1
|
Al-Mansour M, Aga SS, O’Connor OA. Perspectives on the Mature T-Cell Lymphomas in the Middle East: A Comprehensive Review of the Present Status. Cancers (Basel) 2024; 16:4131. [PMID: 39766031 PMCID: PMC11674585 DOI: 10.3390/cancers16244131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background: T-cell lymphomas (TCLs) are rare and aggressive malignancies associated with poor outcomes, often because of the development of acquired drug resistance as well as intolerance to the established and often toxic chemotherapy regimens in elderly and frail patients. The many subtypes of TCL are well established to exhibit marked geographic variation. The epidemiology, clinical presentation, diagnosis, prognosis, and treatment of TCLs in the Middle East (ME) are yet to be explored; hence, limited data are available about these entities in this part of the world. Aim: Therefore, in this review article, we aim to discuss the available data regarding the T-cell neoplasms in the ME, including the incidence of specific subtypes of peripheral T-cell lymphoma (PTCL), as well as the trends in survival and treatment, all in an effort to understand the natural history of these complex entities across the ME.
Collapse
Affiliation(s)
- Mubarak Al-Mansour
- Adult Medical Oncology, Princess Noorah Oncology Centre, Ministry of National Guard Health Affairs-Western Region (MNGHA-WR), King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Centre (KAIMRC), King Abdulaziz Medical City, Jeddah 21423, Saudi Arabia;
- College of Medicine, King Abdullah International Medical Research Centre (KAIMRC), King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs-Western Region (MNGHA-WR), King Abdulaziz Medical City, Jeddah 21423, Saudi Arabia
| | - Syed Sameer Aga
- College of Medicine, King Abdullah International Medical Research Centre (KAIMRC), King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs-Western Region (MNGHA-WR), King Abdulaziz Medical City, Jeddah 21423, Saudi Arabia
| | - Owen A. O’Connor
- University of Virginia Comprehensive Cancer Center, Translational Orphan Blood Cancer Research Center, Charlottesville, VA 22903, USA;
| |
Collapse
|
2
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Luo L, Chen Y, Wu Z, Huang Y, Lu L, Li J, Zheng X, Nie C, Chen R, Lin W, Yang T, Hu J. Clinical characteristics, genetic alterations, and prognosis of adult T-cell leukemia/lymphoma: an 11-year multicenter retrospective study in China. Am J Cancer Res 2024; 14:1649-1661. [PMID: 38726267 PMCID: PMC11076263 DOI: 10.62347/rarp1733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/10/2024] [Indexed: 05/12/2024] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy with a poor prognosis, and there is little data available from the Chinese population. This retrospective study included 115 patients diagnosed with ATLL who were treated across five hospitals in China from June 2011 to December 2022. The median age at diagnosis was 53 years. Several genes involved in T-cell receptor-induced nuclear factor κB (TCR-NF-κB) signaling were commonly mutated, including PLCG1, CIC, PRKCB, CARD11, and IRF4. Eighty-seven patients received chemotherapy. Of these, 13 received a hematopoietic stem cell transplant (HSCT) (allogeneic-HSCT, n=9; autologous-HSCT, n=4) after chemotherapy. Following initial multiagent chemotherapy using EPOCH/CHOEP and other regimens, the overall response rates were 80.6% (complete response [CR], 44.4%) and 42.8% (CR, 14.2%), respectively. The 4-year survival rates (median survival time in days) for EPOCH/CHOEP (n=43), HSCT (n=13), and CHOP-based regimens (n=31) were 12.7% (138), 30.8% (333), and 0% (66), respectively. Lymphadenopathy, EPOCH/CHOEP, and hematopoietic stem cell transplantation were independent prognostic protective factors in patients with aggressive ATLL. Chinese patients exhibit a higher incidence of aggressive-type ATLL, sharing similar genetic alterations with Japanese patients. Etoposide-based chemotherapy (EPOCH or CHOEP) remains the preferred choice for aggressive ATLL, and upfront allogeneic HSCT should be considered in all eligible patients.
Collapse
Affiliation(s)
- Luting Luo
- Fujian Medical University Union HospitalFuzhou, Fujian, China
- The Second Affiliated Hospital, Fujian Medical UniversityQuanzhou, Fujian, China
| | - Yanxin Chen
- Fujian Medical University Union HospitalFuzhou, Fujian, China
| | - Zhengjun Wu
- Fujian Medical University Union HospitalFuzhou, Fujian, China
| | - Yan Huang
- Fujian Medical University Union HospitalFuzhou, Fujian, China
| | - Lihua Lu
- Fujian Medical University Union HospitalFuzhou, Fujian, China
| | - Jiazheng Li
- Fujian Medical University Union HospitalFuzhou, Fujian, China
- The Second Affiliated Hospital, Fujian Medical UniversityQuanzhou, Fujian, China
| | - Xiaoyun Zheng
- Department of Hematology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical UniversityFuzhou, Fujian, China
- Department of Hematology, The First Affiliated Hospital, Fujian Medical UniversityFuzhou, Fujian, China
| | - Chengjun Nie
- Department of Hematology, Ningde Hospital Affiliated to Ningde Normal UniversityNingde, Fujian, China
| | - Renli Chen
- Department of Hematology, Ningde Hospital Affiliated to Ningde Normal UniversityNingde, Fujian, China
| | - Wuqiang Lin
- Department of Hematology, The First Hospital of Putian, Teaching Hospital, Fujian Medical UniversityPutian, Fujian, China
| | - Ting Yang
- Department of Hematology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical UniversityFuzhou, Fujian, China
- Department of Hematology, The First Affiliated Hospital, Fujian Medical UniversityFuzhou, Fujian, China
- Institute of Precision Medicine, Fujian Medical UniversityFuzhou, Fujian, China
| | - Jianda Hu
- Fujian Medical University Union HospitalFuzhou, Fujian, China
- Institute of Precision Medicine, Fujian Medical UniversityFuzhou, Fujian, China
- The Second Affiliated Hospital, Fujian Medical UniversityQuanzhou, Fujian, China
| |
Collapse
|
4
|
Nakashima M, Tanaka Y, Okamura H, Kato T, Imaizumi Y, Nagai K, Miyazaki Y, Murota H. Development of Innate-Immune-Cell-Based Immunotherapy for Adult T-Cell Leukemia-Lymphoma. Cells 2024; 13:128. [PMID: 38247820 PMCID: PMC10814776 DOI: 10.3390/cells13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
γδ T cells and natural killer (NK) cells have attracted much attention as promising effector cell subsets for adoptive transfer for use in the treatment of malignant and infectious diseases, because they exhibit potent cytotoxic activity against a variety of malignant tumors, as well as virus-infected cells, in a major histocompatibility complex (MHC)-unrestricted manner. In addition, γδ T cells and NK cells express a high level of CD16, a receptor required for antibody-dependent cellular cytotoxicity. Adult T-cell leukemia-lymphoma (ATL) is caused by human T-lymphotropic virus type I (HTLV-1) and is characterized by the proliferation of malignant peripheral CD4+ T cells. Although several treatments, such as chemotherapy, monoclonal antibodies, and allogeneic hematopoietic stem cell transplantation, are currently available, their efficacy is limited. In order to develop alternative therapeutic modalities, we considered the possibility of infusion therapy harnessing γδ T cells and NK cells expanded using a novel nitrogen-containing bisphosphonate prodrug (PTA) and interleukin (IL)-2/IL-18, and we examined the efficacy of the cell-based therapy for ATL in vitro. Peripheral blood samples were collected from 55 patients with ATL and peripheral blood mononuclear cells (PBMCs) were stimulated with PTA and IL-2/IL-18 for 11 days to expand γδ T cells and NK cells. To expand NK cells alone, CD3+ T-cell-depleted PBMCs were cultured with IL-2/IL-18 for 10 days. Subsequently, the expanded cells were examined for cytotoxicity against ATL cell lines in vitro. The proportion of γδ T cells in PBMCs was markedly low in elderly ATL patients. The median expansion rate of the γδ T cells was 1998-fold, and it was 12-fold for the NK cells, indicating that γδ T cells derived from ATL patients were efficiently expanded ex vivo, irrespective of aging and HTLV-1 infection status. Anti-CCR4 antibodies enhanced the cytotoxic activity of the γδ T cells and NK cells against HTLV-1-infected CCR4-expressing CD4+ T cells in an antibody concentration-dependent manner. Taken together, the adoptive transfer of γδ T cells and NK cells expanded with PTA/IL-2/IL-18 is a promising alternative therapy for ATL.
Collapse
Affiliation(s)
- Maho Nakashima
- Department of Dermatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki 852-8588, Japan
| | - Haruki Okamura
- Department of Tumor Cell Therapy, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Takeharu Kato
- Department of Hematology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, National Hospital Organization Nagasaki Medical Center, Omura 856-8562, Japan
| | - Kazuhiro Nagai
- Department of Clinical Laboratory, National Hospital Organization Nagasaki Medical Center, Omura 856-8562, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Leading Medical Research Core Unit, Life Science Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
| |
Collapse
|
5
|
Rai S, Roy G, Hajam YA. Melatonin: a modulator in metabolic rewiring in T-cell malignancies. Front Oncol 2024; 13:1248339. [PMID: 38260850 PMCID: PMC10800968 DOI: 10.3389/fonc.2023.1248339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Melatonin, (N-acetyl-5-methoxytryptamine) an indoleamine exerts multifaced effects and regulates numerous cellular pathways and molecular targets associated with circadian rhythm, immune modulation, and seasonal reproduction including metabolic rewiring during T cell malignancy. T-cell malignancies encompass a group of hematological cancers characterized by the uncontrolled growth and proliferation of malignant T-cells. These cancer cells exhibit a distinct metabolic adaptation, a hallmark of cancer in general, as they rewire their metabolic pathways to meet the heightened energy requirements and biosynthesis necessary for malignancies is the Warburg effect, characterized by a shift towards glycolysis, even when oxygen is available. In addition, T-cell malignancies cause metabolic shift by inhibiting the enzyme pyruvate Dehydrogenase Kinase (PDK) which in turn results in increased acetyl CoA enzyme production and cellular glycolytic activity. Further, melatonin plays a modulatory role in the expression of essential transporters (Glut1, Glut2) responsible for nutrient uptake and metabolic rewiring, such as glucose and amino acid transporters in T-cells. This modulation significantly impacts the metabolic profile of T-cells, consequently affecting their differentiation. Furthermore, melatonin has been found to regulate the expression of critical signaling molecules involved in T-cell activations, such as CD38, and CD69. These molecules are integral to T-cell adhesion, signaling, and activation. This review aims to provide insights into the mechanism of melatonin's anticancer properties concerning metabolic rewiring during T-cell malignancy. The present review encompasses the involvement of oncogenic factors, the tumor microenvironment and metabolic alteration, hallmarks, metabolic reprogramming, and the anti-oncogenic/oncostatic impact of melatonin on various cancer cells.
Collapse
Affiliation(s)
- Seema Rai
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Gunja Roy
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Bhag Singh University, Jalandhar, India
| |
Collapse
|
6
|
Ebrahimi K, Bagheri R, Gholamhosseinian H, Keramati MR, Rafatpanah H, Iranshahi M, Rassouli FB. Umbelliprenin improved anti-proliferative effects of ionizing radiation on adult T-cell leukemia/lymphoma cells via interaction with CDK6; an in vitro and in silico study. Int J Immunopathol Pharmacol 2024; 38:3946320241287873. [PMID: 39313767 PMCID: PMC11437583 DOI: 10.1177/03946320241287873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy with poor survival rates. The efficacy of radiotherapy in ATL needs enhancement with radiosensitizing agents. This study investigated whether umbelliprenin (UMB) could improve the therapeutic effects of ionizing radiation (IR) in ATL cells. UMB, a naturally occurring prenylated coumarin, exhibits anticancer properties and has shown synergistic effects when combined with chemotherapeutic drugs. Despite this promising profile, there is a notable lack of research on its potential combinatorial effects with IR, particularly for ATL treatment. UMB was extracted from Ferula persica using thin layer chromatography. MT-2 cells were treated with UMB alone and in combination with various doses of IR, and cell proliferation was assessed via alamarBlue assay. Flow cytometry with annexin V and PI staining was conducted, and candidate gene expression was analyzed by qPCR. In silico analysis involved identifying pathogenic targets of ATL, constructing protein-protein interaction (PPI) networks, and evaluating CDK6 expression in MT-2 cells. Molecular docking was used to determine the interaction between UMB and CDK6. The alamarBlue assay and flow cytometry showed that pretreating ATL cells with UMB significantly (p < .0001) enhanced anti-proliferative effects of IR. The combination index indicated a synergistic effect between UMB and IR. qPCR revealed significant (p < .0001) downregulation of CD44, CDK6, c-MYC, and cFLIPL, and overexpression of cFLIPS. Computational analysis identified CDK6 as a hub gene in the PPI network, and CDK6 overexpression was confirmed in MT-2 cells. Molecular docking revealed a favorable binding interaction between UMB and the ATP-binding site of CDK6, with a JAMDA score of -2.131, surpassing the control selonsertib. The current study provides evidence that UMB enhances the anti-proliferative effects of IR on ATL cells, and highlights the significance of targeting CDK6 in combinatorial approaches.
Collapse
Affiliation(s)
- Keyhan Ebrahimi
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Bagheri
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Gholamhosseinian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
da Silva MCM, Pereira RSB, Araujo ACA, Filho EGDS, Dias ADL, Cavalcante KS, de Sousa MS. New Perspectives about Drug Candidates Targeting HTLV-1 and Related Diseases. Pharmaceuticals (Basel) 2023; 16:1546. [PMID: 38004412 PMCID: PMC10674638 DOI: 10.3390/ph16111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 11/26/2023] Open
Abstract
Among the human T-lymphotropic virus (HTLV) types, HTLV-1 is the most prevalent, and it has been linked to a spectrum of diseases, including HAM/TSP, ATLL, and hyperinfection syndrome or disseminated strongyloidiasis. There is currently no globally standard first-line treatment for HTLV-1 infection and its related diseases. To address this, a comprehensive review was conducted, analyzing 30 recent papers from databases PubMed, CAPES journals, and the Virtual Health Library (VHL). The studies encompassed a wide range of therapeutic approaches, including antiretrovirals, immunomodulators, antineoplastics, amino acids, antiparasitics, and even natural products and plant extracts. Notably, the category with the highest number of articles was related to drugs for the treatment of ATLL. Studies employing mogamulizumab as a new perspective for ATLL received greater attention in the last 5 years, demonstrating efficacy, safe use in the elderly, significant antitumor activity, and increased survival time for refractory patients. Concerning HAM/TSP, despite corticosteroid being recommended, a more randomized clinical trial is needed to support treatment other than corticoids. The study also included a comprehensive review of the drugs used to treat disseminated strongyloidiasis in co-infection with HTLV-1, including their administration form, in order to emphasize gaps and facilitate the development of other studies aiming at better-directed methodologies. Additionally, docking molecules and computer simulations show promise in identifying novel therapeutic targets and repurposing existing drugs. These advances are crucial in developing more effective and targeted treatments against HTLV-1 and its related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Anderson de Lima Dias
- Institute of Health Sciences, Faculty of Pharmacy, Federal University of Para, Belem 66079-420, Brazil
| | - Kassio Silva Cavalcante
- Institute of Health Sciences, Faculty of Pharmacy, Federal University of Para, Belem 66079-420, Brazil
| | | |
Collapse
|
8
|
Maseko SB, Brammerloo Y, Van Molle I, Sogues A, Martin C, Gorgulla C, Plant E, Olivet J, Blavier J, Ntombela T, Delvigne F, Arthanari H, El Hajj H, Bazarbachi A, Van Lint C, Salehi-Ashtiani K, Remaut H, Ballet S, Volkov AN, Twizere JC. Identification of small molecule antivirals against HTLV-1 by targeting the hDLG1-Tax-1 protein-protein interaction. Antiviral Res 2023; 217:105675. [PMID: 37481039 DOI: 10.1016/j.antiviral.2023.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the first pathogenic retrovirus discovered in human. Although HTLV-1-induced diseases are well-characterized and linked to the encoded Tax-1 oncoprotein, there is currently no strategy to target Tax-1 functions with small molecules. Here, we analyzed the binding of Tax-1 to the human homolog of the drosophila discs large tumor suppressor (hDLG1/SAP97), a multi-domain scaffolding protein involved in Tax-1-transformation ability. We have solved the structures of the PDZ binding motif (PBM) of Tax-1 in complex with the PDZ1 and PDZ2 domains of hDLG1 and assessed the binding of 10 million molecules by virtual screening. Among the 19 experimentally confirmed compounds, one systematically inhibited the Tax-1-hDLG1 interaction in different biophysical and cellular assays, as well as HTLV-1 cell-to-cell transmission in a T-cell model. Thus, our work demonstrates that interactions involving Tax-1 PDZ-domains are amenable to small-molecule inhibition, which provides a framework for the design of targeted therapies for HTLV-1-induced diseases.
Collapse
Affiliation(s)
- Sibusiso B Maseko
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Yasmine Brammerloo
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Inge Van Molle
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
| | - Adrià Sogues
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Julien Olivet
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium; Structural Biology Unit, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research and Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Jeremy Blavier
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | | | - Frank Delvigne
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro Bio-tech, University of Liege Belgium
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Kourosh Salehi-Ashtiani
- Laboratory of Algal Synthetic and Systems Biology, Division of Science and Math, New York University of Abu Dhabi, Abu Dhabi United Arab Emirates
| | - Han Remaut
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alexander N Volkov
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium; Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Brussels Belgium.
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium; TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro Bio-tech, University of Liege Belgium; Laboratory of Algal Synthetic and Systems Biology, Division of Science and Math, New York University of Abu Dhabi, Abu Dhabi United Arab Emirates.
| |
Collapse
|
9
|
Guiraud V, Crémoux F, Leroy I, Cohier J, Hernandez P, Mansaly S, Gautheret-Dejean A. Comparison of two new HTLV-I/II screening methods, Abbott Alinity i rHTLV-I/II and Diasorin LIAISON® XL murex recHTLV-I/II, to Abbott architect rHTLVI/II assay. J Clin Virol 2023; 164:105446. [PMID: 37148674 DOI: 10.1016/j.jcv.2023.105446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/02/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Diagnosis of Human T-cell Lymphotropic Virus (HTLV) types I and II infection requires sequencial testing with firstly a screening using an Enzyme immunoassay followed by a confirmatory test. OBJECTIVES To compare the performances of the Alinity i rHTLV-I/II (Abbott®) and LIAISON® XL murex recHTLV-I/II serological screening tests to the ARCHITECT rHTLVI/II test followed if positive by HTLV BLOT 2.4, MP Diagnostics as the reference. STUDY DESIGN 119 serum samples from 92 known HTLV-I infected patients and 184 from uninfected patients with HTLV were analyzed in parallel with, Alinity i rHTLV-I/II, LIAISON® XL murex recHTLV-I/II and ARCHITECT rHTLVI/II. RESULTS Alinity i rHTLV-I/II and LIAISON® XL murex recHTLV-I/II exhibited a total agreement with ARCHITECT rHTLVI/II for both positive and negative samples. Both tests are suitable alternatives for HTLV screening.
Collapse
Affiliation(s)
- Vincent Guiraud
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Virologie, F-75013 Paris, France.
| | - Florian Crémoux
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Virologie, F-75013 Paris, France
| | - Isabelle Leroy
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Virologie, F-75013 Paris, France
| | - Julien Cohier
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Virologie, F-75013 Paris, France
| | - Pierre Hernandez
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Virologie, F-75013 Paris, France
| | - Safietou Mansaly
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Virologie, F-75013 Paris, France
| | - Agnès Gautheret-Dejean
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Virologie, F-75013 Paris, France; Université Paris cité, INSERM UMR-S 1139 Physiopathologie et pharmacotoxicologie placentaire humaine, microbiote pré & post-natal, F-75006 Paris, France.
| |
Collapse
|
10
|
Sales D, Lin E, Stoffel V, Dickson S, Khan ZK, Beld J, Jain P. Apigenin improves cytotoxicity of antiretroviral drugs against HTLV-1 infected cells through the modulation of AhR signaling. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:49-62. [PMID: 37027342 PMCID: PMC10070013 DOI: 10.1515/nipt-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/19/2023]
Abstract
Objectives HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory autoimmune disease characterized by high levels of infected immortalized T cells in circulation, which makes it difficult for antiretroviral (ART) drugs to work effectively. In previous studies, we established that Apigenin, a flavonoid, can exert immunomodulatory effects to reduce neuroinflammation. Flavonoids are natural ligands for the aryl hydrocarbon receptor (AhR), which is a ligand activated endogenous receptor involved in the xenobiotic response. Consequently, we tested Apigenin's synergy in combination with ART against the survival of HTLV-1-infected cells. Methods First, we established a direct protein-protein interaction between Apigenin and AhR. We then demonstrated that Apigenin and its derivative VY-3-68 enter activated T cells, drive nuclear shuttling of AhR, and modulate its signaling both at RNA and protein level. Results In HTLV-1 producing cells with high AhR expression, Apigenin cooperates with ARTs such as Lopinavir (LPN) and Zidovudine (AZT), to impart cytotoxicity by exhibiting a major shift in IC50 that was reversed upon AhR knockdown. Mechanistically, Apigenin treatment led to an overall downregulation of NF-κB and several other pro-cancer genes involved in survival. Conclusions This study suggest the potential combinatorial use of Apigenin with current first-line antiretrovirals for the benefit of patients affected by HTLV-1 associated pathologies.
Collapse
Affiliation(s)
- Dominic Sales
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Edward Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Victoria Stoffel
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shallyn Dickson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Zafar K. Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
11
|
Acute type adult T-cell leukemia cells proliferate in the lymph nodes rather than in peripheral blood. Cancer Gene Ther 2022; 29:1570-1577. [PMID: 35459881 DOI: 10.1038/s41417-022-00475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023]
Abstract
A massive increase in the number of mature CD4+ T-cells in peripheral blood (PB) is a defining characteristic of acute type of adult T-cell leukemia (ATL). To date, the site of proliferation of ATL cells in the body has been unclear. In an attempt to address this question, we examined the expression of the proliferation marker, Ki-67, in freshly isolated ATL cells from PB and lymph nodes (LNs) of patients with various types of ATL. Our findings reveal that LN-ATL cells display higher expression of the Ki-67 antigen than PB-ATL cells in acute type patients. The gene expression of T-cell quiescence regulators such as Krüppel-like factor 2/6 and forkhead box protein 1 was substantially high in acute type PB-ATL cells. The expression of human telomerase reverse transcriptase, which is involved in T-cell expansion, was significantly low in PB-ATL cells from acute type patients, similar to that in normal resting T-cells. These findings suggest that ATL cells proliferate in the LNs rather than in PB.
Collapse
|
12
|
Raza Y, Atallah J, Luberto C. Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies. Int J Mol Sci 2022; 23:12745. [PMID: 36361536 PMCID: PMC9654982 DOI: 10.3390/ijms232112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of sphingolipid metabolism plays a complex role in hematological malignancies, beginning with the first historical link between sphingolipids and apoptosis discovered in HL-60 leukemic cells. Numerous manuscripts have reviewed the field including the early discoveries that jumpstarted the studies. Many studies discussed here support a role for sphingolipids, such as ceramide, in combinatorial therapeutic regimens to enhance anti-leukemic effects and reduce resistance to standard therapies. Additionally, inhibitors of specific nodes of the sphingolipid pathway, such as sphingosine kinase inhibitors, significantly reduce leukemic cell survival in various types of leukemias. Acid ceramidase inhibitors have also shown promising results in acute myeloid leukemia. As the field moves rapidly, here we aim to expand the body of literature discussed in previously published reviews by focusing on advances reported in the latter part of the last decade.
Collapse
Affiliation(s)
- Yasharah Raza
- Department of Pharmacological Sciences, Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Jane Atallah
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
13
|
Zheng D, Wang X, Cheng L, Qin L, Jiang Z, Zhao R, Li Y, Shi J, Wu Q, Long Y, Wang S, Tang Z, Wei W, Yang J, Li Y, Zhou H, Liu Q, Liu P, Chen X, Yao Y, Yang L, Li P. The Chemokine Receptor CCR8 Is a Target of Chimeric Antigen T Cells for Treating T Cell Malignancies. Front Immunol 2022; 13:808347. [PMID: 35693763 PMCID: PMC9182403 DOI: 10.3389/fimmu.2022.808347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have been successfully used in the therapy of B cell leukemia and lymphoma, but still have many challenges in their use for treating T cell malignancies, such as the lack of unique tumor antigens, their limitation of T cell expansion, and the need for third party donors or genome editing. Therefore, we need to find novel targets for CAR T cell therapy to overcome these challenges. Here, we found that both adult T-cell leukemia/lymphoma (ATLL) patients and ATLL cells had increased CCR8 expression but did not express CD7. Moreover, targeting CCR8 in T cells did not impair T cell expansion in vitro. Importantly, anti-CCR8 CAR T cells exhibited antitumor effects on ATLL- and other CCR8-expressing T-ALL cells in vitro and in vivo, and prolonged the survival of ATLL and Jurkat tumor-bearing mouse models. In conclusion, these collective results show that anti-CCR8 CAR T cells possess strong antitumor activity and represent a promising therapeutic approach for ATLL and CCR8+ tumors.
Collapse
Affiliation(s)
- Diwei Zheng
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xindong Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Lin Cheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Le Qin
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiwu Jiang
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruocong Zhao
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China
| | - Yao Li
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingxuan Shi
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Youguo Long
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Suna Wang
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhaoyang Tang
- Guangdong Zhaotai In vivo Biomedicine Ltd., Guangzhou, China
- Guangdong Zhaotai Cell Biology Technology Ltd., Foshan, China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou, China
| | - Jie Yang
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Xinwen Chen
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - LiHua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Li
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China
- *Correspondence: Peng Li,
| |
Collapse
|
14
|
Kamoi K, Watanabe T, Uchimaru K, Okayama A, Kato S, Kawamata T, Kurozumi-Karube H, Horiguchi N, Zong Y, Yamano Y, Hamaguchi I, Nannya Y, Tojo A, Ohno-Matsui K. Updates on HTLV-1 Uveitis. Viruses 2022; 14:v14040794. [PMID: 35458524 PMCID: PMC9030471 DOI: 10.3390/v14040794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
HTLV-1 uveitis (HU) is the third clinical entity to be designated as an HTLV-1-associated disease. Although HU is considered to be the second-most frequent HTLV-1-associated disease in Japan, information on HU is limited compared to that on adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy (HAM). Recent studies have addressed several long-standing uncertainties about HU. HTLV-1-related diseases are known to be caused mainly through vertical transmission (mother-to-child transmission), but emerging HTLV-1 infection by horizontal transmission (such as sexual transmission) has become a major problem in metropolitan areas, such as Tokyo, Japan. Investigation in Tokyo showed that horizontal transmission of HTLV-1 was responsible for HU with severe and persistent ocular inflammation. The development of ATL and HAM is known to be related to a high provirus load and hence involves a long latency period. On the other hand, factors contributing to the development of HU are poorly understood. Recent investigations revealed that severe HU occurs against a background of Graves’ disease despite a low provirus load and short latency period. This review highlights the recent knowledge on HU and provides an update on the topic of HU in consideration of a recent nationwide survey.
Collapse
Affiliation(s)
- Koju Kamoi
- Department of Ophthalmology & Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.K.-K.); (N.H.); (Y.Z.); (K.O.-M.)
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (T.W.); (K.U.); (S.K.); (T.K.); (Y.N.); (A.T.)
- Correspondence: ; Tel.: +81-3-5803-5302
| | - Toshiki Watanabe
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (T.W.); (K.U.); (S.K.); (T.K.); (Y.N.); (A.T.)
- Department of Practical Management of Medical Information, St. Marianna University School of Medicine, Kanagawa 216-8512, Japan
| | - Kaoru Uchimaru
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (T.W.); (K.U.); (S.K.); (T.K.); (Y.N.); (A.T.)
- Department of Medical Computational Biology and Genome Sciences, Laboratory of Tumor Cell Biology, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Akihiko Okayama
- Department of Rheumatology, Infectious Diseases and Laboratory Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1601, Japan;
| | - Seiko Kato
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (T.W.); (K.U.); (S.K.); (T.K.); (Y.N.); (A.T.)
| | - Toyotaka Kawamata
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (T.W.); (K.U.); (S.K.); (T.K.); (Y.N.); (A.T.)
| | - Hisako Kurozumi-Karube
- Department of Ophthalmology & Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.K.-K.); (N.H.); (Y.Z.); (K.O.-M.)
| | - Noe Horiguchi
- Department of Ophthalmology & Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.K.-K.); (N.H.); (Y.Z.); (K.O.-M.)
| | - Yuan Zong
- Department of Ophthalmology & Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.K.-K.); (N.H.); (Y.Z.); (K.O.-M.)
| | - Yoshihisa Yamano
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan;
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Yasuhito Nannya
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (T.W.); (K.U.); (S.K.); (T.K.); (Y.N.); (A.T.)
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (T.W.); (K.U.); (S.K.); (T.K.); (Y.N.); (A.T.)
- Institute of Innovation Advancement, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology & Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.K.-K.); (N.H.); (Y.Z.); (K.O.-M.)
| |
Collapse
|
15
|
Seki Y, Kitamura T, Tezuka K, Murata M, Akari H, Hamaguchi I, Okuma K. Cytolytic Recombinant Vesicular Stomatitis Viruses Expressing STLV-1 Receptor Specifically Eliminate STLV-1 Env-Expressing Cells in an HTLV-1 Surrogate Model In Vitro. Viruses 2022; 14:v14040740. [PMID: 35458470 PMCID: PMC9030509 DOI: 10.3390/v14040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes serious and intractable diseases in some carriers after infection. The elimination of infected cells is considered important to prevent this onset, but there are currently no means by which to accomplish this. We previously developed “virotherapy”, a therapeutic method that targets and kills HTLV-1-infected cells using a cytolytic recombinant vesicular stomatitis virus (rVSV). Infection with rVSV expressing an HTLV-1 primary receptor elicits therapeutic effects on HTLV-1-infected envelope protein (Env)-expressing cells in vitro and in vivo. Simian T-cell leukemia virus type 1 (STLV-1) is closely related genetically to HTLV-1, and STLV-1-infected Japanese macaques (JMs) are considered a useful HTLV-1 surrogate, non-human primate model in vivo. Here, we performed an in vitro drug evaluation of rVSVs against STLV-1 as a preclinical study. We generated novel rVSVs encoding the STLV-1 primary receptor, simian glucose transporter 1 (JM GLUT1), with or without an AcGFP reporter gene. Our data demonstrate that these rVSVs specifically and efficiently infected/eliminated the STLV-1 Env-expressing cells in vitro. These results indicate that rVSVs carrying the STLV-1 receptor could be an excellent candidate for unique anti-STLV-1 virotherapy; therefore, such antivirals can now be applied to STLV-1-infected JMs to determine their therapeutic usefulness in vivo.
Collapse
Affiliation(s)
- Yohei Seki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
| | - Tomoya Kitamura
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
- Exotic Disease Group, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tokyo 187-0022, Japan
| | - Kenta Tezuka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
| | - Megumi Murata
- Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan; (M.M.); (H.A.)
| | - Hirofumi Akari
- Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan; (M.M.); (H.A.)
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
| | - Kazu Okuma
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
- Department of Microbiology, Kansai Medical University, Osaka 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-2381
| |
Collapse
|
16
|
Genome-wide CRISPR screen identifies CDK6 as a therapeutic target in adult T-cell leukemia/lymphoma. Blood 2022; 139:1541-1556. [PMID: 34818414 PMCID: PMC8914179 DOI: 10.1182/blood.2021012734] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive T-cell malignancy with a poor prognosis with current therapy. Here we report genome-wide CRISPR-Cas9 screening of ATLL models, which identified CDK6, CCND2, BATF3, JUNB, STAT3, and IL10RB as genes that are essential for the proliferation and/or survival of ATLL cells. As a single agent, the CDK6 inhibitor palbociclib induced cell cycle arrest and apoptosis in ATLL models with wild-type TP53. ATLL models that had inactivated TP53 genetically were relatively resistant to palbociclib owing to compensatory CDK2 activity, and this resistance could be reversed by APR-246, a small molecule activator of mutant TP53. The CRISPR-Cas9 screen further highlighted the dependence of ATLL cells on mTORC1 signaling. Treatment of ATLL cells with palbociclib in combination with mTORC1 inhibitors was synergistically toxic irrespective of the TP53 status. This work defines CDK6 as a novel therapeutic target for ATLL and supports the clinical evaluation of palbociclib in combination with mTORC1 inhibitors in this recalcitrant malignancy.
Collapse
|
17
|
Nosaka K, Crawford B, Yi J, Kuan W, Matsumoto T, Takahashi T. Systematic review of survival outcomes for relapsed or refractory adult T-cell leukemia-lymphoma. Eur J Haematol 2021; 108:212-222. [PMID: 34862665 PMCID: PMC9299810 DOI: 10.1111/ejh.13728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/06/2023]
Abstract
Introduction Adult T‐cell leukemia‐lymphoma (ATL) is a mature T‐cell lymphoproliferative neoplasm caused by human T‐cell leukemia virus type‐1 infection. There is no standard treatment for relapsed or refractory (r/r) ATL, and clinical outcomes are poor. This systematic review examined the survival outcomes for r/r ATL treated with various systemic therapies. Methods EMBASE and PubMed were searched for studies on r/r ATL, published between January 2010 and January 2020. The main outcome of interest was overall survival (OS). Median OS and an exploratory 30% OS time were assessed based on published data and Kaplan‐Meier curves. Results There were 21 unique treatment subgroups (from 14 studies), that met the eligibility criteria. Nine subgroups were mogamulizumab treatment, two were mogamulizumab prior to allogenic hematopoietic stem cell transplantation (allo‐HSCT), five were allo‐HSCT, and five were other chemotherapy. Respectively, the median OS and 30% OS varied considerably in range for mogamulizumab treatment (2.2–17.6 months and 8.7–27.1 months), allo‐HSCT (3.8–6.2 months and 7.5–19.8 months), and other chemotherapy arms (4.1–20.3 months and 7.1–17.0 months). Conclusion Mogamulizumab was the most frequently studied treatment regimen and can potentially provide longer survival compared with chemotherapy alone. Future comparisons with synthetic or historical control arms may enable clearer insights into treatment efficacy.
Collapse
Affiliation(s)
- Kisato Nosaka
- Cancer Center, Kumamoto University Hospital, Kumamoto, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Yoshie O. CCR4 as a Therapeutic Target for Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13215542. [PMID: 34771703 PMCID: PMC8583476 DOI: 10.3390/cancers13215542] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary CCR4 is a chemokine receptor selectively expressed on normal T cell subsets such as type 2 helper T cells, skin-homing T cells and regulatory T cells, and on skin-associated T cell malignancies such as adult T cell leukemia/lymphoma (ATLL), which is etiologically associated with human T lymphocyte virus type 1 (HTLV-1), and cutaneous T cell lymphomas (CTCLs). Mogamulizumab is a fully humanized and glyco-engineered monoclonal anti-CCR4 antibody used for the treatment of refractory/relapsed ATLL and CTCLs, often resulting in complete remission. The clinical applications of Mogamulizumab are now being extended to solid tumors, exploring the therapeutic effect of regulatory T cell depletion. This review overviews the expression of CCR4 in various T cell subsets, HTLV-1-infected T cells, ATLL and CTCLs, and the clinical applications of Mogamulizumab. Abstract CCR4 is a chemokine receptor mainly expressed by T cells. It is the receptor for two CC chemokine ligands, CCL17 and CCL22. Originally, the expression of CCR4 was described as highly selective for helper T type 2 (Th2) cells. Later, its expression was extended to other T cell subsets such as regulatory T (Treg) cells and Th17 cells. CCR4 has long been regarded as a potential therapeutic target for allergic diseases such as atopic dermatitis and bronchial asthma. Furthermore, the findings showing that CCR4 is strongly expressed by T cell malignancies such as adult T cell leukemia/lymphoma (ATLL) and cutaneous T cell lymphomas (CTCLs) have led to the development and clinical application of the fully humanized and glyco-engineered monoclonal anti-CCR4 Mogamulizumab in refractory/relapsed ATLL and CTCLs with remarkable successes. However, Mogamulizumab often induces severe adverse events in the skin possibly because of its efficient depletion of Treg cells. In particular, treatment with Mogamulizumab prior to allogenic hematopoietic stem cell transplantation (allo-HSCT), the only curative option of these T cell malignancies, often leads to severe glucocorticoid-refractory graft-versus-host diseases. The efficient depletion of Treg cells by Mogamulizumab has also led to its clinical trials in advanced solid tumors singly or in combination with immune checkpoint inhibitors. The main focus of this review is CCR4; its expression on normal and malignant T cells and its significance as a therapeutic target in cancer immunotherapy.
Collapse
Affiliation(s)
- Osamu Yoshie
- Health and Kampo Institute, Sendai 981-3205, Japan;
- Kindai University, Osaka 577-8502, Japan
- Aoinosono-Sendai Izumi Long-Term Health Care Facility, Sendai 981-3126, Japan
| |
Collapse
|
19
|
Elshafae SM, Kohart NA, Breitbach JT, Hildreth BE, Rosol TJ. The Effect of a Histone Deacetylase Inhibitor (AR-42) and Zoledronic Acid on Adult T-Cell Leukemia/Lymphoma Osteolytic Bone Tumors. Cancers (Basel) 2021; 13:cancers13205066. [PMID: 34680215 PMCID: PMC8533796 DOI: 10.3390/cancers13205066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Adult T-cell leukemia (ATL) Leukemia is an aggressive, peripheral blood (T-cell) neoplasm associated with human T-cell leukemia virus type 1 (HTLV-1) infection. Recent studies have implicated dysregulated histone deacetylases in ATL pathogenesis. ATL modulates the bone microenvironment of patients and activates osteoclasts (bone resorbing cells) that cause severe bone loss. The objective of this study was to assess the individual and dual effects of AR-42 (HDACi) and zoledronic acid (Zol) on the growth of ATL cells in vitro and in vivo. AR-42 and Zol reduced the viability of ATL cells in vitro. Additionally, Zol and Zol/AR-42 decreased ATL tumor growth and halted osteolysis in bone tumor xenografts in immunodeficient mice in vivo. Our study suggests that dual targeting of ATL cells (using HDACi) and bone osteoclasts (using bisphosphonates) may be exploited as a valuable approach to reduce bone tumor burden and improve the life quality of ATL patients. Abstract Adult T-cell leukemia/lymphoma (ATL) is an intractable disease affecting nearly 4% of Human T-cell Leukemia Virus Type 1 (HTLV-1) carriers. Acute ATL has a unique interaction with bone characterized by aggressive bone invasion, osteolytic metastasis, and hypercalcemia. We hypothesized that dual tumor and bone-targeted therapies would decrease tumor burden in bone, the incidence of metastasis, and ATL-associated osteolysis. Our goal was to evaluate dual targeting of both ATL bone tumors and the bone microenvironment using an anti-tumor HDACi (AR-42) and an osteoclast inhibitor (zoledronic acid, Zol), alone and in combination. Our results showed that AR-42, Zol, and AR-42/Zol significantly decreased the viability of multiple ATL cancer cell lines in vitro. Zol and AR-42/Zol decreased tumor growth in vivo. Zol ± AR-42 significantly decreased ATL-associated bone resorption and promoted new bone formation. AR-42-treated ATL cells had increased mRNA levels of PTHrP, ENPP2 (autotaxin) and MIP-1α, and TAX viral gene expression. AR-42 alone had no significant effect on tumor growth or osteolysis in mice. These findings indicate that Zol adjuvant therapy has the potential to reduce growth of ATL in bone and its associated osteolysis.
Collapse
Affiliation(s)
- Said M. Elshafae
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia 13736, Egypt
| | - Nicole A. Kohart
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
| | - Justin T. Breitbach
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
| | - Blake E. Hildreth
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Thomas J. Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +1-740-593-2405
| |
Collapse
|
20
|
Yoder KE, Rabe AJ, Fishel R, Larue RC. Strategies for Targeting Retroviral Integration for Safer Gene Therapy: Advances and Challenges. Front Mol Biosci 2021; 8:662331. [PMID: 34055882 PMCID: PMC8149907 DOI: 10.3389/fmolb.2021.662331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Retroviruses are obligate intracellular parasites that must integrate a copy of the viral genome into the host DNA. The integration reaction is performed by the viral enzyme integrase in complex with the two ends of the viral cDNA genome and yields an integrated provirus. Retroviral vector particles are attractive gene therapy delivery tools due to their stable integration. However, some retroviral integration events may dysregulate host oncogenes leading to cancer in gene therapy patients. Multiple strategies to target retroviral integration, particularly to genetic safe harbors, have been tested with limited success. Attempts to target integration may be limited by the multimerization of integrase or the presence of host co-factors for integration. Several retroviral integration complexes have evolved a mechanism of tethering to chromatin via a host protein. Integration host co-factors bind chromatin, anchoring the complex and allowing integration. The tethering factor allows for both close proximity to the target DNA and specificity of targeting. Each retrovirus appears to have distinct preferences for DNA sequence and chromatin features at the integration site. Tethering factors determine the preference for chromatin features, but do not affect the subtle sequence preference at the integration site. The sequence preference is likely intrinsic to the integrase protein. New developments may uncouple the requirement for a tethering factor and increase the ability to redirect retroviral integration.
Collapse
Affiliation(s)
- Kristine E Yoder
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anthony J Rabe
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Richard Fishel
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ross C Larue
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Ishizawa M, Ganbaatar U, Hasegawa A, Takatsuka N, Kondo N, Yoneda T, Katagiri K, Masuda T, Utsunomiya A, Kannagi M. Short-term cultured autologous peripheral blood mononuclear cells as a potential immunogen to activate Tax-specific CTL response in adult T-cell leukemia patients. Cancer Sci 2021; 112:1161-1172. [PMID: 33410215 PMCID: PMC7935807 DOI: 10.1111/cas.14800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 01/11/2023] Open
Abstract
Activation of CD8+ Tax‐specific CTL is a new therapeutic concept for adult T‐cell leukemia (ATL) caused by HTLV‐1. A recent clinical study of the dendritic cell vaccine pulsed with Tax peptides corresponding to CTL epitopes showed promising outcomes in ATL patients possessing limited human leukocyte antigen (HLA) alleles. In this study, we aimed to develop another immunotherapy to activate Tax‐specific CTL without HLA limitation by using patients’ own HTLV‐1‐infected cells as a vaccine. To examine the potential of HTLV‐1‐infected T‐cells to activate CTL via antigen presenting cells, we established a unique co–culture system. We demonstrated that mitomycin C‐treated HLA‐A2‐negative HTLV‐1‐infected T‐cell lines or short‐term cultured peripheral blood mononuclear cells (PBMC) derived from ATL patients induced cross–presentation of Tax antigen in co–cultured HLA‐A2‐positive antigen presenting cells, resulting in activation of HLA‐A2‐restricted CD8+ Tax‐specific CTL. This effect was not inhibited by a reverse transcriptase inhibitor. IL‐12 production and CD86 expression were also induced in antigen presenting cells co–cultured with HTLV‐1‐infected cells at various levels, which were improved by pre–treatment of the infected cells with histone deacetylase inhibitors. Furthermore, monocyte‐derived dendritic cells induced from PBMC of a chronic ATL patient produced IL‐12 and expressed enhanced levels of CD86 when co–cultured with autologous lymphocytes that had been isolated from the same PBMC and cultured for several days. These findings suggest that short‐term cultured autologous PBMC from ATL patients could potentially serve as a vaccine to evoke Tax‐specific CTL responses.
Collapse
Affiliation(s)
- Miku Ishizawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Undrakh Ganbaatar
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhiko Hasegawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Natsuko Takatsuka
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuyo Kondo
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeru Yoneda
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kuniko Katagiri
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takao Masuda
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Mari Kannagi
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Microbiology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
22
|
Nakahata S, Syahrul C, Nakatake A, Sakamoto K, Yoshihama M, Nishikata I, Ukai Y, Matsuura T, Kameda T, Shide K, Kubuki Y, Hidaka T, Kitanaka A, Ito A, Takemoto S, Nakano N, Saito M, Iwanaga M, Sagara Y, Mochida K, Amano M, Maeda K, Sueoka E, Okayama A, Utsunomiya A, Shimoda K, Watanabe T, Morishita K. Clinical significance of soluble CADM1 as a novel marker for adult T-cell leukemia/lymphoma. Haematologica 2021; 106:532-542. [PMID: 32054656 PMCID: PMC7849584 DOI: 10.3324/haematol.2019.234096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Adult T-cell leukemia/leukemia (ATLL) is an aggressive peripheral T-cell malignancy, caused by infection with the human T-cell leukemia virus type 1 (HTLV-1). We recently showed that the cell adhesion molecule 1 (CADM1), a member of the immunoglobulin superfamily, is specifically and consistently overexpressed in ATLL cells, and functions as a novel cell surface marker. In this study, we first show that a soluble form of CADM1 (sCADM1) is secreted from ATLL cells by mainly alternative splicing. After developing the Alpha linked immunosorbent assay (AlphaLISA) for sCADM1, we show that plasma sCADM1 concentrations gradually increased during disease progression from indolent to aggressive ATLL. Although other known biomarkers of tumor burden such as soluble interleukin-2 receptor α (sIL-2Rα) also increased with sCADM1 during ATLL progression, multivariate statistical analysis of biomarkers revealed that only plasma sCADM1 was selected as a specific biomarker for aggressive ATLL, suggesting that plasma sCADM1 may be a potential risk factor for aggressive ATLL. In addition, plasma sCADM1 is a useful marker for monitoring response to chemotherapy as well as for predicting relapse of ATLL. Furthermore, the change in sCADM1 concentration between indolent and aggressive type ATLL was more prominent than the change in the percentage of CD4+CADM1+ ATLL cells. As plasma sCADM1 values fell within normal ranges in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients with higher levels of serum sIL-2Rα, the measurement of sCADM1 may become a useful tool to discriminate between ATLL and other inflammatory diseases, including HAM/TSP.
Collapse
Affiliation(s)
- Shingo Nakahata
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Chilmi Syahrul
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Ayako Nakatake
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Kuniyo Sakamoto
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Maki Yoshihama
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Ichiro Nishikata
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | | | | | - Takuro Kameda
- Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kotaro Shide
- Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoko Kubuki
- Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomonori Hidaka
- Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Akira Kitanaka
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University School of Medicine, Osaka, Japan
| | - Shigeki Takemoto
- National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Nobuaki Nakano
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | | | - Masako Iwanaga
- Dept of Frontier Life Science, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yasuko Sagara
- Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan
| | - Kosuke Mochida
- Department of Dermatology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Amano
- Department of Dermatology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kouichi Maeda
- Internal Medicine, National Hospital Organization Miyakonojo Medical Center, Miyazaki, Japan
| | - Eisaburo Sueoka
- Department of Laboratory Medicine, Saga University Hospital, Saga, Japan
| | - Akihiko Okayama
- Dept. of Infectious Diseases and Laboratory Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Kazuya Shimoda
- Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, University of Tokyo, Japan
| | | |
Collapse
|
23
|
Kakisaka K, Suzuki Y, Kowata S, Ito S, Takikawa Y. Acute Liver Injury Due to T-cell Infiltration into the Liver as an Initial Clinical Finding of Adult T-cell Leukemia/Lymphoma. Intern Med 2021; 60:2431-2436. [PMID: 34334592 PMCID: PMC8381176 DOI: 10.2169/internalmedicine.6793-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute liver injury (ALI) has been rarely reported as a clinical finding of adult T-cell leukemia/lymphoma (ATLL). A 74-year-old Japanese female patient who was histologically diagnosed as having autoimmune hepatitis (AIH) one year earlier, showed elevations in her aminotransferase and total bilirubin levels, and this was considered to be an exacerbation of AIH. Liver biopsy revealed interface hepatitis. Because atypical lymphocytes and human T-cell leukemia virus 1 immunoglobulin G antibody were positive, the patient was diagnosed to have ATLL. The biopsy revealed CD4+ and CD8+, but not CD20+ lymphocytes. Thus, the ALI in the patient was due to T-cell infiltration into the liver, and not due to an exacerbation of AIH.
Collapse
Affiliation(s)
- Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Yuji Suzuki
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Shugo Kowata
- Division of Hematology and malignancy, Department of Internal Medicine, Iwate Medical University, Japan
| | - Shigeki Ito
- Division of Hematology and malignancy, Department of Internal Medicine, Iwate Medical University, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Japan
| |
Collapse
|
24
|
Panfil AR, Green PL, Yoder KE. CRISPR Genome Editing Applied to the Pathogenic Retrovirus HTLV-1. Front Cell Infect Microbiol 2020; 10:580371. [PMID: 33425776 PMCID: PMC7785941 DOI: 10.3389/fcimb.2020.580371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
CRISPR editing of retroviral proviruses has been limited to HIV-1. We propose human T-cell leukemia virus type 1 (HTLV-1) as an excellent model to advance CRISPR/Cas9 genome editing technologies against actively expressing and latent retroviral proviruses. HTLV-1 is a tumorigenic human retrovirus responsible for the development of both leukemia/lymphoma (ATL) and a neurological disease (HAM/TSP). The virus immortalizes and persists in CD4+ T lymphocytes that survive for the lifetime of the host. The most important drivers of HTLV-1-mediated transformation and proliferation are the tax and hbz viral genes. Tax, transcribed from the plus-sense or genome strand, is essential for de novo infection and cellular immortalization. Hbz, transcribed from the minus-strand, supports proliferation and survival of infected cells in both its protein and mRNA forms. Abrogating the function or expression of tax and/or hbz by genome editing and mutagenic double-strand break repair may disable HTLV-1-infected cell growth/survival and prevent immune modulatory effects and ultimately HTLV-1-associated disease. In addition, the HTLV-1 viral genome is highly conserved with remarkable sequence homogeneity, both within the same host and even among different HTLV isolates. This offers more focused guide RNA targeting. In addition, there are several well-established animal models for studying HTLV-1 infection in vivo as well as cell immortalization in vitro. Therefore, studies with HTLV-1 may provide a better basis to assess and advance in vivo genome editing against retroviral infections.
Collapse
Affiliation(s)
- Amanda R Panfil
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.,Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Patrick L Green
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.,Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Kristine E Yoder
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States.,Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
25
|
A C21-steroidal derivative suppresses T-cell lymphoma in mice by inhibiting SIRT3 via SAP18-SIN3. Commun Biol 2020; 3:732. [PMID: 33273692 PMCID: PMC7713351 DOI: 10.1038/s42003-020-01458-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023] Open
Abstract
The SIN3 repressor complex and the NAD-dependent deacetylase SIRT3 control cell growth, and development as well as malignant transformation. Even then, a little known about cross-talks between these two chromatin modifiers or whether their interaction explored therapeutically. Here we describe the identification of a C21-steroidal derivative compound, 3-O-chloroacetyl-gagamine, A671, which potently suppresses the growth of mouse and human T-cell lymphoma and erythroleukemia in vitro and preclinical models. A671 exerts its anti-neoplastic effects by direct interaction with Histone deacetylase complex subunit SAP18, a component of the SIN3 suppressor complex. This interaction stabilizes and activates SAP18, leading to transcriptional suppression of SIRT3, consequently to inhibition of proliferation and cell death. The resistance of cancer cells to A671 correlated with diminished SAP18 activation and sustained SIRT3 expression. These results uncover the SAP18-SIN3-SIRT3 axis that can be pharmacologically targeted by a C21-steroidal agent to suppress T-cell lymphoma and other malignancies. Gajendran et al. show that a C21-steroidal derivative called A671, 3-O-chloroacetyl-gagamine, suppresses the growth of T-cell lymphoma in mice. They find that A671 activates SAP18 to suppress the transcription of SIRT3, inhibiting cell growth. This study presents a new pharmacological target pathway for T-cell lymphoma.
Collapse
|
26
|
Human T-cell Leukemia Virus Type 1 and Strongyloides stercoralis: Partners in Pathogenesis. Pathogens 2020; 9:pathogens9110904. [PMID: 33137906 PMCID: PMC7692131 DOI: 10.3390/pathogens9110904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Infection with human T-cell leukemia/lymphoma virus type 1 (HTLV-1) has been associated with various clinical syndromes including co-infection with Strongyloides stercoralis, which is an intestinal parasitic nematode and the leading cause of strongyloidiasis in humans. Interestingly, HTLV-1 endemic areas coincide with regions citing high prevalence of S. stercoralis infection, making these communities optimal for elucidating the pathogenesis of co-infection and its clinical significance. HTLV-1 co-infection with S. stercoralis has been observed for decades in a number of published patient cases and case series; however, the implications of this co-infection remain elusive. Thus far, data suggest that S. stercoralis increases proviral load in patients co-infected with HTLV-1 compared to HTLV-1 infection alone. Furthermore, co-infection with HTLV-1 has been associated with shifting the immune response from Th2 to Th1, affecting the ability of the immune system to address the helminth infection. Thus, despite this well-known association, further research is required to fully elucidate the impact of each pathogen on disease manifestations in co-infected patients. This review provides an analytical view of studies that have evaluated the variation within HTLV-1 patients in susceptibility to S. stercoralis infection, as well as the effects of strongyloidiasis on HTLV-1 pathogenesis. Further, it provides a compilation of available clinical reports on the epidemiology and pathology of HTLV-1 with parasitic co-infection as well as data from mechanistic studies suggesting possible immunopathogenic mechanisms. Furthermore, specific areas of potential future research have been highlighted to facilitate advancing understanding of the complex interactions between these two pathogens.
Collapse
|
27
|
Imaizumi Y, Iwanaga M, Nosaka K, Ishitsuka K, Ishizawa K, Ito S, Amano M, Ishida T, Uike N, Utsunomiya A, Ohshima K, Tanaka J, Tokura Y, Tobinai K, Watanabe T, Uchimaru K, Tsukasaki K. Prognosis of patients with adult T-cell leukemia/lymphoma in Japan: A nationwide hospital-based study. Cancer Sci 2020; 111:4567-4580. [PMID: 32976684 PMCID: PMC7734015 DOI: 10.1111/cas.14658] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Adult T‐cell leukemia/lymphoma (ATL) is a mature T‐cell neoplasm and is classified into four subtypes (acute, lymphoma, chronic, and smoldering) according to the Shimoyama classification, established in 1991 through several nationwide surveys based on the clinical diversity of patients diagnosed in 1983‐1987 in Japan. Thereafter, no such studies have been conducted. Recently, we conducted a nationwide hospital survey using the method of the 1980s studies, collected baseline data on 996 ATL patients diagnosed in 2010‐2011 from 126 hospitals, and reported their unique epidemiological characteristics. Here, we report the follow‐up results of registered ATL patients with the goal of evaluating current prognoses and treatment modalities as of 2016‐2017. Of 770 evaluable patients, 391 (50.8%) had acute‐type, 192 (24.9%) had lymphoma‐type, 106 (13.8%) had chronic‐type, and 81 (10.5%) had smoldering‐type ATL. The initial therapy regimens used for acute/lymphoma‐type ATL were vincristine, cyclophosphamide, doxorubicin and prednisone, followed by doxorubicin, ranimustine, and prednisone and then by vindesine, etoposide, carboplatin, and prednisone (VCAP‐AMP‐VECP)‐like in 38.5/41.7% and cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP)‐like in 14.6/13.7% of patients. Allogeneic hematopoietic stem cell transplantation was used to treat 15.9/10.4% of acute/lymphoma‐type ATL patients. The 4‐year survival rates (the median survival time, days) for acute‐, lymphoma‐, unfavorable chronic‐, favorable chronic‐, and smoldering‐type ATL were 16.8% (252), 19.6% (305), 26.6% (572), 62.1% (1937), and 59.8% (1851), respectively. The 4‐year survival rates for acute‐ and lymphoma‐type ATL improved compared with those reported in 1991, but those for chronic‐ and smoldering‐type ATL were not. Further efforts are warranted to develop more efficient therapeutic strategies to improve the prognosis of ATL in Japan.
Collapse
Affiliation(s)
| | - Masako Iwanaga
- Department of Clinical Epidemiology, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Kisato Nosaka
- Department of Hematology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Kenichi Ishizawa
- Department of Third Internal Medicine, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Shigeki Ito
- Department of Hematology and Oncology, Iwate Medical University, Iwate, Japan
| | - Masahiro Amano
- Department of Dermatology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Ishida
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naokuni Uike
- Department of Hospice care, St. Mary's hospital, Kurume, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Woman's Medical University, Tokyo, Japan
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Kaoru Uchimaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiro Tsukasaki
- Department of Hematology, International Medical Center, Saitama Medical University, Saitama, Japan
| | | |
Collapse
|
28
|
Yanagida E, Miyoshi H, Takeuchi M, Yoshida N, Nakashima K, Yamada K, Umeno T, Shimasaki Y, Furuta T, Seto M, Ohshima K. Clinicopathological analysis of immunohistochemical expression of CD47 and SIRPα in adult T-cell leukemia/lymphoma. Hematol Oncol 2020; 38:680-688. [PMID: 32569413 DOI: 10.1002/hon.2768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
The interaction of CD47 and signal-regulatory protein alpha (SIRPα) induces "don't eat me signal", leading suppression of phagocytosis. This signal can affect the clinical course of malignant disease. Although CD47 and SIRPα expression are associated with clinicopathological features in several neoplasms, the investigation for adult T-cell leukemia/lymphoma (ATLL) has not been well-documented. This study aimed to declare the association between CD47 and SIRPα expression and clinicopathological features in ATLL. We performed immunostaining on 73 biopsy samples and found that CD47 is primarily expressed in tumor cells, while SIRPα is expressed in non-neoplastic stromal cells. CD47 positive cases showed significantly higher FoxP3 (P = .0232) and lower CCR4 (P = .0214). SIRPα positive cases presented significantly better overall survival than SIRPα negative cases (P = .0132). SIRPα positive cases showed significantly HLA class I (P = .0062), HLA class II (P = .0133), microenvironment PD-L1 (miPD-L1) (P = .0032), and FoxP3 (P = .0229) positivity. In univariate analysis, SIRPα expression was significantly related to prognosis (Hazard ratio [HR] 0.470; 95% confidence interval [CI] 0.253-0.870; P = .0167], although multivariate analysis did not show SIPRα as an independent prognostic factor. The expression of SIRPα on stromal cells reflects activated immune surveillance mechanism in tumor microenvironment and induce good prognosis in ATLL. More detailed studies for gene expression or genomic abnormalities will disclose clinical and biological significance of the CD47 and SIRPα in ATLL.
Collapse
Affiliation(s)
- Eriko Yanagida
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Mai Takeuchi
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Noriaki Yoshida
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan.,Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kazutaka Nakashima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Kyohei Yamada
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Takeshi Umeno
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yasumasa Shimasaki
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Masao Seto
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
29
|
Moritsubo M, Miyoshi H, Matsuda K, Yoshida N, Nakashima K, Yanagida E, Yamada K, Takeuchi M, Suzuki T, Muta H, Umeno T, Furuta T, Seto M, Ohshima K. TACC3 expression as a prognostic factor in aggressive types of adult T-cell leukemia/lymphoma patients. Int J Lab Hematol 2020; 42:842-848. [PMID: 32744749 DOI: 10.1111/ijlh.13289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Adult T-cell leukemia/lymphoma (ATLL) is a malignant peripheral T-cell neoplasm associated with human T-cell leukemia virus type-1 (HTLV-1). The acute and lymphoma subtypes are regarded as aggressive ATLLs, and the overall survival (OS) of patients remains poor. Transforming acidic coiled-coil-containing protein 3 (TACC3) regulates microtubules, which are associated with cancer-related proteins overexpressed in various cancers. Such a relationship has not been reported in hematopoietic tumors, including ATLL. METHODS We examined tissue microarrays of histological samples from 92 cases of aggressive ATLL and assessed clinical features, including TACC3 protein expression levels. RESULTS Compared with TACC3-low, TACC3-high ATLL patients were significantly older (P < .001), with a tendency toward pleomorphic variant over other morphological classifications (P = .019). TACC3-high patients (median survival time [MST] 10.6 months, confidence interval [CI] [6.27-15.6]) had poorer OS compared to TACC3-low patients (MST 20 months, CI [9.43-38.5]) (P = .0168). Moreover, multivariate analysis on TACC3 expression levels suggests that TACC3-high is an independent significant prognostic factor (HR, 1.700; 95% CI, 1.037-2.753; P = .0355). CONCLUSION Certain drugs that inhibit TACC3-overexpressing neoplastic cells are used clinically. Further studies might highlight a key role for TACC3 in the oncogenesis and progression of ATLL.
Collapse
Affiliation(s)
- Mayuko Moritsubo
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan
| | - Kotaro Matsuda
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan.,Department of Orthopedic surgery, Kurume University School of medicine, Kurume, Fukuoka, Japan
| | - Noriaki Yoshida
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan.,Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Hiroshima, Japan
| | - Kazutaka Nakashima
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan
| | - Eriko Yanagida
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan
| | - Kyohei Yamada
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan
| | - Mai Takeuchi
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan
| | - Takaharu Suzuki
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan
| | - Hiroko Muta
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan
| | - Takeshi Umeno
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan
| | - Masao Seto
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
30
|
Kouhpaikar H, Sadeghian MH, Rafatpanah H, Kazemi M, Iranshahi M, Delbari Z, Khodadadi F, Ayatollahi H, Rassouli FB. Synergy between parthenolide and arsenic trioxide in adult T-cell leukemia/lymphoma cells in vitro. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:616-622. [PMID: 32742599 PMCID: PMC7374994 DOI: 10.22038/ijbms.2020.40650.9610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Adult T-cell leukemia/lymphoma (ATLL) is an aggressive lymphoid malignancy with low survival rate and distinct geographical distribution. In search for novel chemotherapeutics against ATLL, we investigated the combinatorial effects of parthenolide, a sesquiterpene lactone with valuable pharmaceutical activities, and arsenic trioxide (ATO) in vitro. MATERIALS AND METHODS MT2 cells, an ATLL cell line, were treated with increasing concentrations of parthenolide (1.25, 2.5, and 5 μg/ml) and ATO (2, 4, 8, and 16 µM) to determine their IC50. Then, cells were treated with a combination of sub-IC50 concentrations of parthenolide (1 μg/ml) and ATO (2 µM) for 72 hr. Cell viability and cell cycle changes were assessed by Alamar blue and PI staining, respectively. To understand the mechanisms responsible for observed effects, expression of CD44, NF-κB (REL-A), BMI-1, and C-MYC were investigated by real-time PCR. RESULTS Assessment of cell viability indicated that parthenolide significantly increased the toxicity of ATO, as confirmed by accumulation of MT2 cells in the sub G1 phase of the cell cycle. Moreover, molecular analysis revealed significant down-regulation of CD44, NF-κB (REL-A), BMI-1, and C-MYC upon combinatorial administration of parthenolide and ATO in comparison with relevant controls. CONCLUSION Taken together, present results showed that parthenolide significantly enhanced the toxicity of ATO in MT2 cells. Therefore, the future possible clinical impact of our study could be combinatorial use of parthenolide and ATO as a novel and more effective approach for ATLL.
Collapse
Affiliation(s)
- Hamideh Kouhpaikar
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hadi Sadeghian
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Kazemi
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Delbari
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Khodadadi
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B. Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
31
|
Tsukamoto Y, Kiyasu J, Choi I, Kozuru M, Uike N, Utsunomiya H, Hirata A, Fujioka E, Ohno H, Nakashima E, Nakashima Y, Miyashita K, Tachikawa Y, Narazaki T, Tsuda M, Haji S, Takamatsu A, Tanaka E, Goto T, Takatsuki H, Oyama M, Muta H, Yagi Y, Ikeda M, Matsushima T, Yufu Y, Suehiro Y. Efficacy and Safety of the Modified EPOCH Regimen (Etoposide, Vincristine, Doxorubicin, Carboplatin, and Prednisolone) for Adult T-cell Leukemia/Lymphoma: A Multicenter Retrospective Study. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e445-e453. [PMID: 32312633 DOI: 10.1016/j.clml.2020.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND We retrospectively analyzed patients with untreated aggressive adult T-cell leukemia/lymphoma who received the modified EPOCH (mEPOCH) regimen. PATIENTS AND METHODS Patients received up to 6 mEPOCH cycles. Etoposide (50 mg/m2/day), doxorubicin (10 mg/m2/day), and vincristine (0.4 mg/m2/day) were each given as a continuous 96-hour infusion on days 1 to 4. Prednisolone (40 mg/m2/day) was given intravenously or orally on days 1 to 4 and then tapered and stopped on day 7, and carboplatin (dose calculated for each patient individually using Calvert's formula according to a target under the curve of 3 mg/mL/min) was given as a 2-hour intravenous infusion on day 6. RESULTS In 103 patients, overall response rate and complete response rate were 58% and 25%, respectively. With a median follow-up of 8.9 months, the median survival time was 9.8 months (95% confidence interval, 7.2-13.9 months). The median progression-free survival (PFS) was 4.2 months (95% confidence interval, 3.4-5.7 months). Patients who completed ≥ 4 cycles experienced significantly better overall survival and PFS compared with those who completed < 4 cycles. Twenty-eight patients underwent allogeneic hematopoietic stem cell transplantation after mEPOCH and demonstrated significantly prolonged overall survival and PFS compared with those who did not undergo transplantation. CONCLUSION The mEPOCH regimen is effective with tolerable adverse effects and may be an alternative treatment option for adult T-cell leukemia/lymphoma.
Collapse
Affiliation(s)
- Yasuhiro Tsukamoto
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan; Department of Hematology, Iizuka Hospital, Iizuka-city, Fukuoka, Japan
| | - Junichi Kiyasu
- Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan; Department of Hematology, Iizuka Hospital, Iizuka-city, Fukuoka, Japan; Department of Pathology, Kurume University, Kurume-city, Fukuoka, Japan.
| | - Ilseung Choi
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Mitsuo Kozuru
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Naokuni Uike
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Hayato Utsunomiya
- Cell Therapy, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Akie Hirata
- Clinical Laboratory Medicine, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Eriko Fujioka
- Cell Therapy, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Hirofumi Ohno
- Cell Therapy, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Eriko Nakashima
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Yasuhiro Nakashima
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Kaname Miyashita
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Yoshimichi Tachikawa
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Taisuke Narazaki
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Mariko Tsuda
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Shojiro Haji
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Akiko Takamatsu
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Emi Tanaka
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Tatsuro Goto
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Hiroshi Takatsuki
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| | - Makoto Oyama
- Department of Hematology, Iizuka Hospital, Iizuka-city, Fukuoka, Japan
| | - Hiroki Muta
- Department of Hematology, Iizuka Hospital, Iizuka-city, Fukuoka, Japan
| | - Yu Yagi
- Department of Hematology, Iizuka Hospital, Iizuka-city, Fukuoka, Japan
| | - Motohiko Ikeda
- Department of Hematology, Iizuka Hospital, Iizuka-city, Fukuoka, Japan
| | | | - Yuji Yufu
- Department of Hematology, Iizuka Hospital, Iizuka-city, Fukuoka, Japan
| | - Youko Suehiro
- Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan; Cell Therapy, National Hospital Organization Kyushu Cancer Center, Fukuoka-city, Fukuoka, Japan
| |
Collapse
|
32
|
Sensitive Photodynamic Detection of Adult T-cell Leukemia/Lymphoma and Specific Leukemic Cell Death Induced by Photodynamic Therapy: Current Status in Hematopoietic Malignancies. Cancers (Basel) 2020; 12:cancers12020335. [PMID: 32024297 PMCID: PMC7072618 DOI: 10.3390/cancers12020335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 01/10/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL), an aggressive type of T-cell malignancy, is caused by the human T-cell leukemia virus type I (HTLV-1) infections. The outcomes, following therapeutic interventions for ATL, have not been satisfactory. Photodynamic therapy (PDT) exerts selective cytotoxic activity against malignant cells, as it is considered a minimally invasive therapeutic procedure. In PDT, photosensitizing agent administration is followed by irradiation at an absorbance wavelength of the sensitizer in the presence of oxygen, with ultimate direct tumor cell death, microvasculature injury, and induced local inflammatory reaction. This review provides an overview of the present status and state-of-the-art ATL treatments. It also focuses on the photodynamic detection (PDD) of hematopoietic malignancies and the recent progress of 5-Aminolevulinic acid (ALA)-PDT/PDD, which can efficiently induce ATL leukemic cell-specific death with minor influence on normal lymphocytes. Further consideration of the ALA-PDT/PDD system along with the circulatory system regarding the clinical application in ATL and others will be discussed. ALA-PDT/PDD can be promising as a novel treatment modality that overcomes unmet medical needs with the optimization of PDT parameters to increase the effectiveness of the tumor-killing activity and enhance the innate and adaptive anti-tumor immune responses by the optimized immunogenic cell death.
Collapse
|
33
|
Nehme Z, Pasquereau S, Herbein G. Targeting histone epigenetics to control viral infections. HISTONE MODIFICATIONS IN THERAPY 2020. [PMCID: PMC7453269 DOI: 10.1016/b978-0-12-816422-8.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past decades, many studies have significantly broadened our understanding of complex virus-host interactions to control chromatin structure and dynamics.1, 2 However, the role and impact of such modifications during viral infections is not fully revealed. Indeed, this type of regulation is bidirectional between the virus and the host. While viral replication and gene expression are significantly impacted by histone modifications on the viral chromatin,3 studies have shown that some viral pathogens dynamically manipulate cellular epigenetic factors to enhance their own survival and pathogenesis, as well as escape the immune system defense lines.4 In this dynamic, histone posttranslational modifications (PTMs) appear to play fundamental roles in the regulation of chromatin structure and recruitment of other factors.5 Genuinely, those PTMs play a vital role in lytic infection, latency reinforcement, or, conversely, viral reactivation.6 In this chapter, we will examine and review the involvement of histone modifications as well as their potential manipulation to control infections during various viral life cycle stages, highlighting their prospective implications in the clinical management of human immunodeficiency virus (HIV), herpes simplex virus (HSV), human cytomegalovirus (HCMV), hepatitis B and C viruses (HBV and HCV, respectively), Epstein–Barr virus (EBV), and other viral diseases. Targeting histone modifications is critical in setting the treatment of chronic viral infections with both lytic and latent stages (HIV, HCMV, HSV, RSV), virus-induced cancers (HBV, HCV, EBV, KSHV, HPV), and epidemic/emerging viruses (e.g. influenza virus, arboviruses).
Collapse
|
34
|
Fleischer LC, Spencer HT, Raikar SS. Targeting T cell malignancies using CAR-based immunotherapy: challenges and potential solutions. J Hematol Oncol 2019; 12:141. [PMID: 31884955 PMCID: PMC6936092 DOI: 10.1186/s13045-019-0801-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/23/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has been successful in treating B cell malignancies in clinical trials; however, fewer studies have evaluated CAR T cell therapy for the treatment of T cell malignancies. There are many challenges in translating this therapy for T cell disease, including fratricide, T cell aplasia, and product contamination. To the best of our knowledge, no tumor-specific antigen has been identified with universal expression on cancerous T cells, hindering CAR T cell therapy for these malignancies. Numerous approaches have been assessed to address each of these challenges, such as (i) disrupting target antigen expression on CAR-modified T cells, (ii) targeting antigens with limited expression on T cells, and (iii) using third party donor cells that are either non-alloreactive or have been genome edited at the T cell receptor α constant (TRAC) locus. In this review, we discuss CAR approaches that have been explored both in preclinical and clinical studies targeting T cell antigens, as well as examine other potential strategies that can be used to successfully translate this therapy for T cell disease.
Collapse
Affiliation(s)
- Lauren C Fleischer
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - H Trent Spencer
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
35
|
Wang R, Feng W, Wang H, Wang L, Yang X, Yang F, Zhang Y, Liu X, Zhang D, Ren Q, Feng X, Zheng G. Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease progression in mouse leukemia model. Cancer Lett 2019; 469:151-161. [PMID: 31669202 DOI: 10.1016/j.canlet.2019.10.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Blocking the migration of regulatory T cells (Tregs) to the tumor microenvironment is a promising strategy for tumor immunotherapy. Treg accumulation in the leukemic hematopoietic microenvironment (LHME) has adverse impacts on patient outcomes. The mechanism and effective methods of disrupting Treg accumulation in the LHME have not been well established. Here, we studied the distribution and characteristics of Tregs in the LHME, investigated the effects of Treg ablation on leukemia progression, explored the mechanisms leading to Treg accumulation, and studied whether blocking Treg migration to the LHME delayed leukemia progression in MLL-AF9-induced mouse acute myeloid leukemia (AML) models using wildtype (WT) and Foxp3DTR/GFP mice. Increased accumulation of more activated Tregs was detected in the LHME. Inducible Treg ablation prolonged the survival of AML mice by promoting the antileukemic effects of CD8+ T cells. Furthermore, both local expansion and migration accounted for Treg accumulation in the LHME. Moreover, blocking the CCL3-CCR1/CCR5 and CXCL12-CXCR4 axes inhibited Treg accumulation in the LHME and delayed leukemia progression. Our findings provide laboratory evidence for a potential leukemia immunotherapy by blocking the migration of Tregs.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Wenli Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Hao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiao Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Feifei Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaoli Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| |
Collapse
|
36
|
Akuzawa Y, Tsukasaki K, Saeki T, Okamura D, Ishikawa M, Maeda T, Kohri M, Takahashi N, Matsuda A, Kawai N, Asou N. A case series of adult T-cell leukemia-lymphoma, associated with human T-cell leukemia virus type-1, at a single center in a non-viral-endemic metropolitan area. J Clin Exp Hematop 2019; 59:108-111. [PMID: 31564712 PMCID: PMC6798142 DOI: 10.3960/jslrt.19001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We examined 13 patients with adult T-cell leukemia-lymphoma (ATL) diagnosed between 2007 and 2018 at a single center in a metropolitan area non-endemic for human T-cell leukemia virus type I (HTLV-1). The median age of the patients (eight male, five female) was 65 years (range, 48-83). The time from onset of symptoms to referral to our center was relatively short (median, 2 months; range, 1-9 months). Upon referral, all patients were suspected to have lymphoma, five were examined for soluble IL-2 receptor and two were examined for anti-HTLV-1 antibody. In ten of the 13 (77%), the patient themselves or their relatives were born in Kyushu. The birth places of the remaining three patients were unknown. Three patients (23%) had family histories of lymphoma. They all exhibited aggressive ATL (five acute, eight lymphoma type); however, the disease status was generally stable, with relatively stable performance status and low scores for prognostic indices. After combination chemotherapy, eight (62%) achieved remission. However, long-term remission was achieved in only one patient with localized lymphoma-type ATL and one young patient after allogeneic hematopoietic stem cell transplantation. In conclusion, at a center in a metropolitan and HTLV-1 non-endemic area in Japan, patients with ATL were relatively young and mainly presented with aggressive subtypes. At initial referral to our center, all 13 patients were suspected of having lymphoma but only two of having ATL. For centers in similar areas of Japan, prompt diagnosis and appropriate treatment of ATL patients will become increasingly necessary following the recent migration of HTLV-1 carriers to non-endemic areas.
Collapse
|
37
|
Utsunomiya A. Progress in Allogeneic Hematopoietic Cell Transplantation in Adult T-Cell Leukemia-Lymphoma. Front Microbiol 2019; 10:2235. [PMID: 31681185 PMCID: PMC6797831 DOI: 10.3389/fmicb.2019.02235] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/11/2019] [Indexed: 11/13/2022] Open
Abstract
The prognosis of aggressive adult T-cell leukemia-lymphoma (ATL) remains poor because of frequent infections and drug resistance. Dose-intensified chemotherapy followed by autologous stem cell transplantation failed to improve the prognosis of patients with ATL; however, we first revealed that allogeneic hematopoietic cell transplantation (allo-HCT) might improve their prognosis. We showed that reduced-intensity stem cell transplantation using peripheral blood was feasible for elderly patients. Further, the prognosis of patients in remission, who receive cord blood transplantation, has been recently improved and is equivalent to that of patients who receive transplants from other stem cell sources. As for the timing of HCT, the patients who underwent transplantation early showed better outcomes than those who underwent transplantation late. Based on the analysis of patients with aggressive ATL, including those who received transplants, we identified five prognostic factors for poor outcomes: acute-type ATL, poor performance status, high soluble interleukin-2 receptor levels, hypercalcemia, and high C-reactive protein level. Next, we developed a new prognostic index: the modified ATL-PI. The overall survival (OS) rates were significantly higher in patients who underwent allo-HCT than those who did not in the intermediate and high-risk groups stratified using the modified ATL-PI. Two new anti-cancer agents, mogamulizumab and lenalidomide, were recently approved for ATL patients in Japan. They are expected to induce longer survival in ATL patients when administered along with transplantation. However, a retrospective analysis that the risk of severe, acute, and corticosteroid-refractory graft-versus-host disease was higher in patients who received mogamulizumab before allo-HCT, and that mogamulizumab might increase the transplant-related mortality (TRM) rates and decrease the OS rates compared to those of patients who did not receive mogamulizumab. However, our recent study showed that administration of mogamulizumab before allo-HCT tended to improve the survival of patients with ATL. In conclusion, allo-HCT procedures for patients with aggressive ATL have considerably progressed and have helped improve the prognosis of these patients; however, many concerns still remain to be resolved. Further development of allo-HCT by using new molecular targeting agents is required for the improvement of cure rates in patients with ATL.
Collapse
Affiliation(s)
- Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| |
Collapse
|
38
|
Kannagi M, Hasegawa A, Nagano Y, Kimpara S, Suehiro Y. Impact of host immunity on HTLV-1 pathogenesis: potential of Tax-targeted immunotherapy against ATL. Retrovirology 2019; 16:23. [PMID: 31438973 PMCID: PMC6704564 DOI: 10.1186/s12977-019-0484-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and other inflammatory diseases. There is no disease-specific difference in viral strains, and it is unclear how HTLV-1 causes such different diseases manifesting as lymphoproliferation or inflammation. Although some progress has been made in therapies for these diseases, the prognosis for ATL is still dismal and HAM/TSP remains an intractable disease. So far, two regulatory proteins of HTLV-1, Tax and HBZ, have been well studied and shown to have pleiotropic functions implicated in viral pathogenesis. Tax in particular can strongly activate NFκB, which is constitutively activated in HTLV-1-infected cells and considered to contribute to both oncogenesis and inflammation. However, the expression level of Tax is very low in vivo, leading to confusion in understanding its role in viral pathogenesis. A series of studies using IL-2-dependent HTLV-1-infected cells indicated that IL-10, an anti-inflammatory/immune suppressive cytokine, could induce a proliferative phenotype in HTLV-1-infected cells. In addition, type I interferon (IFN) suppresses HTLV-1 expression in a reversible manner. These findings suggest involvement of host innate immunity in the switch between lymphoproliferative and inflammatory diseases as well as the regulation of HTLV-1 expression. Innate immune responses also affect another important host determinant, Tax-specific cytotoxic T lymphocytes (CTLs), which are impaired in ATL patients, while activated in HAM/TSP patients. Activation of Tax-specific CTLs in ATL patients after hematopoietic stem cell transplantation indicates Tax expression and its fluctuation in vivo. A recently developed anti-ATL therapeutic vaccine, consisting of Tax peptide-pulsed dendritic cells, induced Tax-specific CTL responses in ATL patients and exhibited favorable clinical outcomes, unless Tax-defective ATL clones emerged. These findings support the significance of Tax in HTLV-1 pathogenesis, at least in part, and encourage Tax-targeted immunotherapy in ATL. Host innate and acquired immune responses induce host microenvironments that modify HTLV-1-encoded pathogenesis and establish a complicated network for development of diseases in HTLV-1 infection. Both host and viral factors should be taken into consideration in development of therapeutic and prophylactic strategies in HTLV-1 infection.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yoshiko Nagano
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shuichi Kimpara
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
39
|
Nishikawa Y, Mochida K, Kubo T, Horikawa N, Nemoto R, Amano M. Smoldering type adult T-cell leukemia/lymphoma effectively treated with mogamulizumab (anti-CC chemokine receptor 4 monoclonal antibody)-A case report. Clin Case Rep 2019; 7:1057-1061. [PMID: 31110745 PMCID: PMC6509667 DOI: 10.1002/ccr3.2155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/27/2019] [Accepted: 03/31/2019] [Indexed: 11/20/2022] Open
Abstract
The use of mogamulizumab needs careful consideration because of severe adverse reactions such as graft-vs-host disease. However, refractory specific skin lesions of smoldering type adult T-cell leukemia/lymphoma can be effectively treated with mogamulizumab when patients have no opportunity to receive hematopoietic stem cell transplantation like our case.
Collapse
Affiliation(s)
- Yotaro Nishikawa
- Department of Dermatology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Kosuke Mochida
- Department of Dermatology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Tamaki Kubo
- Department of Dermatology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Nagako Horikawa
- Department of Dermatology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Rieko Nemoto
- Department of Dermatology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Masahiro Amano
- Department of Dermatology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| |
Collapse
|
40
|
Ohsugi T, Tanaka S, Iwasaki K, Nagano Y, Kozako T, Matsuda K, Hirose T, Takehana K. A novel mouse model of adult T-cell leukemia cell invasion into the spinal cord. Animal Model Exp Med 2019; 2:64-67. [PMID: 31016289 PMCID: PMC6431123 DOI: 10.1002/ame2.12053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/28/2018] [Indexed: 12/03/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a mature T-cell malignancy caused by human T-cell leukemia virus type I infection, and 10%-25% of patients show central nervous system (CNS) involvement. CNS involvement significantly reduces survival and there are no effective treatments for CNS involvement. Therefore, an appropriate animal model is required to evaluate the inhibitory effects of novel drugs on the progression of ATL with CNS involvement. Here, we established a mouse model of ATL with CNS involvement using NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice inoculated with ATL cells intramuscularly in the postauricular region, and these mice showed paraparesis. Of the 10 mice inoculated with ATL cells intramuscularly (I.M.) at 5 weeks of age, 8 (80%) showed paraparesis, whereas none of the 10 mice inoculated with ATL cells subcutaneously (S.C.) showed paraparesis. In the I.M. group, PCR detected HTLV-1-specific genes in the thoracic and lumbar vertebrae; however, in the S.C. group, the vertebrae were negative for HTLV-1 genes. Histological analysis revealed a particularly high incidence of tumors, characterized by accumulation of the injected cells, in the thoracic vertebrae of mice in the I.M. group. Tumor cell infiltration was relatively high in the bone marrow. Spinal cord compression caused by invasion of the tumor mass outside the pia mater was observed in the thoracic vertebrae of the spinal cord. In conclusion, we have reported a mouse model of tumor growth with paraparesis that may be used to assess novel therapeutic agents for ATL with CNS involvement.
Collapse
Affiliation(s)
- Takeo Ohsugi
- Department of Laboratory Animal SciencesSchool of Veterinary MedicineRakuno Gakuen UniversityEbetsuHokkaidoJapan
| | - Shuhei Tanaka
- Department of Laboratory Animal SciencesSchool of Veterinary MedicineRakuno Gakuen UniversityEbetsuHokkaidoJapan
| | - Keigo Iwasaki
- Department of Laboratory Animal SciencesSchool of Veterinary MedicineRakuno Gakuen UniversityEbetsuHokkaidoJapan
| | - Yusuke Nagano
- Department of Laboratory Animal SciencesSchool of Veterinary MedicineRakuno Gakuen UniversityEbetsuHokkaidoJapan
| | - Tomohiro Kozako
- Faculty of Pharmaceutical SciencesDepartment of BiochemistryFukuoka UniversityFukuokaJapan
| | - Kazuya Matsuda
- Department of Veterinary PathologySchool of Veterinary MedicineRakuno Gakuen UniversityEbetsuHokkaidoJapan
| | - Takuya Hirose
- Department of Veterinary MicroanatomySchool of Veterinary MedicineRakuno Gakuen UniversityEbetsuHokkaidoJapan
| | - Kazushige Takehana
- Department of Veterinary MicroanatomySchool of Veterinary MedicineRakuno Gakuen UniversityEbetsuHokkaidoJapan
| |
Collapse
|
41
|
Adrianzen Herrera D, Kornblum N, Acuna-Villaorduna A, Sica RA, Shah U, Butler M, Vishnuvardhan N, Shah N, Bachier-Rodriguez L, Derman O, Shastri A, Mantzaris I, Verma AK, Braunschweig I, Janakiram M. Barriers to Allogeneic Hematopoietic Stem Cell Transplantation for Human T Cell Lymphotropic Virus 1-Associated Adult T Cell Lymphoma-Leukemia in the United States: Experience from a Large Cohort in a Major Tertiary Center. Biol Blood Marrow Transplant 2019; 25:e199-e203. [PMID: 30769194 DOI: 10.1016/j.bbmt.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 02/09/2023]
Abstract
In the United States adult T cell lymphoma-leukemia (ATLL) carries a dismal prognosis and mainly affects immigrants from human T cell lymphotropic virus 1 endemic areas. Allogeneic hematopoietic stem cell transplant (alloHSCT) can be effective and is recommended as an upfront treatment in the National Comprehensive Cancer Network guidelines. We studied the barriers to alloHSCT in one of the largest ATLL populations in the United States. Comprehensive chart and donor registry reviews were conducted for 88 ATLL patients treated at Montefiore Medical Center from 2003 to 2018. Among 49 patients with acute and 32 with lymphomatous subtypes, 48 (59.5%) were ineligible for alloHSCT because of early mortality (52%), loss to follow-up (21%), uninsured status (15%), patient declination (10%), and frailty (2%). Among 28 HLA-typed eligible patients (34.6%), matched related donors were identified for 7 (25%). A matched unrelated donor (MUD) search yielded HLA-matched in 2 patients (9.5%), HLA mismatched in 6 (28.5%), and no options in 13 (62%). Haploidentical donors were identified for 6 patients (46%) with no unrelated options. There were no suitable donors for 7 (25%) alloHSCT-eligible patients. The main limitation for alloHSCT after donor identification was death from progressive disease (82%). AlloHSCT was performed in 10 patients (12.3%) and was associated with better relapse-free survival (26 versus 11 months, P = .04) and overall survival (47 versus 10 months, P = .03). Early mortality and progressive disease are the main barriers to alloHSCT, but poor follow-up, uninsured status, and lack of suitable donor, including haploidentical, are also substantial limitations that might disproportionally affect this vulnerable population. AlloHSCT can achieve long-term remissions, and strategies aiming to overcome these barriers are urgently needed to improve outcomes in ATLL.
Collapse
Affiliation(s)
- Diego Adrianzen Herrera
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Noah Kornblum
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Ana Acuna-Villaorduna
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - R Alejandro Sica
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Urvi Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Moya Butler
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Nivetha Vishnuvardhan
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Nishi Shah
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Lizamarie Bachier-Rodriguez
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Olga Derman
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Aditi Shastri
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Ioannis Mantzaris
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Amit K Verma
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Ira Braunschweig
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Murali Janakiram
- Department of Medical Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York; Department of Medicine, Division of HOT, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
42
|
You F, Wang Y, Jiang L, Zhu X, Chen D, Yuan L, An G, Meng H, Yang L. A novel CD7 chimeric antigen receptor-modified NK-92MI cell line targeting T-cell acute lymphoblastic leukemia. Am J Cancer Res 2019; 9:64-78. [PMID: 30755812 PMCID: PMC6356925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023] Open
Abstract
Chimeric antigen receptor (CAR) immunotherapy has recently shown promise in clinical trials for B-cell malignancies; however, designing CARs for T-cell based diseases remain a challenge since most target antigens are shared between normal and malignant cells, leading to CAR-T cell fratricide. CD7 is highly expressed in T-cell acute lymphoblastic leukemia (T-ALL), but it is not expressed in one small group of normal T lymphocytes. Here, we constructed monovalent CD7-CAR-NK-92MI and bivalent dCD7-CAR-NK-92MI cells using the CD7 nanobody VHH6 sequences from our laboratory. Both CD7-CAR-NK-92MI and dCD7-CAR-NK-92MI cells consistently showed specific and potent anti-tumor activity against T-cell leukemia cell lines and primary tumor cells. We observed robust cytotoxicity of the bivalent mdCD7-CAR-NK-92MI monoclonal cells against primary T-ALL samples. In agreement with the enhanced cytotoxicity of mdCD7-CAR-NK-92MI cells, significant elevations in the secretion of Granzyme B and interferon γ (IFN-γ) were also found in mdCD7-CAR-NK-92MI cells in response to CD7-positive primary T-ALL cells compared with NK-92MI-mock cells. Furthermore, we also demonstrated that mdCD7-CAR-NK-92MI cells significantly inhibited disease progression in xenograft mouse models of T-ALL primary tumor cells. Our data suggest that CD7-CAR-NK-92MI cells can be used as a new method or a complementary therapy for treating T-cell acute lymphocytic leukemia.
Collapse
Affiliation(s)
- Fengtao You
- The Cyrus Tang Hematology Center, Soochow UniversitySuzhou, Jiangsu, P. R. China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, Jiangsu, P. R. China
- PersonGen BioTherapeutics (Suzhou) Co., Ltd.P. R. China
| | - Yinyan Wang
- PersonGen BioTherapeutics (Suzhou) Co., Ltd.P. R. China
| | - Licui Jiang
- PersonGen BioTherapeutics (Suzhou) Co., Ltd.P. R. China
| | - Xuejun Zhu
- Department of Hematology, Central Laboratory, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese MedicineNanjing, P. R. China
| | - Dan Chen
- The Cyrus Tang Hematology Center, Soochow UniversitySuzhou, Jiangsu, P. R. China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, Jiangsu, P. R. China
- PersonGen BioTherapeutics (Suzhou) Co., Ltd.P. R. China
| | - Lei Yuan
- Department of Hematology, Peking University Third HospitalBeijing, P. R. China
| | - Gangli An
- The Cyrus Tang Hematology Center, Soochow UniversitySuzhou, Jiangsu, P. R. China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, Jiangsu, P. R. China
| | - Huimin Meng
- The Cyrus Tang Hematology Center, Soochow UniversitySuzhou, Jiangsu, P. R. China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, Jiangsu, P. R. China
| | - Lin Yang
- The Cyrus Tang Hematology Center, Soochow UniversitySuzhou, Jiangsu, P. R. China
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, Jiangsu, P. R. China
- State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhou, Jiangsu, P. R. China
- PersonGen BioTherapeutics (Suzhou) Co., Ltd.P. R. China
| |
Collapse
|
43
|
[Astute strategies of HTLV-1 with driven viral genes]. Uirusu 2019; 69:37-46. [PMID: 32938893 DOI: 10.2222/jsv.69.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the world's first retrovirus with pathogenicity to cause adult T-cell leukemia-lymphoma (ATL) and chronic inflammatory diseases,such as HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and HTLV-1 uveitis. As the virological characteristic, HTLV-1 can transmit efficiently only through cell-to-cell contact. Spread of infection and viral persistence is ingeniously driven by several viral genes as exemplified by HTLV-1 bZIP factor (HBZ) and tax. After the infection, the virus promotes proliferation and immortalization of the infected cells with acculturating immunophenotype into effector/memory T cells. In addition, HBZ enhances expression of co-inhibitory receptors on the surface of infected cells, potentially leading to suppression of host immune responses. These viral strategies can also result in unforeseen by-product, the pathogenicity of HTLV-1-associated diseases. In this review, with recent progress of HTLV-1 researches, we focus on astute regulation systems of the viral genes developed by HTLV-1.
Collapse
|
44
|
Mui UN, Haley CT, Vangipuram R, Tyring SK. Human oncoviruses: Mucocutaneous manifestations, pathogenesis, therapeutics, and prevention: Hepatitis viruses, human T-cell leukemia viruses, herpesviruses, and Epstein-Barr virus. J Am Acad Dermatol 2018; 81:23-41. [PMID: 30502415 DOI: 10.1016/j.jaad.2018.10.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
Abstract
In 1964, the first human oncovirus, Epstein-Barr virus, was identified in Burkitt lymphoma cells. Since then, 6 other human oncoviruses have been identified: human papillomavirus, Merkel cell polyomavirus, hepatitis B and C viruses, human T-cell lymphotropic virus-1, and human herpesvirus-8. These viruses are causally linked to 12% of all cancers, many of which have mucocutaneous manifestations. In addition, oncoviruses are associated with multiple benign mucocutaneous diseases. Research regarding the pathogenic mechanisms of oncoviruses and virus-specific treatment and prevention is rapidly evolving. Preventative vaccines for human papillomavirus and hepatitis B virus are already available. This review discusses the mucocutaneous manifestations, pathogenesis, diagnosis, treatment, and prevention of oncovirus-related diseases. The first article in this continuing medical education series focuses on diseases associated with human papillomavirus and Merkel cell polyomavirus, while the second article in the series focuses on diseases associated with hepatitis B and C viruses, human T-cell lymphotropic virus-1, human herpesvirus-8, and Epstein-Barr virus.
Collapse
Affiliation(s)
| | | | - Ramya Vangipuram
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Stephen K Tyring
- Center for Clinical Studies, Webster, Texas; Department of Dermatology, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
45
|
Metabolic abnormalities in adult T-cell leukemia/lymphoma and induction of specific leukemic cell death using photodynamic therapy. Sci Rep 2018; 8:14979. [PMID: 30297858 PMCID: PMC6175925 DOI: 10.1038/s41598-018-33175-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/21/2018] [Indexed: 01/10/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive T-cell neoplasm caused by human T-cell leukemia virus type I (HTLV-I). Therapeutic interventions have not been associated with satisfactory outcomes. We showed that the porphyrin metabolic pathway preferentially accumulates the endogenous photosensitive metabolite, protoporphyrin IX (PpIX) in ATL, after a short-term culture with 5-aminolevulinic acid (ALA). PpIX accumulated 10-100-fold more in ATL leukemic cells when compared to healthy peripheral blood mononuclear cells (PBMCs). Patient specimens showed dynamic changes in flow cytometry profiles during the onset and progression of ATL. Furthermore, 98.7% of ATL leukemic cell death in the ATL patient specimens could be induced with 10 min of visible light exposure, while 77.5% of normal PBMCs survived. Metabolomics analyses revealed that a specific stage of the metabolic pathway progressively deteriorated with HTLV-I infection and at the onset of ATL. Therefore, this method will be useful in diagnosing and identifying high-risk HTLV-I carriers with single cell resolutions. Photodynamic therapy in the circulatory system may be a potential treatment due to its highly-specific, non-invasive, safe, simultaneous, and repeatedly-treatable modalities.
Collapse
|
46
|
Kato K, Uike N, Wake A, Yoshimitsu M, Tobai T, Sawayama Y, Takatsuka Y, Fukuda T, Uchida N, Eto T, Nakashima Y, Kondo T, Taguchi J, Miyamoto T, Nakamae H, Ichinohe T, Kato K, Suzuki R, Utsunomiya A. The outcome and characteristics of patients with relapsed adult T cell leukemia/lymphoma after allogeneic hematopoietic stem cell transplantation. Hematol Oncol 2018; 37:54-61. [DOI: 10.1002/hon.2558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Koji Kato
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical Sciences Fukuoka Japan
| | - Naokuni Uike
- Department of HematologyNational Kyushu Cancer Center Fukuoka Japan
| | - Atsushi Wake
- Department of HematologyToranomon Hospital Tokyo Japan
| | - Makoto Yoshimitsu
- Department of Hematology and ImmunologyKagoshima University Hospital Kagoshima Japan
| | - Tomomi Tobai
- University of Michigan, Comprehensive Cancer Center Ann Arbor MI USA
| | - Yasushi Sawayama
- Department of HematologySasebo City General Hospital Sasebo Japan
| | | | - Takahiro Fukuda
- Department of Stem Cell TransplantationNational Cancer Center Hospital Tokyo Japan
| | | | - Tetsuya Eto
- Department of HematologyHamanomachi Hospital Fukuoka Japan
| | | | - Tadakazu Kondo
- Department of Hematology and OncologyKyoto University Hospital Kyoto Japan
| | - Jun Taguchi
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine UnitNagasaki University Hospital Nagasaki Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical Sciences Fukuoka Japan
| | - Hirohisa Nakamae
- Department of HematologyOsaka City University Graduate School of Medicine Osaka Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and MedicineHiroshima University Hiroshima Japan
| | - Koji Kato
- Children's Medical CenterJapanese Red Cross Nagoya First Hospital Nagoya Japan
| | - Ritsuro Suzuki
- Department of HSCT Data Management/BiostatisticsNagoya University Graduate School of Medicine Nagoya Japan
| | - Atae Utsunomiya
- Department of HematologyImamura General Hospital Kagoshima Japan
| | | |
Collapse
|
47
|
Farmanbar A, Firouzi S, Makałowski W, Kneller R, Iwanaga M, Utsunomiya A, Nakai K, Watanabe T. Mutational Intratumor Heterogeneity is a Complex and Early Event in the Development of Adult T-cell Leukemia/Lymphoma. Neoplasia 2018; 20:883-893. [PMID: 30032036 PMCID: PMC6074008 DOI: 10.1016/j.neo.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/02/2022]
Abstract
The clonal architecture of tumors plays a vital role in their pathogenesis and invasiveness; however, it is not yet clear how this clonality contributes to different malignancies. In this study we sought to address mutational intratumor heterogeneity (ITH) in adult T-cell leukemia/lymphoma (ATL). ATL is a malignancy with an incompletely understood molecular pathogenesis caused by infection with human T-cell leukemia virus type-1 (HTLV-1). To determine the clonal structure through tumor genetic diversity profiles, we investigated 142 whole-exome sequencing data of tumor and matched normal samples from 71 ATL patients. Based on SciClone analysis, the ATL samples showed a wide spectrum of modes over clonal/subclonal frequencies ranging from one to nine clusters. The average number of clusters was six across samples, but the number of clusters differed among different samples. Of these ATL samples, 94% had more than two clusters. Aggressive ATL cases had slightly more clonal clusters than indolent types, indicating the presence of ITH during earlier stages of disease. The known significantly mutated genes in ATL were frequently clustered together and possibly coexisted in the same clone. IRF4, CCR4, TP53, and PLCG1 mutations were almost clustered in subclones with a moderate variant allele frequency (VAF), whereas HLA-B, CARD11, and NOTCH1 mutations were clustered in subclones with lower VAFs. Taken together, these results show that ATL displays a high degree of ITH and a complex subclonal structure. Our findings suggest that clonal/subclonal architecture might be a useful measure for prognostic purposes and personalized assessment of the therapeutic response.
Collapse
Affiliation(s)
- Amir Farmanbar
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan; Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Sanaz Firouzi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| | - Wojciech Makałowski
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Germany.
| | - Robert Kneller
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| | - Masako Iwanaga
- Department of Frontier Life Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan.
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan; Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan; Department of Advanced Medical Innovation St. Marianna University Graduate School of Medicine, Kanagawa, Japan.
| |
Collapse
|
48
|
Baba N, Fujii K, Nomoto Y, Jimura N, Higashi Y, Takami S, Masamoto I, Yonekura K, Mera K, Kanekura T. Sézary syndrome in an anti-human T-cell lymphotropic virus type 1 seropositive carrier. J Dermatol 2018; 46:e40-e41. [PMID: 29952024 DOI: 10.1111/1346-8138.14522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Naoko Baba
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyasu Fujii
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yusuke Nomoto
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Nozomi Jimura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuko Higashi
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Satoko Takami
- Clinical Laboratory, Kagoshima University Hospital, Kagoshima, Japan
| | - Izumi Masamoto
- Clinical Laboratory, Kagoshima University Hospital, Kagoshima, Japan
| | - Kentaro Yonekura
- Department of Dermatology, Imamura General Hospital, Kagoshima, Japan
| | | | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
49
|
Pasquier A, Alais S, Roux L, Thoulouze MI, Alvarez K, Journo C, Dutartre H, Mahieux R. How to Control HTLV-1-Associated Diseases: Preventing de Novo Cellular Infection Using Antiviral Therapy. Front Microbiol 2018; 9:278. [PMID: 29593659 PMCID: PMC5859376 DOI: 10.3389/fmicb.2018.00278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Five to ten million individuals are infected by Human T-cell Leukemia Virus type 1 (HTLV-1). HTLV-1 is transmitted through prolonged breast-feeding, by sexual contacts and by transmission of infected T lymphocytes through blood transfusion. One to ten percent of infected carriers will develop a severe HTLV-1-associated disease: Adult-T-cell leukemia/lymphoma (ATLL), or a neurological disorder named Tropical Spastic Paraparesis/HTLV-1 Associated Myelopathy (TSP/HAM). In vivo, HTLV-1 is mostly detected in CD4+ T-cells, and to a lesser extent in CD8+ T cells and dendritic cells. There is a strong correlation between HTLV-1 proviral load (PVL) and clinical status of infected individuals. Thus, reducing PVL could be part of a strategy to prevent or treat HTLV-1-associated diseases among carriers. Treatment of ATLL patients using conventional chemotherapy has very limited benefit. Some chronic and acute ATLL patients are, however, efficiently treated with a combination of interferon α and zidovudine (IFN-α/AZT), to which arsenic trioxide is added in some cases. On the other hand, no efficient treatment for TSP/HAM patients has been described yet. It is therefore crucial to develop therapies that could either prevent the occurrence of HTLV-1-associated diseases or at least block the evolution of the disease in the early stages. In vivo, reverse transcriptase (RT) activity is low in infected cells, which is correlated with a clonal mode of viral replication. This renders infected cells resistant to nucleoside RT inhibitors such as AZT. However, histone deacetylase inhibitors (HDACi) associated to AZT efficiently induces viral expression and prevent de novo cellular infection. In asymptomatic STLV-1 infected non-human primates, HDACi/AZT combination allows a strong decrease in the PVL. Unfortunately, rebound in the PVL occurs when the treatment is stopped, highlighting the need for better antiviral compounds. Here, we review previously used strategies targeting HTLV-1 replication. We also tested a series of HIV-1 RT inhibitors in an in vitro anti-HTLV-1 screen, and report that bis-POM-PMEA (adefovir dipivoxil) and bis-POC-PMPA (tenofovir disoproxil) are much more efficient compared to AZT to decrease HTLV-1 cell-to-cell transmission in vitro. Our results suggest that revisiting already established antiviral drugs is an interesting approach to discover new anti-HTLV-1 drugs.
Collapse
Affiliation(s)
- Amandine Pasquier
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France.,Ecole Pratique des Hautes Etudes, Paris, France
| | - Sandrine Alais
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Loic Roux
- CNRS UMR 7257, Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Université, Marseille, France
| | - Maria-Isabel Thoulouze
- "Biofilm and Viral Transmission" Team, Structural Virology Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Karine Alvarez
- CNRS UMR 7257, Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Université, Marseille, France
| | - Chloé Journo
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
50
|
Asano N, Miyoshi H, Kato T, Shimono J, Yoshida N, Kurita D, Sasaki Y, Kawamoto K, Ohshima K, Seto M. Expression pattern of immunosurveillance-related antigen in adult T cell leukaemia/lymphoma. Histopathology 2018; 72:945-954. [PMID: 29297942 DOI: 10.1111/his.13461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022]
Abstract
AIMS Adult T cell leukaemia/lymphoma (ATLL) is an aggressive malignancy with a poor prognosis. Human leucocyte antigen (HLA) and β2 microglobulin (β2M) serve as key molecules in tumour immunity, and their expression is reduced frequently in tumour cells. Programmed cell death (PD)-1/PD-ligand1 (PD-L1) interactions play a role in escape of tumour cells from T cell immunity. Therefore, this study aimed to determine the clinicopathological relevance of HLA and β2M expressions in ATLL cells and PD-L1 expression in lymphoma or stromal cells and predict the overall survival of patients with ATLL. METHODS AND RESULTS We analysed a total of 123 biopsy samples from patients newly diagnosed with ATLL by using immunohistochemical analysis. Of the patients enrolled, 91 (74%) were positive for HLA (in cell membrane, 60 patients), 89 (72%) were positive for β2M (in cell membrane, 54 patients) and 48 (39%) were positive for both HLA and β2M in the cell membrane (HLAm+ β2Mm+ ). No significant clinical differences other than prognosis were found between the HLAm+ β2Mm+ group and the other groups. Immunophenotypical evaluation revealed significantly higher rates of CD30-positive lymphoma cells (P = 0.003) and PD-L1-positive stromal cells in microenvironments (miPD-L1high ) (P = 0.011) of the HLAm+ β2Mm+ group than in the other groups. The HLAm+ β2Mm+ group had a significantly better prognosis that the other groups (P = 0.0096), and patients showing HLAm+ β2Mm+ with miPD-L1high had the most favourable prognosis among all groups. CONCLUSIONS The membranous expression of HLA and β2M is likely to reflect the immune response and would be useful to predict prognosis before starting ATLL therapy.
Collapse
Affiliation(s)
- Naoko Asano
- Department of Molecular Diagnostics, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan.,Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Takeharu Kato
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Joji Shimono
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Noriaki Yoshida
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Daisuke Kurita
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yuya Sasaki
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Keisuke Kawamoto
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Masao Seto
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|