1
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
2
|
Fu Y, Sun S, Shi D, Bi J. Construction of endothelial cell signatures for predicting the diagnosis, prognosis and immunotherapy response of bladder cancer via machine learning. J Cell Mol Med 2024; 28:e18155. [PMID: 38429911 PMCID: PMC10907833 DOI: 10.1111/jcmm.18155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
We subtyped bladder cancer (BC) patients based on the expression patterns of endothelial cell (EC) -related genes and constructed a diagnostic signature and an endothelial cell prognostic index (ECPI), which are useful for diagnosing BC patients, predicting the prognosis of BC and evaluating drug sensitivity. Differentially expressed genes in ECs were obtained from the Tumour Immune Single-Cell Hub database. Subsequently, a diagnostic signature, a tumour subtyping system and an ECPI were constructed using data from The Cancer Genome Atlas and Gene Expression Omnibus. Associations between the ECPI and the tumour microenvironment, drug sensitivity and biofunctions were assessed. The hub genes in the ECPI were identified as drug candidates by molecular docking. Subtype identification indicated that high EC levels were associated with a worse prognosis and immunosuppressive effect. The diagnostic signature and ECPI were used to effectively diagnose BC and accurately assess the prognosis of BC and drug sensitivity among patients. Three hub genes in the ECPI were extracted, and the three genes had the closest affinity for doxorubicin and curcumin. There was a close relationship between EC and BC. EC-related genes can help clinicians diagnose BC, predict the prognosis of BC and select effective drugs.
Collapse
Affiliation(s)
- Yang Fu
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shanshan Sun
- Department of PharmacyThe People's Hospital of Liaoning ProvinceShenyangLiaoningChina
| | - Du Shi
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jianbin Bi
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
3
|
Zhang M, Liang Y, Song P. COL3A1-positive endothelial cells influence LUAD prognosis and regulate LUAD carcinogenesis by NCL-PI3K-AKT axis. J Gene Med 2024; 26:e3573. [PMID: 37547956 DOI: 10.1002/jgm.3573] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD), as the most common type of lung cancer, poses a significant threat to public health. Tumor heterogeneity plays a crucial role in carcinogenesis, which could be largely deciphered by next-generation sequencing (NGS). METHODS We obtained and screened single-cell RNA sequencing (scRNA-seq) data from 16 LUAD samples, and endothelial cells (ECs) were grouped into three clusters. The origin of EC differentiation was explored by pseudo-time analysis. CellChat analysis was used to detect potential communication between ECs and malignant cells, and gene regulatory network analysis was used to identify changes in transcription factor activity. We explored the prognosis of specific ECs clusters and their effects on the tumor microenvironment (TME) at the bulk transcriptome level. 5-Ethynyl-2'- deoxyuridine (EdU) and Ki-67 staining were conducted to study the proliferative phenotype of LUAD cell lines. Western blotting targeting the phosphorylation of PI3K-AKT proteins was utilized for determination of the downstream pathway of NCL. RESULTS COL3A1-positive ECs showed the highest crosstalk interaction with malignant cells, indicating that they have important effects on driving LUAD carcinogenesis. Vascular endothelial growth factor (VEGF) signaling pathway was identified as the main signaling pathway, mediating signal transduction from malignant cells. The TME-related genes of COL3A1-positive ECs were significantly more highly expressed. COL3A1-positive ECs showed unique metabolic and immune characteristics, as well as highly activated metabolic signaling pathways and inflammatory responses. Importantly, LUAD patients with low COL3A1-positive ECs scores displayed an inferior prognosis outcome and a higher risk of metastasis. The key target gene NCL, which is involved in the interaction between epithelial cells and cancer cells, has been identified through screening. Flow cytometry showed that knockdown of NCL prompted the apoptosis of A549 and NCI-H1299. Western blotting showed that knockdown of NCL decreased the phosphorylation of AKT and PI3K, which identified the downstream pathway of NCL. CONCLUSIONS COL3A1-positive ECs have important effects on the development of LUAD and the formation of an immune microenvironment. Furthermore, we identified a key target gene, NCL, which is involved in the interaction between endothelial cells and cancer cells. NCL also affected the apoptosis and proliferation in LUAD through the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Moyan Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yicheng Liang
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Zhuo X, Huang C, Su L, Liang F, Xie W, Xu Q, Han P, Huang X, Wong PP. Identification of a distinct tumor endothelial cell-related gene expression signature associated with patient prognosis and immunotherapy response in multiple cancers. J Cancer Res Clin Oncol 2023; 149:9635-9655. [PMID: 37227522 DOI: 10.1007/s00432-023-04848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Tumor endothelial cells (TECs) play a significant role in regulating the tumor microenvironment, drug response, and immune cell activities in various cancers. However, the association between TEC gene expression signature and patient prognosis or therapeutic response remains poorly understood. METHODS We analyzed transcriptomics data of normal and tumor endothelial cells obtained from the GEO database to identify differentially expressed genes (DEGs) associated with TECs. We then compared these DEGs with those commonly found across five different tumor types from the TCGA database to determine their prognostic relevance. Using these genes, we constructed a prognostic risk model integrated with clinical features to develop a nomogram model, which we validated through biological experiments. RESULTS We identified 12 TEC-related prognostic genes across multiple tumor types, of which five genes were sufficient to construct a prognostic risk model with an AUC of 0.682. The risk scores effectively predicted patient prognosis and immunotherapeutic response. Our newly developed nomogram model provided more accurate prognostic estimates of cancer patients than the TNM staging method (AUC = 0.735) and was validated using external patient cohorts. Finally, RT-PCR and immunohistochemical analyses indicated that the expression of these 5 TEC-related prognostic genes was up-regulated in both patient-derived tumors and cancer cell lines, while depletion of the hub genes reduced cancer cell growth, migration and invasion, and enhanced their sensitivity to gemcitabine or cytarabine. CONCLUSIONS Our study discovered the first TEC-related gene expression signature that can be used to construct a prognostic risk model for guiding treatment options in multiple cancers.
Collapse
Affiliation(s)
- Xianhua Zhuo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liangping Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Faya Liang
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wenqian Xie
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ping Han
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoming Huang
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
5
|
Yao X, Zeng Y. Tumour associated endothelial cells: origin, characteristics and role in metastasis and anti-angiogenic resistance. Front Physiol 2023; 14:1199225. [PMID: 37389120 PMCID: PMC10301839 DOI: 10.3389/fphys.2023.1199225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Tumour progression and metastasis remain the leading causes of cancer-related death worldwide. Tumour angiogenesis is essential for tumour progression. The vasculature surrounding tumours is not only a transport channel for nutrients, oxygen, and metabolites, but also a pathway for metastasis. There is a close interaction between tumour cells and endothelial cells in the tumour microenvironment. Recent studies have shown that tumour-associated endothelial cells have different characteristics from normal vascular endothelial cells, play an important role in tumour progression and metastasis, and are expected to be a key target for cancer therapy. This article reviews the tissue and cellular origin of tumour-associated endothelial cells and analyses the characteristics of tumour-associated endothelial cells. Finally, it summarises the role of tumour-associated endothelial cells in tumour progression and metastasis and the prospects for their use in clinical anti-angiogenic therapy.
Collapse
Affiliation(s)
- Xinghong Yao
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Radiotherapy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer. Mol Cancer 2022; 21:132. [PMID: 35717322 PMCID: PMC9206324 DOI: 10.1186/s12943-022-01597-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/15/2022] [Indexed: 12/26/2022] Open
Abstract
Background Crosstalk between neoplastic and stromal cells fosters prostate cancer (PCa) progression and dissemination. Insight in cell-to-cell communication networks provides new therapeutic avenues to mold processes that contribute to PCa tumor microenvironment (TME) alterations. Here we performed a detailed characterization of PCa tumor endothelial cells (TEC) to delineate intercellular crosstalk between TEC and the PCa TME. Methods TEC isolated from 67 fresh radical prostatectomy (RP) specimens underwent multi-omic ex vivo characterization as well as orthogonal validation of both TEC functions and key markers by immunohistochemistry (IHC) and immunofluorescence (IF). To identify cell–cell interaction targets in TEC, we performed single-cell RNA sequencing (scRNA-seq) in four PCa patients who underwent a RP to catalogue cellular TME composition. Targets were cross-validated using IHC, publicly available datasets, cell culture expriments as well as a PCa xenograft mouse model. Results Compared to adjacent normal endothelial cells (NEC) bulk RNA-seq analysis revealed upregulation of genes associated with tumor vasculature, collagen modification and extracellular matrix remodeling in TEC. PTGIR, PLAC9, CXCL12 and VDR were identified as TEC markers and confirmed by IF and IHC in an independent patient cohort. By scRNA-seq we identified 27 cell (sub)types, including endothelial cells (EC) with arterial, venous and immature signatures, as well as angiogenic tip EC. A focused molecular analysis revealed that arterial TEC displayed highest CXCL12 mRNA expression levels when compared to all other TME cell (sub)populations and showed a negative prognostic role. Receptor-ligand interaction analysis predicted interactions between arterial TEC derived CXCL12 and its cognate receptor CXCR4 on angiogenic tip EC. CXCL12 was in vitro and in vivo validated as actionable TEC target by highlighting the vessel number- and density- reducing activity of the CXCR4-inhibitor AMD3100 in murine PCa as well as by inhibition of TEC proliferation and migration in vitro. Conclusions Overall, our comprehensive analysis identified novel PCa TEC targets and highlights CXCR4/CXCL12 interaction as a potential novel target to interfere with tumor angiogenesis in PCa. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01597-7.
Collapse
|
7
|
Jiang L, Yang Y, Liu F, Ma M, Gao J, Sun L, Chen Y, Shen Z, Wu D. A Potential Diagnostic and Prognostic Biomarker TMEM176B and Its Relationship With Immune Infiltration in Skin Cutaneous Melanoma. Front Cell Dev Biol 2022; 10:859958. [PMID: 35399535 PMCID: PMC8986129 DOI: 10.3389/fcell.2022.859958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Melanoma is a highly malignant and aggressive tumor. The search for new and effective biomarkers facilitates early diagnosis and treatment, ultimately improving the prognosis of melanoma patients. Although the transmembrane protein TMEM176B has been linked to a number of cancers, its role in cancer immunity remains unknown. Methods: Expression levels of TMEM176B in normal tissues and several cancers, including Skin Cutaneous Melanoma (SKCM), were collected from TCGA and GTEx. We used Receiver operating characteristic and Kaplan–Meier survival curves and performed regression analysis to elucidate the link between TMEM176B and clinicopathological features of SKCM in order to determine the prognostic significance of TMEM176B in SKCM. We then used the GEPIA and STRING websites to search for proteins and associated top genes that may interact with TMEM176B and enriched them for analysis. The link between TMEM176B and immune cells infiltration was then investigated using TIMER, CIBERSORT algorithm and GSVA package of R (v3.6.3). Finally, animal tests were conducted to confirm the expression of Tmem176b and its influence on T-cell immune infiltration. Results:TMEM176B expression was considerably elevated in SKCM compared to normal tissues. Particularly, TMEM176B expression was also linked to pathological stage, tumor ulceration and radiation therapy. Patients with elevated TMEM176B expression had a better prognosis, according to the survival analysis. The majority of tumor infiltrating lymphocytes (TILs) especially T cells in SKCM was positively linked with TMEM176B expression. Our animal experiments also verified that the T-cell infiltration was significantly inhibited in local melanoma tissue of Tmem176b knockout mice. At the same time deleting Tmem176b accelerated tumor progress and impaired T cells effector function. Conclusion: Upregulated expression of TMEM176B in SKCM is associated with a better prognosis and it has the potential to serve as a diagnostic and prognostic marker for the disease. It may serve as a target for SKCM immunotherapy by regulating CD8+ T cells although it requires more evidence.
Collapse
Affiliation(s)
- Linlan Jiang
- Department of Oncology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yanyin Yang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Fudan University, Shanghai, China
| | - Fangming Liu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingyue Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Fudan University, Shanghai, China
| | - Jie Gao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Sun
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuwen Chen
- Jinshan Hospital Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zan Shen
- Department of Oncology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Duojiao Wu, ; Zan Shen,
| | - Duojiao Wu
- Jinshan Hospital Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Duojiao Wu, ; Zan Shen,
| |
Collapse
|
8
|
Maishi N, Sakurai Y, Hatakeyama H, Umeyama Y, Nakamura T, Endo R, Alam MT, Li C, Annan DAM, Kikuchi H, Morimoto H, Morimoto M, Akiyama K, Ohga N, Hida Y, Harashima H, Hida K. Novel antiangiogenic therapy targeting biglycan using tumor endothelial cell-specific liposomal siRNA delivery system. Cancer Sci 2022; 113:1855-1867. [PMID: 35266253 PMCID: PMC9128192 DOI: 10.1111/cas.15323] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022] Open
Abstract
Tumor blood vessels play important roles in tumor progression and metastasis. Targeting tumor endothelial cells (TECs) is one of the strategies for cancer therapy. We previously reported that biglycan, a small leucine‐rich proteoglycan, is highly expressed in TECs. TECs utilize biglycan in an autocrine manner for migration and angiogenesis. Furthermore, TEC‐derived biglycan stimulates tumor cell migration in a paracrine manner leading to tumor cell intravasation and metastasis. In this study, we explored the therapeutic effect of biglycan inhibition in the TECs of renal cell carcinoma using an in vivo siRNA delivery system known as a multifunctional envelope‐type nanodevice (MEND), which contains a unique pH‐sensitive cationic lipid. To specifically deliver MEND into TECs, we incorporated cyclo(Arg–Gly–Asp–d–Phe–Lys) (cRGD) into MEND because αVβ3 integrin, a receptor for cRGD, is selective and highly expressed in TECs. We developed RGD‐MEND‐encapsulating siRNA against biglycan. First, we confirmed that MEND was delivered into OS‐RC‐2 tumor‐derived TECs and induced in vitro RNAi‐mediated gene silencing. MEND was then injected intravenously into OS‐RC‐2 tumor‐bearing mice. Flow cytometry analysis demonstrated that MEND was specifically delivered into TECs. Quantitative RT‐PCR indicated that biglycan was knocked down by biglycan siRNA‐containing MEND. Finally, we analyzed the therapeutic effect of biglycan silencing by MEND in TECs. Tumor growth was inhibited by biglycan siRNA‐containing MEND. Tumor microenvironmental factors such as fibrosis were also normalized using biglycan inhibition in TECs. Biglycan in TECs can be a novel target for cancer treatment.
Collapse
Affiliation(s)
- Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Membrane Transport and Drug Targeting Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroto Hatakeyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yui Umeyama
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mohammad Towfik Alam
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Cong Li
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Dorcas Akuba-Muhyia Annan
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hirofumi Morimoto
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Morimoto
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kosuke Akiyama
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | | | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
9
|
TMEM176B Regulates AKT/mTOR Signaling and Tumor Growth in Triple-Negative Breast Cancer. Cells 2021; 10:cells10123430. [PMID: 34943938 PMCID: PMC8700203 DOI: 10.3390/cells10123430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
TMEM176B is a member of the membrane spanning 4-domains (MS4) family of transmembrane proteins, and a putative ion channel that is expressed in immune cells and certain cancers. We aimed to understand the role of TMEM176B in cancer cell signaling, gene expression, cell proliferation, and migration in vitro, as well as tumor growth in vivo. We generated breast cancer cell lines with overexpressed and silenced TMEM176B, and a therapeutic antibody targeting TMEM176B. Proliferation and migration assays were performed in vitro, and tumor growth was evaluated in vivo. We performed gene expression and Western blot analyses to identify the most differentially regulated genes and signaling pathways in cells with TMEM176B overexpression and silencing. Silencing TMEM176B or inhibiting it with a therapeutic antibody impaired cell proliferation, while overexpression increased proliferation in vitro. Syngeneic and xenograft tumor studies revealed the attenuated growth of tumors with TMEM176B gene silencing compared with controls. We found that the AKT/mTOR signaling pathway was activated or repressed in cells overexpressing or silenced for TMEM176B, respectively. Overall, our results suggest that TMEM176B expression in breast cancer cells regulates key signaling pathways and genes that contribute to cancer cell growth and progression, and is a potential target for therapeutic antibodies.
Collapse
|
10
|
席 玉. 制备人脐静脉内皮细胞和人肺腺癌细胞融合细胞的新方法. Technol Cancer Res Treat 2021; 20:15330338211034260. [PMID: 34318732 PMCID: PMC8323407 DOI: 10.1177/15330338211034260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose: Human umbilical endothelial cells (HUVECs) have been proved to be
an effective whole-cell vaccine inhibiting tumor angiogenesis.
In this study, we fused HUVECs with human lung adenocarcinoma
cells A549 s, aiming at preparing lung cancer vaccine to achieve
dual effects of anti-tumor angiogenesis and specific immunity to
tumor cells. Methods: A549 cells were induced by ethyl methane sulfonate (EMS) and
8-azaguanine (8-AG) to get hypoxanthine guanine phosphoribosyl
transferase (HGPRT) auxotrophic A549 cells. Then Fused HGPRT
auxotrophic A549 cells with primary HUVEC cells by combining
electrofusion with polyethylene glycol (PEG). Afterward the
fusion cells were screened by HAT and HT selective medium and
sorted by flow cell sorter to obtain high-purity HUVEC-A549
cells. Finally, HUVEC-A549 cells were identified by karyotype
analysis and western blotting. Results: The fusion efficiency of HUVEC-A549 cells prepared by combining
electrofusion with polyethylene glycol (PEG) was significantly
higher than that of electrofusion and PEG (43.0% vs 17.60% vs
2.71%, P < 0.05). After screened by HAT and
HT selective medium and sorted by flow cell sorter, the
proportion of HUVEC-A549 cells can count for 71.2% ± 3.2%. The
mode of chromosomes in HUVEC-A549 cells was 68, and the
chromosome was triploid. VE-cadherin and platelet endothelial
cell adhesion molecule-1 (CD31) were highly expressed in HUVECs
and HUVEC-A549 cells, but not in A549 cells. Conclusions: These results indicate that HUVEC-A549 cells retain the biological
characteristics of human umbilical vein endothelial cells and
A549 cells. It can be used in the experimental study of lung
cancer cell vaccine.
Collapse
Affiliation(s)
- 玉峰 席
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Lancien M, Bienvenu G, Salle S, Gueno L, Feyeux M, Merieau E, Remy S, Even A, Moreau A, Molle A, Fourgeux C, Coulon F, Beriou G, Bouchet-Delbos L, Chiffoleau E, Kirstetter P, Chan S, Kerfoot SM, Abdu Rahiman S, De Simone V, Matteoli G, Boncompain G, Perez F, Josien R, Poschmann J, Cuturi MC, Louvet C. Dendritic Cells Require TMEM176A/B Ion Channels for Optimal MHC Class II Antigen Presentation to Naive CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:421-435. [PMID: 34233909 DOI: 10.4049/jimmunol.2000498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
Intracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt+ cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although Tmem176a/b appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4+ T cells. Using a real-time imaging method, we show that TMEM176A/B accumulate in dynamic post-Golgi vesicles preferentially linked to the late endolysosomal system and strongly colocalize with HLA-DM. Taken together, our results suggest that TMEM176A/B ion channels play a direct role in the MHC class II compartment of DCs for the fine regulation of Ag presentation and naive CD4+ T cell priming.
Collapse
Affiliation(s)
- Melanie Lancien
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Geraldine Bienvenu
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Sonia Salle
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Lucile Gueno
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Magalie Feyeux
- Nantes Université, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Emmanuel Merieau
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Severine Remy
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Amandine Even
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Aurelie Moreau
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Alice Molle
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Flora Coulon
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Gaelle Beriou
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Laurence Bouchet-Delbos
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Elise Chiffoleau
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Peggy Kirstetter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Saeed Abdu Rahiman
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Veronica De Simone
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Gaelle Boncompain
- Dynamique de l'Organisation Intra-Cellulaire, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Franck Perez
- Dynamique de l'Organisation Intra-Cellulaire, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Regis Josien
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Maria Cristina Cuturi
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Cedric Louvet
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France;
| |
Collapse
|
12
|
Yanagiya M, Dawood RIH, Maishi N, Hida Y, Torii C, Annan DA, Kikuchi H, Yanagawa Matsuda A, Kitamura T, Ohiro Y, Shindoh M, Tanaka S, Kitagawa Y, Hida K. Correlation between endothelial CXCR7 expression and clinicopathological factors in oral squamous cell carcinoma. Pathol Int 2021; 71:383-391. [PMID: 33783897 DOI: 10.1111/pin.13094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022]
Abstract
Oral squamous cell carcinoma (OSCC) impairs functionality and sensuousness resulting in poor quality of life. Biomarkers can predict disease trajectory and lead to effective treatments. Transcriptomics have identified genes that are upregulated in tumor endothelial cells (TECs) compared with normal endothelial cells (NECs). Among them, chemokine receptor 7 (CXCR7) is highly expressed in TECs of several cancers and involved in angiogenesis of TECs. However, levels of CXCR7 in OSCC blood vessels have not been fully investigated. In this study, we analyzed the correlation between CXCR7 expression in TECs and clinicopathological factors in OSCC. Immunohistochemistry for CXCR7 and CD34 was performed on 59 OSCC tissue specimens resected between 1996 and 2008 at Hokkaido University Hospital. CXCR7 expression in blood vessels was evaluated by the ratio of CXCR7+/CD34+ blood vessels. CXCR7 expression was 42% and 19% in tumor and non-tumor parts, respectively, suggesting that CXCR7 expression is higher in TECs than in NECs. CXCR7 expression in TECs correlated with advanced T-stage and cancer stage. Overall survival and disease-free survival rates were higher in low-expressing CXCR7 patients than in high-expressing. These results suggest that CXCR7 expression in blood vessels may be a useful diagnostic and prognostic marker for OSCC patients.
Collapse
Affiliation(s)
- Misa Yanagiya
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Randa I H Dawood
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular Thoracic Surgery, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - Chisaho Torii
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Dorcas A Annan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Aya Yanagawa Matsuda
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan.,Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Tetsuya Kitamura
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan.,Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Yoichi Ohiro
- Department of Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| | - Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Hokkaido, Japan
| |
Collapse
|
13
|
Segovia M, Russo S, Girotti MR, Rabinovich GA, Hill M. Role of inflammasome activation in tumor immunity triggered by immune checkpoint blockers. Clin Exp Immunol 2020; 200:155-162. [PMID: 32297328 DOI: 10.1111/cei.13433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint blockers improve the overall survival of a limited number of patients among different cancers. Identifying pathways that influence the immunological and clinical response to treatment is critical to improve the therapeutic efficacy and predict clinical responses. Recently, a key role has been assigned to innate immune mechanisms in checkpoint blockade-driven anti-tumor responses. However, inflammatory pathways can both improve and impair anti-tumor immunity. In this review, we discuss how different inflammatory pathways, particularly inflammasome activation, can influence the clinical outcome of immune checkpoint blockers. Inflammasome activation may reinforce anti-tumor immunity by boosting CD8+ T cell priming as well as by enhancing T helper type 17 (Th17) responses. In particular, we focus on the modulation of the cation channel transmembrane protein 176B (TMEM176B) and the ectonucleotidase CD39 as potential targets to unleash inflammasome activation leading to reinforced anti-tumor immunity and improved efficacy of immune checkpoint blockers. Future studies should be aimed at investigating the mechanisms and cell subsets involved in inflammasome-driven anti-tumor responses.
Collapse
Affiliation(s)
- M Segovia
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Immunobiology Department, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - S Russo
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Immunobiology Department, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - M R Girotti
- Laboratory of Translational Immuno-Oncology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - G A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina.,School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - M Hill
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Immunobiology Department, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
14
|
Zhu ZP, Lin LR, Lv TD, Xu CR, Cai TY, Lin J. High expression levels of DEF6 predicts a poor prognosis for patients with clear cell renal cell carcinoma. Oncol Rep 2020; 44:2056-2066. [PMID: 33000227 PMCID: PMC7551049 DOI: 10.3892/or.2020.7736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignant tumors and early detection contributes to a better prognosis. Finding new biomarkers for the diagnosis or treatment remains meaningful. DEF6 guanine nucleotide exchange factor (DEF6) is upregulated in ccRCC compared to normal controls, but the relationship between DEF6 expression and prognosis in ccRCC is unclear. Moreover, the potential biological functions of DEF6 in ccRCC remains unclear. In the present study, the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), TISIDB and the clinical database of the Peking University First Hospital were used to analyze DEF6 expression in ccRCC. Immunohistochemistry (IHC), western blotting and reverse transcription-quantitative PCR were used to examine the DEF6 protein and mRNA expression levels in cell lines and clinical samples. Subsequently, the Kaplan-Meier method and Cox regression analyses were used to determine the impact of DEF6 expression on the overall survival of patients alongside other clinical variables in both the TCGA database and the present clinical database. The results showed that both DEF6 mRNA and protein expression levels were upregulated in ccRCC compared to normal controls. The Kaplan-Meier survival analysis showed that patients with high DEF6 expression had poor prognoses from both the TCGA database and the present clinical database. Univariate survival analysis and multivariate survival analysis revealed that DEF6 could be an independent prognostic factor for ccRCC. Additionally, bioinformatics analysis indicated that differentially expressed genes related to DEF6 expression influenced ccRCC by regulating the tumor immune microenvironment. In conclusion, overexpression of DEF6 is significantly correlated with a poor prognosis for patients with ccRCC and DEF6 may influence the biological processes involved with ccRCC by regulating the immune microenvironment.
Collapse
Affiliation(s)
- Zhen-Peng Zhu
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lan-Ruo Lin
- College of Basic Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Tong-De Lv
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Chun-Ru Xu
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Tian-Yu Cai
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
15
|
Maishi N, Kikuchi H, Sato M, Nagao-Kitamoto H, Annan DA, Baba S, Hojo T, Yanagiya M, Ohba Y, Ishii G, Masutomi K, Shinohara N, Hida Y, Hida K. Development of Immortalized Human Tumor Endothelial Cells from Renal Cancer. Int J Mol Sci 2019; 20:ijms20184595. [PMID: 31533313 PMCID: PMC6770423 DOI: 10.3390/ijms20184595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tumor angiogenesis research and antiangiogenic drug development make use of cultured endothelial cells (ECs) including the human microvascular ECs among others. However, it has been reported that tumor ECs (TECs) are different from normal ECs (NECs). To functionally validate antiangiogenic drugs, cultured TECs are indispensable tools, but are not commercially available. Primary human TECs are available only in small quantities from surgical specimens and have a short life span in vitro due to their cellular senescence. We established immortalized human TECs (h-imTECs) and their normal counterparts (h-imNECs) by infection with lentivirus producing simian virus 40 large T antigen and human telomerase reverse transcriptase to overcome the replication barriers. These ECs exhibited an extended life span and retained their characteristic endothelial morphology, expression of endothelial marker, and ability of tube formation. Furthermore, h-imTECs showed their specific characteristics as TECs, such as increased proliferation and upregulation of TEC markers. Treatment with bevacizumab, an antiangiogenic drug, dramatically decreased h-imTEC survival, whereas the same treatment failed to alter immortalized NEC survival. Hence, these h-imTECs could be a valuable tool for drug screening to develop novel therapeutic agents specific to TECs or functional biological assays in tumor angiogenesis research.
Collapse
Affiliation(s)
- Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Masumi Sato
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Hiroko Nagao-Kitamoto
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Dorcas A Annan
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Shogo Baba
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Takayuki Hojo
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Department of Dental Anesthesiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Misa Yanagiya
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| |
Collapse
|
16
|
Hojo T, Maishi N, Towfik AM, Akiyama K, Ohga N, Shindoh M, Hida Y, Minowa K, Fujisawa T, Hida K. ROS enhance angiogenic properties via regulation of NRF2 in tumor endothelial cells. Oncotarget 2018; 8:45484-45495. [PMID: 28525375 PMCID: PMC5542202 DOI: 10.18632/oncotarget.17567] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are unstable molecules that activate oxidative stress. Because of the insufficient blood flow in tumors, the tumor microenvironment is often exposed to hypoxic condition and nutrient deprivation, which induces ROS accumulation. We isolated tumor endothelial cells (TECs) and found that they have various abnormalities, although the underlying mechanisms are not fully understood. Here we showed that ROS were accumulated in tumor blood vessels and ROS enhanced TEC migration with upregulation of several angiogenesis related gene expressions. It was also demonstrated that these genes were upregulated by regulation of Nuclear factor erythroid 2-related factor 2 (NRF2). Among these genes, we focused on Biglycan, a small leucine-rich proteoglycan. Inhibition of Toll-like receptors 2 and 4, known BIGLYCAN (BGN) receptors, cancelled the TEC motility stimulated by ROS. ROS inhibited NRF2 expression in TECs but not in NECs, and NRF2 inhibited phosphorylation of SMAD2/3, which activates transcription of BGN. These results indicated that ROS-induced BGN caused the pro-angiogenic phenotype in TECs via NRF2 dysregulation.
Collapse
Affiliation(s)
- Takayuki Hojo
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Dental Anesthesiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Alam Mohammad Towfik
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Dental Radiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Kosuke Akiyama
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Noritaka Ohga
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kazuyuki Minowa
- Department of Dental Radiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Toshiaki Fujisawa
- Department of Dental Anesthesiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
17
|
Combination curcumin and (-)-epigallocatechin-3-gallate inhibits colorectal carcinoma microenvironment-induced angiogenesis by JAK/STAT3/IL-8 pathway. Oncogenesis 2017; 6:e384. [PMID: 28967875 PMCID: PMC5668882 DOI: 10.1038/oncsis.2017.84] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/31/2017] [Accepted: 08/19/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor microenvironment has a crucial role in cancer development and progression, whereas the mechanism of how it regulates angiogenesis is unclear. In this study, we simulated the colorectal carcinoma microenvironment by conditioned medium (CM) of colorectal carcinoma cell lines (SW620, HT-29, HCT116) supernatant or colorectal carcinoma tissue homogenate supernatant to induce normal endothelial cells (NECs). We found that colorectal carcinoma CM promoted tumor angiogenesis by coercing NECs toward tumor endothelial cells (TECs) with the activation of the JAK/STAT3 signaling pathway. Antibody array analysis showed HT-29 supernatant contained numerous angiogenesis-related proteins, especially IL-8. Interestingly, the production of IL-8 in NECs induced by HT-29 CM was also increased. We also verified the crucial role of IL-8 in promoting the CM-induced angiogenesis, as IL-8 repression by neutralizing antibody abolished the transition of NECs toward TECs. Curcumin and (-)-epigallocatechin-3-gallate (EGCG) are broadly investigated in cancer chemoprevention. However, poor bioavailability hurdles their application alone, and the mechanism of their anti-angiogenesis still need to be illuminated. Here, we found that curcumin combination with EGCG attenuated the tumor CM-induced transition of NECs toward TECs by inhibiting JAK/STAT3 signaling pathway. Furthermore, the combination of curcumin and EGCG markedly reduced tumor growth and angiogenesis in the colorectal carcinoma PDX mouse model, and the combined anti-angiogenic effect was better than that of curcumin or EGCG alone. Taken together, our findings provide a new mechanism of tumor angiogenesis, and the combination of curcumin and EGCG represents a potential anti-angiogenic therapeutic method for colorectal carcinoma.
Collapse
|
18
|
Joshi RN, Binai NA, Marabita F, Sui Z, Altman A, Heck AJR, Tegnér J, Schmidt A. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells. Front Immunol 2017; 8:1163. [PMID: 28993769 PMCID: PMC5622166 DOI: 10.3389/fimmu.2017.01163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022] Open
Abstract
Regulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4+CD25− T cells (Tcons) independently of IP3 levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively. Tregs induced a state of overall decreased phosphorylation as opposed to TCR stimulation. We discovered novel phosphosites (T595_S597) in the DEF6 (SLAT) protein that were phosphorylated upon TCR stimulation and conversely dephosphorylated upon coculture with Tregs. Mutation of these DEF6 phosphosites abrogated interaction of DEF6 with the IP3 receptor and affected NFAT activation and cytokine transcription in primary Tcons. This novel mechanism and phosphoproteomics data resource may aid in modifying sensitivity of Tcons to Treg-mediated suppression in autoimmune disease or cancer.
Collapse
Affiliation(s)
- Rubin N Joshi
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Nadine A Binai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Francesco Marabita
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Zhenhua Sui
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Angelika Schmidt
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Maishi N, Hida K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci 2017; 108:1921-1926. [PMID: 28763139 PMCID: PMC5623747 DOI: 10.1111/cas.13336] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor metastasis is the main cause of cancer-related death. Understanding the molecular mechanisms underlying tumor metastasis is crucial to control this fatal disease. Several molecular pathways orchestrate the complex biological cell events during a metastatic cascade. It is now well known that bidirectional interaction between tumor cells and their microenvironment, including tumor stroma, is important for tumor progression and metastasis. Tumor stromal cells, which acquire their specific characteristics in the tumor microenvironment, accelerate tumor malignancy. The formation of new blood vessels, termed as tumor angiogenesis, is a requirement for tumor progression. Tumor blood vessels supply nutrients and oxygen and also provide the route for metastasis. Tumor endothelial cells, which line tumor blood vessels, also exhibit several altered phenotypes compared with those of their normal counterparts. Recent studies have emphasized "angiocrine factors" that are released from tumor endothelial cells and promote tumor progression. During intravasation, tumor cells physically contact tumor endothelial cells and interact with them by juxtacrine and paracrine signaling. Recently, we observed that in highly metastatic tumors, tumor endothelial cells interact with tumor cells by secretion of a small leucine-rich repeat proteoglycan known as biglycan. Biglycan from tumor endothelial cells stimulates the tumor cells to metastasize. In the present review, we highlight the role of tumor stromal cells, particularly endothelial cells, in the initial steps of tumor metastasis.
Collapse
Affiliation(s)
- Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Fabian KL, Storkus WJ. Immunotherapeutic Targeting of Tumor-Associated Blood Vessels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:191-211. [PMID: 29275473 DOI: 10.1007/978-3-319-67577-0_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathological angiogenesis occurs during tumor progression and leads in the formation of an abnormal vasculature in the tumor microenvironment (TME). The tumor vasculature is disorganized, tortuous and leaky, resulting in high interstitial pressure and hypoxia in the TME, all of which are events that support tumor growth and survival. Given the sustaining role of the tumor vasculature, it has become an increasingly attractive target for the development of anti-cancer therapies. Antibodies, tyrosine kinase inhibitors and cancer vaccines that target pro-angiogenic factors, angiogenesis-associated receptors or tumor blood vessel-associated antigens continue to be developed and tested for therapeutic efficacy. Preferred anti-angiogenic protocols include those that "normalize" the tumor-associated vasculature which reduce hypoxia and improve tumor blood perfusion, resulting in tumor cell apoptosis, decreased immunosuppression, and enhanced effector immune cell infiltration/tumoricidal action within the TME.
Collapse
Affiliation(s)
- Kellsye L Fabian
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
21
|
van Beijnum JR, Pieters W, Nowak-Sliwinska P, Griffioen AW. Insulin-like growth factor axis targeting in cancer and tumour angiogenesis - the missing link. Biol Rev Camb Philos Soc 2016; 92:1755-1768. [PMID: 27779364 DOI: 10.1111/brv.12306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
Numerous molecular players in the process of tumour angiogenesis have been shown to offer potential for therapeutic targeting. Initially denoted to be involved in malignant transformation and tumour progression, the insulin-like growth factor (IGF) signalling axis has been subject to therapeutic interference, albeit with limited clinical success. More recently, IGFs and their receptors have received attention for their contribution to tumour angiogenesis, which offers novel therapeutic opportunities. Here we review the contribution of this signalling axis to tumour angiogenesis, the mechanisms of resistance to therapy and the interplay with other pro-angiogenic pathways, to offer insight in the renewed interest in the application of IGF axis targeting agents in anti-cancer combination therapies.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Wietske Pieters
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva (UNIGE), Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Arjan W Griffioen
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Liew PL, Fang CY, Lee YC, Lee YC, Chen CL, Chu JS. DEF6 expression in ovarian carcinoma correlates with poor patient survival. Diagn Pathol 2016; 11:68. [PMID: 27488395 PMCID: PMC4973116 DOI: 10.1186/s13000-016-0518-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increased expression of DEF6 is correlated with the malignant behavior of various cancers. Both DEF6 and p16 contribute to the regulation of cell cycle progression, and p53 plays important role in the cell cycle checkpoints. This study was designed to elucidate the prognostic significance of DEF6, p53 and p16 immunoexpressions in different histology subtypes of ovarian carcinoma. METHODS Immunohistochemistry results of DEF6, p53 and p16 on ovarian carcinoma were compared with histology subtypes, clinical data, overall survival (OS) and disease-free survival (DFS) by Cox regression and Kaplan-Meier analysis. RESULTS We studied 180 cases of ovarian carcinomas (75 high-grade serous, 41 clear cell, 36 mucinous and 28 endometrioid), including 109 FIGO stage I-II cases and 71 FIGO stage III-IV cases. Ovarian carcinomas positive for both DEF6 and p16 expression were associated with the worst OS (P = 0.027) and DFS (P = 0.023), whereas those negative for both DEF6 and p16 had the best OS and DFS. Aberrant p53 expression combined with positive DEF6 was associated with worst OS (P = 0.031) and DFS (P = 0.028). Kaplan-Meier analysis showed that significantly shorter survival rates were seen in patients with high expressions of DEF6 (P = 0.008) and p16 (P = 0.022). Patients with aberrant p53 expression in high-grade serous carcinoma (P = 0.012) and patients with high DEF6 expression in clear cell carcinoma (P = 0.001) were also associated with shorter overall survival. In univariate analysis, FIGO stage, DEF6 and p16 were associated with poor prognosis. DEF6 expression was the only independent prognostic factor correlated with shorted OS (HR 2.115; P = 0.025) and DFS (HR 2.248; P = 0.016) upon multivariate analysis. CONCLUSIONS DEF6 expression may serve as an independent prognostic factor, and interacted positively with p16 toward high tumor stage and shorter survival.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/diagnosis
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/mortality
- Adenocarcinoma, Mucinous/diagnosis
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/mortality
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Carcinoma, Endometrioid/diagnosis
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/mortality
- Cell Line, Tumor
- Cohort Studies
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Cystadenoma, Serous/diagnosis
- Cystadenoma, Serous/metabolism
- Cystadenoma, Serous/mortality
- DNA-Binding Proteins/metabolism
- Disease-Free Survival
- Female
- Gene Expression Regulation, Neoplastic
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Immunohistochemistry
- Middle Aged
- Multivariate Analysis
- Nuclear Proteins/metabolism
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Prognosis
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Phui-Ly Liew
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561 Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Xing Street, Taipei, 11031 Taiwan
| | - Chih-Yeu Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Xing Street, Taipei, 11031 Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116 Taiwan
| | - Yu-Chieh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
| | - Yi-Chih Lee
- Department of International Business, Chien Hsin University of Science and Technology, Taoyuan, 32097 Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Xing Street, Taipei, 11031 Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031 Taiwan
| | - Jan-Show Chu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Xing Street, Taipei, 11031 Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031 Taiwan
| |
Collapse
|
23
|
Lemoine A, Chauveau-Le Friec G, Langa F, Louvet C. Generation of a Double KO Mouse by Simultaneous Targeting of the Neighboring Genes Tmem176a and Tmem176b Using CRISPR/Cas9: Key Steps from Design to Genotyping. J Genet Genomics 2016; 43:329-40. [DOI: 10.1016/j.jgg.2016.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/26/2016] [Accepted: 04/04/2016] [Indexed: 01/16/2023]
|
24
|
Hida K, Maishi N, Sakurai Y, Hida Y, Harashima H. Heterogeneity of tumor endothelial cells and drug delivery. Adv Drug Deliv Rev 2016; 99:140-147. [PMID: 26626622 DOI: 10.1016/j.addr.2015.11.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/21/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
To date anti-angiogenic therapy has been used for cancer therapy widely, yielding promising results. However, it has been elucidated that current anti-angiogenic drug has several issues to be solved, such as side-effects and drug resistance. It has been reported that tumor endothelial cells (TECs) differ from normal counterparts. In addition, it was shown that the TECs are heterogeneous according to the malignancy status of tumor. The development of novel strategy for targeting tumor vasculature is required. Recently, we have developed an active targeting system, which targets TECs specifically. In this review, we will discuss how TECs in tumor vasculature are heterogeneous and offer new perspectives on a drug delivery system, which can target heterogeneous tumor blood vessels from a viewpoint of personalized medicine.
Collapse
|
25
|
RORγt+ cells selectively express redundant cation channels linked to the Golgi apparatus. Sci Rep 2016; 6:23682. [PMID: 27009467 PMCID: PMC4806298 DOI: 10.1038/srep23682] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/08/2016] [Indexed: 01/11/2023] Open
Abstract
Retinoid-related orphan receptor gamma t (RORγt) is a master transcription factor central to type 17 immunity involving cells such as T helper 17, group 3 innate lymphoid cells or IL-17-producing γδ T cells. Here we show that the intracellular ion channel TMEM176B and its homologue TMEM176A are strongly expressed in these RORγt+ cells. We demonstrate that TMEM176A and B exhibit a similar cation channel activity and mainly colocalise in close proximity to the trans-Golgi network. Strikingly, in the mouse, the loss of Tmem176b is systematically associated with a strong upregulation of Tmem176a. While Tmem176b single-deficiency has no effect on the course of experimental autoimmune encephalomyelitis, T cell or DSS-induced colitis, it significantly reduces imiquimod-induced psoriasis-like skin inflammation. These findings shed light on a potentially novel specific process linked to post-Golgi trafficking for modulating the function of RORγt+ cells and indicate that both homologues should be simultaneously targeted to clearly elucidate the role of this intracellular ion flow.
Collapse
|
26
|
Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1055-64. [PMID: 26877262 DOI: 10.1016/j.ajpath.2015.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022]
Abstract
Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells.
Collapse
|
27
|
Yamada K, Maishi N, Akiyama K, Towfik Alam M, Ohga N, Kawamoto T, Shindoh M, Takahashi N, Kamiyama T, Hida Y, Taketomi A, Hida K. CXCL12-CXCR7 axis is important for tumor endothelial cell angiogenic property. Int J Cancer 2015; 137:2825-36. [PMID: 26100110 DOI: 10.1002/ijc.29655] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/29/2015] [Accepted: 06/11/2015] [Indexed: 12/27/2022]
Abstract
We reported that tumor endothelial cells (TECs) differ from normal endothelial cells (NECs) in many aspects, such as gene expression profiles. Although CXCR7 is reportedly highly expressed in blood vessels of several tumors, its function in TECs is still unknown. To investigate this role, we isolated TECs from mouse tumor A375SM xenografts, and compared them with NECs from normal mouse dermis. After confirming CXCR7 upregulation in TECs, we analyzed its function using CXCR7 siRNA and CXCR7 inhibitor; CCX771. CXCR7 siRNA and CCX771 inhibited migration, tube formation and resistance to serum starvation in TECs but not in NECs. ERK1/2 phosphorylation was inhibited by CXCR7 knockdown in TECs. These results suggest that CXCR7 promotes angiogenesis in TECs via ERK1/2 phosphorylation. Using ELISA, we also detected CXCL12, a ligand of CXCR7, in conditioned medium from TECs, but not from NECs. CXCL12 neutralizing antibody significantly inhibited TEC random motility. VEGF stimulation upregulated CXCR7 expression in NECs, implying that VEGF mediates CXCR7 expression in endothelial cells. A CXCR7 inhibitor, CCX771 also inhibited tumor growth, lung metastasis and tumor angiogenesis in vivo. Taken together, the CXCL12-CXCR7 autocrine loop affects TEC proangiogenic properties, and could be the basis for an antiangiogenic therapy that specifically targets tumor blood vessels rather than normal vessels.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nako Maishi
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kosuke Akiyama
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Mohammad Towfik Alam
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Taisuke Kawamoto
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Masanobu Shindoh
- Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Norihiko Takahashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kyoko Hida
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
28
|
Maishi N, Annan DA, Kikuchi H, Hida Y, Hida K. An antiestrogen-binding protein in human tissues. Cancers (Basel) 1983; 11:cancers11101511. [PMID: 31600937 PMCID: PMC6826555 DOI: 10.3390/cancers11101511] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Although nonsteroidal antiestrogens of the triphenylethylene type are generally considered to act through the estrogen receptor, some observations suggest that estrogen target tissues may also contain a binding protein specific for these compounds. The data so far reported, however, are also consistent with ligand-induced changes in conformation or in the state of aggregation of the estrogen receptor. The studies reported here demonstrate the existence of a protein in human myometrial cytosol which binds 1-[4-(2-dimethylaminoethoxy)phenyl]1,2-diphenylbut-1(Z)-ene ([3H]tamoxifen) with high affinity (Kd = 2.3 X 10(-9) M). This protein exhibits striking specificity for nonsteroidal antiestrogens. Estradiol competes weakly for bound [3H]tamoxifen, while other estrogens and nonestrogenic steroid hormones do not compete at all. Sedimentation analysis and molecular sieve chromatography indicate that the antiestrogen-binding protein is a larger species than the estrogen receptor and elutes from DEAE-Sephacel at a lower KCl concentration (0.03 M) than the estrogen receptor (0.15 M). Differential thermal stability of the estrogen receptor and the antiestrogen-binding protein was demonstrable in the absence of added ligand. The antiestrogen-binding protein was ubiquitous, being present in many tissues where estrogen receptor was undetectable. These findings support the separate existence of an antiestrogen-binding protein.
Collapse
Affiliation(s)
- Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Dorcas A Annan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8636, Japan.
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan.
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| |
Collapse
|