential as an effector in environmentally friendly vector-control strategies.
Collapse
Affiliation(s)
- Viktoria E Stromsky
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melika Hajkazemian
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elizabeth Vaisbourd
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Molecular Attraction AB, Elektravägen 10, 126 30 Hägersten, Stockholm, Sweden.
- Natural Resources Institute, FES, University of Greenwich, London, UK.
| |
Collapse
|
24
|
Martínez-de la Puente J, Dunn JC, Gangoso L. Editorial: Factors Affecting Host Selection by Mosquitoes: Implications for the Transmission of Vector-Borne Pathogens. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.739258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|