1
|
Liu KC, Chen YC, Hsieh CF, Wang MH, Zhong MX, Cheng NC. Scaffold-free 3D culture systems for stem cell-based tissue regeneration. APL Bioeng 2024; 8:041501. [PMID: 39364211 PMCID: PMC11446583 DOI: 10.1063/5.0225807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Recent advances in scaffold-free three-dimensional (3D) culture methods have significantly enhanced the potential of stem cell-based therapies in regenerative medicine. This cutting-edge technology circumvents the use of exogenous biomaterial and prevents its associated complications. The 3D culture system preserves crucial intercellular interactions and extracellular matrix support, closely mimicking natural biological niches. Therefore, stem cells cultured in 3D formats exhibit distinct characteristics, showcasing their capabilities in promoting angiogenesis and immunomodulation. This review aims to elucidate foundational technologies and recent breakthroughs in 3D scaffold-free stem cell engineering, offering comprehensive guidance for researchers to advance this technology across various clinical applications. We first introduce the various sources of stem cells and provide a comparative analysis of two-dimensional (2D) and 3D culture systems. Given the advantages of 3D culture systems, we delve into the specific fabrication and harvesting techniques for cell sheets and spheroids. Furthermore, we explore their applications in pre-clinical studies, particularly in large animal models and clinical trials. We also discuss multidisciplinary strategies to overcome existing limitations such as insufficient efficacy, hostile microenvironments, and the need for scalability and standardization of stem cell-based products.
Collapse
Affiliation(s)
- Ke-Chun Liu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Yueh-Chen Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Chi-Fen Hsieh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Mu-Hui Wang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Meng-Xun Zhong
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Nai-Chen Cheng
- Author to whom correspondence should be addressed:. Tel.: 886 2 23123456 ext 265919. Fax: 886 2 23934358
| |
Collapse
|
2
|
Moreira MP, Franco EP, Barros BAF, Anjos BRD, Almada DDG, Barbosa INT, Braga LDC, Cassali GD, Silva LM. Standard chemotherapy impacts on in vitro cellular heterogeneity in spheroids enriched with cancer stem cells (CSCs) derived from triple-negative breast cancer cell line. Biochem Biophys Res Commun 2024; 734:150765. [PMID: 39357337 DOI: 10.1016/j.bbrc.2024.150765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Triple-negative breast cancer is a heterogeneous disease with high recurrence and mortality, linked to cancer stem cells (CSCs). Our study characterized distinct cell subpopulations and signaling pathways to explore chemoresistance. We observed cellular heterogeneity among and within the cells regarding phenotyping and drug response. In untreated BT-549 cells, we noted plasticity properties in both CD44+/CD24+/CD146+ hybrid cells and CD44-/CD24+/CD146+ epithelial cells, enabling phenotypic conversion into CD44+/CD24-/CD146- epithelial-mesenchymal transition (EMT)-like like breast CSCs (BCSCs). Additionally, non-BCSCs may give rise to ALDH+ epithelial-like BCSCs. Enriched BCSCs demonstrated the potential to differentiation into CD44-/CD24-/CD146- cells and exhibited self-renewal capabilities. Similar phenotypic plasticity was not observed in untreated Hs 578T and HMT-3522 S1 cells. BT-549 cells were more resistant to paclitaxel/PTX than to doxorubicin/DOX, a phenomenon potentially linked to the presence of CD24+ cells prior to treatment. Under the CSCs-enriched spheroids model, BT-549 demonstrated extreme resistance to DOX, likely due to the enrichment of BCSCs CD44+/CD24-/CD146- and the tumor cells CD44-/CD24-/CD146-. Additionally, DOX treatment induced the enrichment of plastic and chemoresistant cells, further exacerbating resistance mechanisms. BT-549 exhibited high heterogeneity, leading to significant alterations in cell subpopulations under BCSCs enrichment, demonstrating increased phenotypic plasticity during EMT. This phenomenon appears to play a major role in DOX resistance, as indicated by the presence of the refractory cells CD44+/CD24-/CD146- BCSCs EMT-like, CD44-/CD24-/CD146- tumor cells, and elevated STAT3 expression. Gene expression data from BT-549 CSCs-enriched spheroids suggests that ferroptosis may be occurring via autophagic regulation triggered by RAB7A, highlighting this gene as a potential therapeutic target.
Collapse
Affiliation(s)
- Milene Pereira Moreira
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil.
| | - Eliza Pereira Franco
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Bárbara Avelar Ferreira Barros
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil; Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bianca Rocha Dos Anjos
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil; Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Daniela de Gouvêa Almada
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Isabela Nery Tavares Barbosa
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Letícia da Conceição Braga
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Geovanni Dantas Cassali
- Laboratório de Patologia Comparada, Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Luciana Maria Silva
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| |
Collapse
|
3
|
Abbasian MH, Sobhani N, Sisakht MM, D'Angelo A, Sirico M, Roudi R. Patient-Derived Organoids: A Game-Changer in Personalized Cancer Medicine. Stem Cell Rev Rep 2024:10.1007/s12015-024-10805-4. [PMID: 39432173 DOI: 10.1007/s12015-024-10805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Research on cancer therapies has benefited from predictive tools capable of simulating treatment response and other disease characteristics in a personalized manner, in particular three-dimensional cell culture models. Such models include tumor-derived spheroids, multicellular spheroids including organotypic multicellular spheroids, and tumor-derived organoids. Additionally, organoids can be grown from various cancer cell types, such as pluripotent stem cells and induced pluripotent stem cells, progenitor cells, and adult stem cells. Although patient-derived xenografts and genetically engineered mouse models replicate human disease in vivo, organoids are less expensive, less labor intensive, and less time-consuming, all-important aspects in high-throughput settings. Like in vivo models, organoids mimic the three-dimensional structure, cellular heterogeneity, and functions of primary tissues, with the advantage of representing the normal oxygen conditions of patient organs. In this review, we summarize the use of organoids in disease modeling, drug discovery, toxicity testing, and precision oncology. We also summarize the current clinical trials using organoids.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Mahsa Mollapour Sisakht
- Faculty of Pharmacy, Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alberto D'Angelo
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AX, UK
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Ueda H, Ishiguro T, Mori Y, Yamawaki K, Okamoto K, Enomoto T, Yoshihara K. Glycolysis-mTORC1 crosstalk drives proliferation of patient-derived endometrial cancer spheroid cells with ALDH activity. Cell Death Discov 2024; 10:435. [PMID: 39394200 PMCID: PMC11470041 DOI: 10.1038/s41420-024-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
Cancer stem cells are associated with aggressive phenotypes of malignant tumors. A prominent feature of uterine endometrial cancer is the activation of the PI3K-Akt-mTOR pathway. In this study, we present variations in sensitivities to a PI3K-Akt-mTORC1 inhibitor among in vitro endometrial cancer stem cell-enriched spheroid cells from clinical specimens. The in vitro sensitivity was consistent with the effects observed in in vivo spheroid-derived xenograft tumor models. Our findings revealed a complementary suppressive effect on endometrial cancer spheroid cell growth with the combined use of aldehyde dehydrogenase (ALDH) and PI3K-Akt inhibitors. In the PI3K-Akt-mTORC1 signaling cascade, the influence of ALDH on mTORC1 was partially channeled through retinoic acid-induced lactate dehydrogenase A (LDHA) activation. LDHA inhibition was found to reduce endometrial cancer cell growth, aligning with the effects of mTORC1 inhibition. Building upon our previous findings highlighting ALDH-driven glycolysis through GLUT1 in uterine endometrial cancer spheroid cells, curbing mTORC1 enhanced glucose transport via GLUT1 activation. Notably, elevated LDHA expression correlated with adverse clinical survival and escalated tumor grade, especially in advanced stages. Collectively, our findings emphasize the pivotal role of ALDH-LDHA-mTORC1 cascade in the proliferation of endometrial cancer. Targeting the interaction between mTORC1 and ALDH-influenced glycolysis holds promise for developing novel strategies to combat this aggressive cancer.
Collapse
Affiliation(s)
- Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yutaro Mori
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
5
|
Zhang Q, Zhang M. Recent advances in lung cancer organoid (tumoroid) research (Review). Exp Ther Med 2024; 28:383. [PMID: 39161616 PMCID: PMC11332118 DOI: 10.3892/etm.2024.12672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/01/2024] [Indexed: 08/21/2024] Open
Abstract
Lung cancer is the most critical type of malignant tumor that threatens human health. Traditional preclinical models have certain defects; for example, they cannot accurately reflect the characteristics of lung cancer and their development is costly and time-consuming. Through self-organization, cancer stem cells (CSCs) generate cancer organoids that have a structure similar to that of lung cancer tissues, overcoming to some extent the aforementioned challenges, thus enabling them to have broader application prospects. Lung cancer organoid (LCO) development methods can be divided into three broad categories based on the source of cells, which include cell lines, patient-derived xenografts and patient tumor tissue/pleural effusion. There are 17 different methods that have been described for the development of LCOs. These methods can be further merged into six categories based on the source of cells, the pre-treatment method used, the composition of the medium and the culture scaffold. These categories are: i) CSCs induced by defined transcription factors; ii) suspension culture; iii) relative optimal culture medium; iv) suboptimal culture medium; v) mechanical digestion and suboptimal culture medium; and vi) hydrogel scaffold. In the current review, the advantages and disadvantages of each of the aforementioned methods are summarized, and references for supporting studies are cited.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Mingyang Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
6
|
Hasegawa K, Fujimori H, Nakatani K, Takahashi M, Izumi Y, Bamba T, Nakamura-Shima M, Shibuya-Takahashi R, Mochizuki M, Wakui Y, Abue M, Iwai W, Fukushi D, Satoh K, Yamaguchi K, Shindo N, Yasuda J, Asano N, Imai T, Asada Y, Katori Y, Tamai K. Delta-6 desaturase FADS2 is a tumor-promoting factor in cholangiocarcinoma. Cancer Sci 2024; 115:3346-3357. [PMID: 39113435 PMCID: PMC11447924 DOI: 10.1111/cas.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024] Open
Abstract
Cholangiocarcinoma is a fatal disease with limited therapeutic options. We screened genes required for cholangiocarcinoma tumorigenicity and identified FADS2, a delta-6 desaturase. FADS2 depletion reduced in vivo tumorigenicity and cell proliferation. In clinical samples, FADS2 was expressed in cancer cells but not in stromal cells. FADS2 inhibition also reduced the migration and sphere-forming ability of cells and increased apoptotic cell death and ferroptosis markers. Lipidome assay revealed that triglyceride and cholesterol ester levels were decreased in FADS2-knockdown cells. The oxygen consumption ratio was also decreased in FADS2-depleted cells. These data indicate that FADS2 depletion causes a reduction in lipid levels, resulting in decrease of energy production and attenuation of cancer cell malignancy.
Collapse
Affiliation(s)
- Kohsei Hasegawa
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Haruna Fujimori
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Kohta Nakatani
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mao Nakamura-Shima
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Rie Shibuya-Takahashi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Yuta Wakui
- Division of Gastroenterology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Makoto Abue
- Division of Gastroenterology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Wataru Iwai
- Division of Gastroenterology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Daisuke Fukushi
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Kennichi Satoh
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Norihisa Shindo
- Division of Cancer Chromosome Biology Unit, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Naoki Asano
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takayuki Imai
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Yukinori Asada
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| |
Collapse
|
7
|
Tolue Ghasaban F, Taghehchian N, Zangouei AS, Keivany MR, Moghbeli M. MicroRNA-135b mainly functions as an oncogene during tumor progression. Pathol Res Pract 2024; 262:155547. [PMID: 39151250 DOI: 10.1016/j.prp.2024.155547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Late diagnosis is considered one of the main reasons of high mortality rate among cancer patients that results in therapeutic failure and tumor relapse. Therefore, it is needed to evaluate the molecular mechanisms associated with tumor progression to introduce efficient markers for the early tumor detection among cancer patients. The remarkable stability of microRNAs (miRNAs) in body fluids makes them potential candidates to use as the non-invasive tumor biomarkers in cancer screening programs. MiR-135b has key roles in prognosis and survival of cancer patients by either stimulating or inhibiting cell proliferation, invasion, and angiogenesis. Therefore, in the present review we assessed the molecular biology of miR-135b during tumor progression to introduce that as a novel tumor marker in cancer patients. It has been reported that miR-135b mainly acts as an oncogene by regulation of transcription factors, signaling pathways, drug response, cellular metabolism, and autophagy. This review paves the way to suggest miR-135b as a tumor marker and therapeutic target in cancer patients following the further clinical trials and animal studies.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keivany
- Department of Radiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Tang B, Guo M, Zhai Y, Zhang K, Ni K, Zhang Y, Huang L. Human esophageal cancer stem-like cells escape the cytotoxicity of natural killer cells via down-regulation of ULBP-1. J Transl Med 2024; 22:737. [PMID: 39103915 PMCID: PMC11301968 DOI: 10.1186/s12967-024-05549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Cancer stem-like cells (CSCs) play an important role in initiation and progression of aggressive cancers, including esophageal cancer. Natural killer (NK) cells are key effector lymphocytes of innate immunity that directly attack a wide variety of cancer cells. NK cell-based therapy may provide a new treatment option for targeting CSCs. In this study, we aimed to investigate the sensitivity of human esophageal CSCs to NK cell-mediated cytotoxicity. METHODS CSCs were enriched from human esophageal squamous cell carcinoma cell lines via sphere formation culture. Human NK cells were selectively expanded from the peripheral blood of healthy donors. qRT-PCR, flow cytometry and ELISA assays were performed to examine RNA expression and protein levels, respectively. CFSE-labeled target cells were co-cultured with human activated NK cells to detect the cytotoxicity of NK cells by flow cytometry. RESULTS We observed that esophageal CSCs were more resistant to NK cell-mediated cytotoxicity compared with adherent counterparts. Consistently, esophageal CSCs showed down-regulated expression of ULBP-1, a ligand for NK cells stimulatory receptor NKG2D. Knockdown of ULBP-1 resulted in significant inhibition of NK cell cytotoxicity against esophageal CSCs, whereas ULBP-1 overexpression led to the opposite effect. Finally, the pro-differentiation agent all-trans retinoic acid was found to enhance the sensitivity of esophageal CSCs to NK cell cytotoxicity. CONCLUSIONS This study reveals that esophageal CSCs are more resistant to NK cells through down-regulation of ULBP-1 and provides a promising approach to promote the activity of NK cells targeting esophageal CSCs.
Collapse
Affiliation(s)
- Bo Tang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengxing Guo
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujia Zhai
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyuan Ni
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Shin YB, Choi JY, Yoon MS, Yoo MK, Shin DH, Lee JW. Evaluation of Anticancer Efficacy of D-α-Tocopheryl Polyethylene-Glycol Succinate and Soluplus ® Mixed Micelles Loaded with Olaparib and Rapamycin Against Ovarian Cancer. Int J Nanomedicine 2024; 19:7871-7893. [PMID: 39114180 PMCID: PMC11304412 DOI: 10.2147/ijn.s468935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose Ovarian cancer has the highest mortality rate and lowest survival rate among female reproductive system malignancies. There are treatment options of surgery and chemotherapy, but both are limited. In this study, we developed and evaluated micelles composed of D-α-tocopheryl polyethylene-glycol (PEG) 1000 succinate (TPGS) and Soluplus® (SOL) loaded with olaparib (OLA), a poly(ADP-ribose)polymerase (PARP) inhibitor, and rapamycin (RAPA), a mammalian target of rapamycin (mTOR) inhibitor in ovarian cancer. Methods We prepared micelles containing different molar ratios of OLA and RAPA embedded in different weight ratios of TPGS and SOL (OLA/RAPA-TPGS/SOL) were prepared and physicochemical characterized. Furthermore, we performed in vitro cytotoxicity experiments of OLA, RAPA, and OLA/RAPA-TPGS/SOL. In vivo toxicity and antitumor efficacy assays were also performed to assess the efficacy of the mixed micellar system. Results OLA/RAPA-TPGS/SOL containing a 4:1 TPGS:SOL weight ratio and a 2:3 OLA:RAPA molar ratio showed synergistic effects and were optimized. The drug encapsulation efficiency of this formulation was >65%, and the physicochemical properties were sustained for 180 days. Moreover, the formulation had a high cell uptake rate and significantly inhibited cell migration (**p < 0.01). In the in vivo toxicity test, no toxicity was observed, with the exception of the high dose group. Furthermore, OLA/RAPA-TPGS/SOL markedly inhibited tumor spheroid and tumor growth in vivo. Conclusion Compared to the control, OLA/RAPA-TPGS/SOL showed significant tumor inhibition. These findings lay a foundation for the use of TPGS/SOL mixed micelles loaded with OLA and RAPA in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yu Been Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Sup Yoon
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Myeong Kyun Yoo
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
- Chungbuk National University Hospital, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| |
Collapse
|
10
|
Diodati NG, Dupee ZE, Lima FT, Famiglietti J, Smolchek RA, Qu G, Goddard Y, Nguyen DT, Sawyer WG, Phelps EA, Mehrad B, Schaller MA. 3D Culture Analysis of Cancer Cell Adherence to Ex Vivo Lung Microexplants. Tissue Eng Part C Methods 2024; 30:343-352. [PMID: 39078332 DOI: 10.1089/ten.tec.2024.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Ex vivo 3D culture of human tissue explants addresses many limitations of traditional monolayer cell culture techniques, namely the lack of cellular heterogeneity and absence of 3D intercellular spatial relationships, but presents challenges with regard to repeatability owing to the difficulty of acquiring multiple tissue samples from the same donor. In this study, we used a cryopreserved bank of human lung microexplants, ∼1 mm3 fragments of peripheral lung from donors undergoing lung resection surgery, and a liquid-like solid 3D culture matrix to describe a method for the analysis of non-small-cell lung cancer adhesion to human lung tissue. H226 (squamous cell carcinoma), H441 (lung adenocarcinoma), and H460 (large cell carcinoma) cell lines were cocultured with lung microexplants. Confocal fluorescence microscopy was used to visualize the adherence of each cell line to lung microexplants. Adherent cancer cells were quantified following filtration of nonadherent cells, digestion of cultured microexplants, and flow cytometry. This method was used to evaluate the role of integrins in cancer cell adherence. A statistically significant decrease in the adherence of H460 cells to lung microexplants was observed when anti-integrins were administered to H460 cells before coculture with lung microexplants.
Collapse
Affiliation(s)
- Nickolas G Diodati
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Zadia E Dupee
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Felipe T Lima
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jack Famiglietti
- Wertheim College of Engineering, University of Florida Herbert, Gainesville, Florida, USA
| | - Ryan A Smolchek
- Wertheim College of Engineering, University of Florida Herbert, Gainesville, Florida, USA
| | - Ganlin Qu
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Yana Goddard
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Duy T Nguyen
- Wertheim College of Engineering, University of Florida Herbert, Gainesville, Florida, USA
- Department of BioEngineering, Moffitt Cancer Center, Tampa, Florida, USA
| | - W Gregory Sawyer
- Wertheim College of Engineering, University of Florida Herbert, Gainesville, Florida, USA
- Department of BioEngineering, Moffitt Cancer Center, Tampa, Florida, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida Herbert, Gainesville, Florida, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Matthew A Schaller
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
11
|
Jasim SA, Salahdin OD, Malathi H, Sharma N, Rab SO, Aminov Z, Pramanik A, Mohammed IH, Jawad MA, Gabel BC. Targeting Hepatic Cancer Stem Cells (CSCs) and Related Drug Resistance by Small Interfering RNA (siRNA). Cell Biochem Biophys 2024:10.1007/s12013-024-01423-5. [PMID: 39060914 DOI: 10.1007/s12013-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Tumor recurrence after curative therapy and hepatocellular carcinoma (HCC) cells' resistance to conventional therapies is the reasons for the worse clinical results of HCC patients. A tiny population of cancer cells with a strong potential for self-renewal, differentiation, and tumorigenesis has been identified as cancer stem cells (CSCs). The discovery of CSC surface markers and the separation of CSC subpopulations from HCC cells have been made possible by recent developments in the study of hepatic (liver) CSCs. Hepatic CSC surface markers include epithelial cell adhesion molecules (EpCAM), CD133, CD90, CD13, CD44, OV-6, ALDH, and K19. CSCs have a significant influence on the development of cancer, invasiveness, self-renewal, metastasis, and drug resistance in HCC, and thus provide a therapeutic chance to treat HCC and avoid its recurrence. Therefore, it is essential to develop treatment approaches that specifically and effectively target hepatic stem cells. Given this, one potential treatment approach is to use particular small interfering RNA (siRNA) to target CSC, disrupting their behavior and microenvironment as well as changing their epigenetic state. The characteristics of CSCs in HCC are outlined in this study, along with new treatment approaches based on siRNA that may be used to target hepatic CSCs and overcome HCC resistance to traditional therapies.
Collapse
Affiliation(s)
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University, Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Israa Hussein Mohammed
- College of nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Benien C Gabel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
12
|
Mochizuki M, Shibuya‐Takahashi R, Kanno S, Adachi S, Fujimori H, Nakazato A, Fujii K, Morita S, Saijoh S, Yamazaki T, Imai T, Asada Y, Yamaguchi K, Yasuda J, Shindo N, Sugamura K, Tamai K. CD271 mRNA/hnRNPA2B1 complex promotes proliferation and stemness in oral and head and neck squamous cell carcinoma. Cancer Sci 2024; 115:2346-2359. [PMID: 38710200 PMCID: PMC11247604 DOI: 10.1111/cas.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
RNAs, such as noncoding RNA, microRNA, and recently mRNA, have been recognized as signal transduction molecules. CD271, also known as nerve growth factor receptor, has a critical role in cancer, although the precise mechanism is still unclear. Here, we show that CD271 mRNA, but not CD271 protein, facilitates spheroid cell proliferation. We established CD271-/- cells lacking both mRNA and protein of CD271, as well as CD271 protein knockout cells lacking only CD271 protein, from hypopharyngeal and oral squamous cell carcinoma lines. Sphere formation was reduced in CD271-/- cells but not in CD271 protein knockout cells. Mutated CD271 mRNA, which is not translated to a protein, promoted sphere formation. CD271 mRNA bound to hnRNPA2B1 protein at the 3'-UTR region, and the inhibition of this interaction reduced sphere formation. In surgical specimens, the CD271 mRNA/protein expression ratio was higher in the cancerous area than in the noncancerous area. These data suggest CD271 mRNA has dual functions, encompassing protein-coding and noncoding roles, with its noncoding RNA function being predominant in oral and head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Mai Mochizuki
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | | | - Shin‐Ichiro Kanno
- IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
- Department of ProteomicsNational Cancer Center Research InstituteTokyoJapan
| | - Haruna Fujimori
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Akira Nakazato
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Keitaro Fujii
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Shinkichi Morita
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
- Department of Head and Neck SurgeryMiyagi Cancer CenterNatoriJapan
| | - Satoshi Saijoh
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Tomoko Yamazaki
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Takayuki Imai
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
- Department of Head and Neck SurgeryMiyagi Cancer CenterNatoriJapan
| | - Yukinori Asada
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
- Department of Head and Neck SurgeryMiyagi Cancer CenterNatoriJapan
| | - Kazunori Yamaguchi
- Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Jun Yasuda
- Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Norihisa Shindo
- Cancer Chromosome Biology UnitMiyagi Cancer Center Research InstituteNatoriJapan
| | - Kazuo Sugamura
- Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Keiichi Tamai
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| |
Collapse
|
13
|
Fiocchetti M, Raimondi S, Bastari G, Bartoloni S, Marino M, Acconcia F. Characterization of ERα Signaling to Cell Proliferation Induced by Chronic and Pulsatile E2 Stimulation in 2D and 3D Cell Cultures. J Cell Biochem 2024; 125:e30610. [PMID: 38860517 DOI: 10.1002/jcb.30610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
17β-estradiol is a hormone that plays a vital role in human physiology. It acts through estrogen receptors, specifically estrogen receptor α and estrogen receptor β, and its action is determined by the pulsatile secretion in the bloodstream. 17β-estradiol affects cell proliferation, and dysregulation of 17β-estradiol:estrogen receptor α signaling contribute to the development of breast cancer. Previous research on 17β-estradiol:estrogen receptor α signaling has primarily used two-dimensional cell cultures, which do not fully recapitulate the complexity of tumors that exist in a three-dimensional environment and do not consider the pulsatile nature of this hormone. To address these limitations, we studied 17β-estradiol:estrogen receptor α signaling in cell proliferation using both two-dimensional and three-dimensional breast cancer cell culture models under continuous and pulsatile stimulation conditions. Results revealed that breast cancer cells grown in an alginate-based three-dimensional matrix exhibited similar responsiveness to 17β-estradiol compared with cells grown in conventional two-dimensional culture plates. 17β-estradiol induced the expression of proteins containing estrogen response element in the three-dimensional model. The efficacy of the antiestrogen drugs fulvestrant (ICI182,280) and 4OH-tamoxifen was also demonstrated in the three-dimensional model. These results support the use of the three-dimensional culture model for studying tumor response to drugs and provide a more realistic microenvironment for such studies. Furthermore, the study revealed that a brief 5-min exposure to 17β-estradiol triggered a physiological response comparable with continuous hormone exposure, suggesting that the cellular response to 17β-estradiol is more important than the continuous presence of the hormone. In conclusion, the study demonstrates that the alginate-based three-dimensional culture model is suitable for studying the effects of 17β-estradiol and antiestrogen drugs on breast cancer cells, offering a more realistic representation of tumor-microenvironment interactions. The results also highlight the importance of considering the physiological importance of the temporal dynamics in studying 17β-estradiol signaling and cellular responses.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Serena Raimondi
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Giovanna Bastari
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Stefania Bartoloni
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| |
Collapse
|
14
|
Farhangnia P, Ghods R, Falak R, Zarnani AH, Delbandi AA. Identification of placenta-specific protein 1 (PLAC-1) expression on human PC-3 cell line-derived prostate cancer stem cells compared to the tumor parental cells. Discov Oncol 2024; 15:251. [PMID: 38943028 PMCID: PMC11213845 DOI: 10.1007/s12672-024-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Placenta-specific protein 1 (PLAC-1) is a gene primarily expressed in the placenta and the testis. Interestingly, it is also found to be expressed in many solid tumors, and it is involved in malignant cell features. However, no evidence has been reported regarding the relationship between PLAC-1 and cancer stem cells (CSCs). In the current research, we explored the expression of the PLAC-1 molecule in prostate cancer stem cells (PCSCs) derived from the human PC-3 cell line. The enrichment of PCSCs was achieved using a three-dimensional cell culture technique known as the sphere-formation assay. To confirm the identity of PCSCs, we examined the expression of genes associated with stemness and pluripotency, such as SOX2, OCT4, Nanog, C-Myc, and KLF-4, as well as stem cell differentiation molecules like CD44 and CD133. These evaluations were conducted in both the PCSCs and the original tumor cells (parental cells) using real-time PCR and flow cytometry. Subsequently, we assessed the expression of the PLAC-1 molecule in both enriched cells and parental tumor cells at the gene and protein levels using the same techniques. The tumor cells from the PC-3 cell line formed spheroids with CSC characteristics in a non-adherent medium. The expression of SOX2, OCT4, Nanog, and C-Myc genes (p < 0.01), and the molecules CD44 and CD133 (p < 0.05) were significantly elevated in PCSCs compared to the parental cells. The expression of the PLAC-1 molecule in PCSCs showed a significant increase compared to the parental cells at both gene (p < 0.01) and protein (p < 0.001) levels. In conclusion, it was indicated for the first time that PLAC-1 is up-regulated in PCSCs derived from human PC-3 cell line. This study may propose PLAC-1 as a potential target in targeted therapies, which should be confirmed through further studies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Pipiya VV, Gilazieva ZE, Issa SS, Rizvanov AA, Solovyeva VV. Comparison of primary and passaged tumor cell cultures and their application in personalized medicine. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:581-599. [PMID: 38966179 PMCID: PMC11220317 DOI: 10.37349/etat.2024.00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 07/06/2024] Open
Abstract
Passaged cell lines represent currently an integral component in various studies of malignant neoplasms. These cell lines are utilized for drug screening both in monolayer cultures or as part of three-dimensional (3D) tumor models. They can also be used to model the tumor microenvironment in vitro and in vivo through xenotransplantation into immunocompromised animals. However, immortalized cell lines have some limitations of their own. The homogeneity of cell line populations and the extensive passaging in monolayer systems make these models distant from the original disease. Recently, there has been a growing interest among scientists in the use of primary cell lines, as these are passaged directly from human tumor tissues. In this case, cells retain the morphological and functional characteristics of the tissue from which they were derived, an advantage often not observed in passaged cultures. This review highlights the advantages and limitations of passaged and primary cell cultures, their similarities and differences, as well as existing test systems that are based on primary and passaged cell cultures for drug screening purposes.
Collapse
Affiliation(s)
- Vladislava V. Pipiya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Zarema E. Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
16
|
Chiang CC, Anne R, Chawla P, Shaw RM, He S, Rock EC, Zhou M, Cheng J, Gong YN, Chen YC. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics. LAB ON A CHIP 2024; 24:3169-3182. [PMID: 38804084 PMCID: PMC11165951 DOI: 10.1039/d4lc00197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Despite recent advances in cancer treatment, refining therapeutic agents remains a critical task for oncologists. Precise evaluation of drug effectiveness necessitates the use of 3D cell culture instead of traditional 2D monolayers. Microfluidic platforms have enabled high-throughput drug screening with 3D models, but current viability assays for 3D cancer spheroids have limitations in reliability and cytotoxicity. This study introduces a deep learning model for non-destructive, label-free viability estimation based on phase-contrast images, providing a cost-effective, high-throughput solution for continuous spheroid monitoring in microfluidics. Microfluidic technology facilitated the creation of a high-throughput cancer spheroid platform with approximately 12 000 spheroids per chip for drug screening. Validation involved tests with eight conventional chemotherapeutic drugs, revealing a strong correlation between viability assessed via LIVE/DEAD staining and phase-contrast morphology. Extending the model's application to novel compounds and cell lines not in the training dataset yielded promising results, implying the potential for a universal viability estimation model. Experiments with an alternative microscopy setup supported the model's transferability across different laboratories. Using this method, we also tracked the dynamic changes in spheroid viability during the course of drug administration. In summary, this research integrates a robust platform with high-throughput microfluidic cancer spheroid assays and deep learning-based viability estimation, with broad applicability to various cell lines, compounds, and research settings.
Collapse
Affiliation(s)
- Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Rajiv Anne
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Pooja Chawla
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Rachel M Shaw
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Sarah He
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Yi-Nan Gong
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
17
|
Wang J, Qu J, Hou Q, Huo X, Zhao X, Chang L, Xu C. Strategies for the Isolation and Identification of Gastric Cancer Stem Cells. Stem Cells Int 2024; 2024:5553852. [PMID: 38882596 PMCID: PMC11178399 DOI: 10.1155/2024/5553852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Gastric cancer stem cells (GCSCs) originate from both gastric adult stem cells and bone marrow cells and are conspicuously present within the histological milieu of gastric cancer tissue. GCSCs play pivotal and multifaceted roles in the initiation, progression, and recurrence of gastric cancer. Hence, the characterization of GCSCs not only facilitates precise target identification for prospective therapeutic interventions in gastric cancer but also has significant implications for targeted therapy and the prognosis of gastric cancer. The prevailing techniques for GCSC purification involve their isolation using surface-specific cell markers, such as those identified by flow cytometry and immunomagnetic bead sorting techniques. In addition, in vitro culture and side-population cell sorting are integral methods in this context. This review discusses the surface biomarkers, isolation techniques, and identification methods of GCSCs, as well as their role in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jianhua Wang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Jie Qu
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Qiang Hou
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Xueping Huo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Le Chang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
18
|
Naponelli V, Rocchetti MT, Mangieri D. Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading. Int J Mol Sci 2024; 25:5569. [PMID: 38791608 PMCID: PMC11122459 DOI: 10.3390/ijms25105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Due to its propensity to metastasize, cancer remains one of the leading causes of death worldwide. Thanks in part to their intrinsic low cytotoxicity, the effects of the flavonoid family in the prevention and treatment of various human cancers, both in vitro and in vivo, have received increasing attention in recent years. It is well documented that Apigenin (4',5,7-trihydroxyflavone), among other flavonoids, is able to modulate key signaling molecules involved in the initiation of cancer cell proliferation, invasion, and metastasis, including JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin pathways, as well as the oncogenic non-coding RNA network. Based on these premises, the aim of this review is to emphasize some of the key events through which Apigenin suppresses cancer proliferation, focusing specifically on its ability to target key molecular pathways involved in angiogenesis, epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cells (CSCs), cell cycle arrest, and cancer cell death.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| |
Collapse
|
19
|
Saleh O, Shihadeh H, Yousef A, Erekat H, Abdallh F, Al-Leimon A, Elsalhy R, Altiti A, Dajani M, AlBarakat MM. The Effect of Intratumor Heterogeneity in Pancreatic Ductal Adenocarcinoma Progression and Treatment. Pancreas 2024; 53:e450-e465. [PMID: 38728212 DOI: 10.1097/mpa.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND OBJECTIVES Pancreatic cancer is one of the most lethal malignancies. Even though many substantial improvements in the survival rates for other major cancer forms were made, pancreatic cancer survival rates have remained relatively unchanged since the 1960s. Even more, no standard classification system for pancreatic cancer is based on cellular biomarkers. This review will discuss and provide updates about the role of stem cells in the progression of PC, the genetic changes associated with it, and the promising biomarkers for diagnosis. MATERIALS AND METHODS The search process used PubMed, Cochrane Library, and Scopus databases to identify the relevant and related articles. Articles had to be published in English to be considered. RESULTS The increasing number of studies in recent years has revealed that the diversity of cancer-associated fibroblasts is far greater than previously acknowledged, which highlights the need for further research to better understand the various cancer-associated fibroblast subpopulations. Despite the huge diversity in pancreatic cancer, some common features can be noted to be shared among patients. Mutations involving CDKN2, P53, and K-RAS can be seen in a big number of patients, for example. Similarly, some patterns of genes and biomarkers expression and the level of their expression can help in predicting cancer behavior such as metastasis and drug resistance. The current trend in cancer research, especially with the advancement in technology, is to sequence everything in hopes of finding disease-related mutations. CONCLUSION Optimizing pancreatic cancer treatment requires clear classification, understanding CAF roles, and exploring stroma reshaping approaches.
Collapse
Affiliation(s)
- Othman Saleh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | - Hana Erekat
- School of medicine, University of Jordan, Amman
| | - Fatima Abdallh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | | | - Majd Dajani
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
20
|
Cui Y, Ran R, Da Y, Zhang H, Jiang M, Qi X, Zhang W, Niu L, Zhou Y, Zhou C, Tang X, Wang K, Yan Y, Ren Y, Dong D, Zhou Y, Wang H, Gong J, Hu F, Zhao S, Zhang H, Zhang C, Yang J. The combination of breast cancer PDO and mini-PDX platform for drug screening and individualized treatment. J Cell Mol Med 2024; 28:e18374. [PMID: 38722288 PMCID: PMC11081008 DOI: 10.1111/jcmm.18374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/05/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
The majority of advanced breast cancers exhibit strong aggressiveness, heterogeneity, and drug resistance, and currently, the lack of effective treatment strategies is one of the main challenges that cancer research must face. Therefore, developing a feasible preclinical model to explore tailored treatments for refractory breast cancer is urgently needed. We established organoid biobanks from 17 patients with breast cancer and characterized them by immunohistochemistry (IHC) and next generation sequencing (NGS). In addition, we in the first combination of patient-derived organoids (PDOs) with mini-patient-derived xenografts (Mini-PDXs) for the rapid and precise screening of drug sensitivity. We confirmed that breast cancer organoids are a high-fidelity three-dimension (3D) model in vitro that recapitulates the original tumour's histological and genetic features. In addition, for a heavily pretreated patient with advanced drug-resistant breast cancer, we combined PDO and Mini-PDX models to identify potentially effective combinations of therapeutic agents for this patient who were alpelisib + fulvestrant. In the drug sensitivity experiment of organoids, we observed changes in the PI3K/AKT/mTOR signalling axis and oestrogen receptor (ER) protein expression levels, which further verified the reliability of the screening results. Our study demonstrates that the PDO combined with mini-PDX model offers a rapid and precise drug screening platform that holds promise for personalized medicine, improving patient outcomes and addressing the urgent need for effective therapies in advanced breast cancer.
Collapse
Affiliation(s)
- Yuxin Cui
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Ran Ran
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Yanyan Da
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Center for Molecular Diagnosis and Precision MedicineThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Huiwen Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Meng Jiang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Wei Zhang
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Ligang Niu
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Yuhui Zhou
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Can Zhou
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Xiaojiang Tang
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Ke Wang
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Yu Yan
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Yu Ren
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Danfeng Dong
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Yan Zhou
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Hui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Jin Gong
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Fang Hu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Shidi Zhao
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Huimin Zhang
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| | - Chengsheng Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Center for Molecular Diagnosis and Precision MedicineThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiPeople's Republic of China
| |
Collapse
|
21
|
Donadio JLS, Prado SBRD, Soares CG, Tamarossi RI, Heidor R, Moreno FS, Fabi JP. Ripe papaya pectins inhibit the proliferation of colon cancer spheroids and the formation of chemically induced aberrant crypts in rats colons. Carbohydr Polym 2024; 331:121878. [PMID: 38388061 DOI: 10.1016/j.carbpol.2024.121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Pectins are a class of soluble polysaccharides that can have anticancer properties through several mechanisms. This study aimed to characterize the molecular structure of water-soluble fractions (WSF) derived from ripe and unripe papayas and assess their biological effects in two models: the 3D colon cancer spheroids to measure cell viability and cytotoxicity, and the in vivo model to investigate the inhibition of preneoplastic lesions in rats. WSF yield was slightly higher in ripe papaya, and both samples mainly consisted of pectin. Both pectins inhibited the growth of colon cancer HT29 and HCT116 spheroids. Unripe pectin disturbed HT29/NIH3T3 spheroid formation, decreased HCT116 spheroid viability, and increased spheroid cytotoxicity. Ripe pectin had a more substantial effect on the reduction of spheroid viability for HT29 spheroids. Furthermore, in vivo experiments on a rat model revealed a decrease in aberrant crypt foci (ACF) formation for both pectins and increased apoptosis in colonocytes for ripe papaya pectins. The results suggest potential anticancer properties of papaya pectin, with ripe pectin showing a higher potency.
Collapse
Affiliation(s)
- Janaina L S Donadio
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers, São Paulo Research Foundation, Rua do Lago, 250, São Paulo, SP, Brazil
| | | | - Caroline Giacomelli Soares
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Rodrigo Invernort Tamarossi
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Renato Heidor
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Fernando Salvador Moreno
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - João Paulo Fabi
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers, São Paulo Research Foundation, Rua do Lago, 250, São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Loda A, Semeraro F, Parolini S, Ronca R, Rezzola S. Cancer stem-like cells in uveal melanoma: novel insights and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189104. [PMID: 38701937 DOI: 10.1016/j.bbcan.2024.189104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Uveal melanoma (UM) is the most common primary ocular tumor in the adult population. Even though these primary tumors are successfully treated in 90% of cases, almost 50% of patients ultimately develop metastasis, mainly in the liver, via hematological dissemination, with a median survival spanning from 6 to 12 months after diagnosis. In this context, chemotherapy regimens and molecular targeted therapies have demonstrated poor response rates and failed to improve survival. Among the multiple reasons for therapy failure, the presence of cancer stem-like cells (CSCs) represents the main cause of resistance to anticancer therapies. In the last few years, the existence of CSCs in UM has been demonstrated both in preclinical and clinical studies, and new molecular pathways and mechanisms have been described for this subpopulation of UM cells. Here, we will discuss the state of the art of CSC biology and their potential exploitation as therapeutic target in UM.
Collapse
Affiliation(s)
- Alessandra Loda
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; National Center for Gene Therapy and Drugs based on RNA Technology - CN3, Padova, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
23
|
Tian D, Mao Z, Wang L, Huang X, Wang W, Luo H, Peng J, Chen Y. Rocking- and diffusion-based culture of tumor spheroids-on-a-chip. LAB ON A CHIP 2024; 24:2561-2574. [PMID: 38629978 DOI: 10.1039/d3lc01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Tumor spheroids are now intensively investigated toward preclinical and clinical applications, necessitating the establishment of accessible and cost-effective methods for routine operations. Without losing the advantage of organ-chip technologies, we developed a rocking system for facile formation and culture of tumor spheroids in hydrogel microwells of a suspended membrane under microfluidic conditions. While the rocking is controlled with a step motor, the microfluidic device is made of two plastic plates, allowing plugging directly syringe tubes with Luer connectors. Upon injection of the culture medium into the tubes and subsequent rocking of the chip, the medium flows back and forth in the channel underneath the membrane, ensuring a diffusion-based culture. Our results showed that such a rocking- and diffusion-based culture method significantly improved the quality of the tumor spheroids when compared to the static culture, particularly in terms of growth rate, roundness, junction formation and compactness of the spheroids. Notably, dynamically cultured tumor spheroids showed increased drug resistance, suggesting alternative assay conditions. Overall, the present method is pumpless, connectionless, and user-friendly, thereby facilitating the advancement of tumor-spheroid-based applications.
Collapse
Affiliation(s)
- Duomei Tian
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Zheng Mao
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Li Wang
- MesoBioTech, 231 Rue Saint-Honoré, 75001 Paris, France
| | - Xiaochen Huang
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Wei Wang
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Haoyue Luo
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Juan Peng
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Yong Chen
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| |
Collapse
|
24
|
Gorji-Bahri G, Krishna BM, Hagerling C, Orimo A, Jirström K, Papadakos KS, Blom AM. Stromal cartilage oligomeric matrix protein as a tumorigenic driver in ovarian cancer via Notch3 signaling and epithelial-to-mesenchymal transition. J Transl Med 2024; 22:351. [PMID: 38615020 PMCID: PMC11016227 DOI: 10.1186/s12967-024-05083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/10/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Cartilage oligomeric matrix protein (COMP), an extracellular matrix glycoprotein, is vital in preserving cartilage integrity. Further, its overexpression is associated with the aggressiveness of several types of solid cancers. This study investigated COMP's role in ovarian cancer, exploring clinicopathological links and mechanistic insights. METHODS To study the association of COMP expression in cancer cells and stroma with clinicopathological features of ovarian tumor patients, we analyzed an epithelial ovarian tumor cohort by immunohistochemical analysis. Subsequently, to study the functional mechanisms played by COMP, an in vivo xenograft mouse model and several molecular biology techniques such as transwell migration and invasion assay, tumorsphere formation assay, proximity ligation assay, and RT-qPCR array were performed. RESULTS Based on immunohistochemical analysis of epithelial ovarian tumor tissues, COMP expression in the stroma, but not in cancer cells, was linked to worse overall survival (OS) of ovarian cancer patients. A xenograft mouse model showed that carcinoma-associated fibroblasts (CAFs) expressing COMP stimulate the growth and metastasis of ovarian tumors through the secretion of COMP. The expression of COMP was upregulated in CAFs stimulated with TGF-β. Functionally, secreted COMP by CAFs enhanced the migratory capacity of ovarian cancer cells. Mechanistically, COMP activated the Notch3 receptor by enhancing the Notch3-Jagged1 interaction. The dependency of the COMP effect on Notch was confirmed when the migration and tumorsphere formation of COMP-treated ovarian cancer cells were inhibited upon incubation with Notch inhibitors. Moreover, COMP treatment induced epithelial-to-mesenchymal transition and upregulation of active β-catenin in ovarian cancer cells. CONCLUSION This study suggests that COMP secretion by CAFs drives ovarian cancer progression through the induction of the Notch pathway and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Gilar Gorji-Bahri
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - B Madhu Krishna
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | | | - Akira Orimo
- Department of Pathology and Oncology, Juntendo University, Tokyo, Japan
| | - Karin Jirström
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
25
|
Yu S, Zhang L, Yang Y, Wang M, Liu T, Ji W, Liu Y, Lv H, Zhao Y, Chen X, Hu T. Polydopamine-Based Resveratrol-Hyaluronidase Nanomedicine Inhibited Pancreatic Cancer Cell Invasive Phenotype in Hyaluronic Acid Enrichment Tumor Sphere Model. ACS Pharmacol Transl Sci 2024; 7:1013-1022. [PMID: 38633596 PMCID: PMC11020062 DOI: 10.1021/acsptsci.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 04/19/2024]
Abstract
The dense storm microenvironment formed by an excessively cross-linked extracellular matrix, such as hyaluronic acid and collagens, serves as a major barrier that prevents drugs from reaching the deeper tumor. Current traditional two-dimensional (2D) cultures are not capable of modeling this drug delivery barrier in vitro. Thus, tumor spheroids have become increasingly important in cancer research due to their three-dimensional structure. Currently, various methods have been developed to construct tumor spheroids. However, there are still challenges, such as lengthy construction time, complex composition of added growth factors, and high cultivation costs. To address this technical bottleneck, our study combined the GelMA hydrogel system to develop a rapid and high-yield method for tumor spheroids generation. Additionally, we proposed an evaluation scheme to assess the effects of drugs on tumor spheroids. Building on the hyaluronic acid-rich pathological tumor microenvironment, we constructed a resveratrol-loaded nano-drug delivery system with tumor stroma modulation capability and used a three-dimensional (3D) tumor sphere model to simulate in vivo tumor conditions. This process was utilized to completely evaluate the ability of the nano-drug delivery system to enhance the deep penetration of resveratrol in the tumor microenvironment, providing new insights into future oncology drug screening, efficacy assessment, and drug delivery methods.
Collapse
Affiliation(s)
- Shuo Yu
- Department
of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department
of General Surgery, The Second Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
- Bioinspired
Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi 710000, China
| | - Lu Zhang
- National
& Local Joint Engineering Research Center of Biodiagnosis and
Biotherapy, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yanshen Yang
- Bioinspired
Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi 710000, China
| | - Meijuan Wang
- Department
of Anesthesia, Guangdong Provincial People’s
Hospital, Guangzhou 510080, China
| | - Tingting Liu
- Department
of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Wenwen Ji
- Department
of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yang Liu
- Department
of General Surgery, The Second Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Hao Lv
- Department
of General Surgery, The Second Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Yang Zhao
- National
& Local Joint Engineering Research Center of Biodiagnosis and
Biotherapy, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710004, China
| | - Xi Chen
- National
& Local Joint Engineering Research Center of Biodiagnosis and
Biotherapy, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710004, China
| | - Tinghua Hu
- Department
of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
26
|
Sasagawa S, Kumai J, Wakamatsu T, Yui Y. Improvement of histone deacetylase inhibitor efficacy by SN38 through TWIST1 suppression in synovial sarcoma. CANCER INNOVATION 2024; 3:e113. [PMID: 38946933 PMCID: PMC11212284 DOI: 10.1002/cai2.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 07/02/2024]
Abstract
Background Synovial sarcoma (SS) is an SS18-SSX fusion gene-driven soft tissue sarcoma with mesenchymal characteristics, associated with a poor prognosis due to frequent metastasis to a distant organ, such as the lung. Histone deacetylase (HDAC) inhibitors (HDACis) are arising as potent molecular targeted drugs, as HDACi treatment disrupts the SS oncoprotein complex, which includes HDACs, in addition to general HDACi effects. To provide further molecular evidence for the advantages of HDACi treatment and its limitations due to drug resistance induced by the microenvironment in SS cells, we examined cellular responses to HDACi treatment in combination with two-dimensional (2D) and 3D culture conditions. Methods Using several SS cell lines, biochemical and cell biological assays were performed with romidepsin, an HDAC1/2 selective inhibitor. SN38 was concomitantly used as an ameliorant drug with romidepsin treatment. Cytostasis, apoptosis induction, and MHC class I polypeptide-related sequence A/B (MICA/B) induction were monitored to evaluate the drug efficacy. In addition to the conventional 2D culture condition, spheroid culture was adopted to evaluate the influence of cell-mass microenvironment on chemoresistance. Results By monitoring the cellular behavior with romidepsin and/or SN38 in SS cells, we observed that responsiveness is diverse in each cell line. In the apoptotic inducible cells, co-treatment with SN38 enhanced cell death. In nonapoptotic inducible cells, cytostasis and MICA/B induction were observed, and SN38 improved MICA/B induction further. As a novel efficacy of SN38, we revealed TWIST1 suppression in SS cells. In the spheroid (3D) condition, romidepsin efficacy was severely restricted in TWIST1-positive cells. We demonstrated that TWIST1 downregulation restored romidepsin efficacy even in spheroid form, and concomitant SN38 treatment along with romidepsin reproduced the reaction. Conclusions The current study demonstrated the benefits and concerns of using HDACi for SS treatment in 2D and 3D culture conditions and provided molecular evidence that concomitant treatment with SN38 can overcome drug resistance to HDACi by suppressing TWIST1 expression.
Collapse
Affiliation(s)
- Satoru Sasagawa
- Molecular Biology Laboratory, Research InstituteNozaki Tokushukai HospitalDaitoOsakaJapan
| | - Jun Kumai
- Sarcoma Treatment Laboratory, Research InstituteNozaki Tokushukai HospitalDaitoOsakaJapan
| | - Toru Wakamatsu
- Department of Musculoskeletal Oncology ServiceOsaka International Cancer InstituteOsakaJapan
| | - Yoshihiro Yui
- Sarcoma Treatment Laboratory, Research InstituteNozaki Tokushukai HospitalDaitoOsakaJapan
| |
Collapse
|
27
|
Lamichhane A, Tavana H. Three-Dimensional Tumor Models to Study Cancer Stemness-Mediated Drug Resistance. Cell Mol Bioeng 2024; 17:107-119. [PMID: 38737455 PMCID: PMC11082110 DOI: 10.1007/s12195-024-00798-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/01/2024] [Indexed: 05/14/2024] Open
Abstract
Solid tumors often contain genetically different populations of cancer cells, stromal cells, various structural and soluble proteins, and other soluble signaling molecules. The American Cancer society estimated 1,958,310 new cancer cases and 609,820 cancer deaths in the United States in 2023. A major barrier against successful treatment of cancer patients is drug resistance. Gain of stem cell-like states by cancer cells under drug pressure or due to interactions with the tumor microenvironment is a major mechanism that renders therapies ineffective. Identifying approaches to target cancer stem cells is expected to improve treatment outcomes for patients. Most of our understanding of drug resistance and the role of cancer stemness is from monolayer cell cultures. Recent advances in cell culture technologies have enabled developing sophisticated three-dimensional tumor models that facilitate mechanistic studies of cancer drug resistance. This review summarizes the role of cancer stemness in drug resistance and highlights the various tumor models that are used to discover the underlying mechanisms and test potentially novel therapeutics.
Collapse
Affiliation(s)
- Astha Lamichhane
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA
| |
Collapse
|
28
|
Camorani S, Caliendo A, Morrone E, Agnello L, Martini M, Cantile M, Cerrone M, Zannetti A, La Deda M, Fedele M, Ricciardi L, Cerchia L. Bispecific aptamer-decorated and light-triggered nanoparticles targeting tumor and stromal cells in breast cancer derived organoids: implications for precision phototherapies. J Exp Clin Cancer Res 2024; 43:92. [PMID: 38532439 PMCID: PMC10964525 DOI: 10.1186/s13046-024-03014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Based on the established role of cancer-stroma cross-talk in tumor growth, progression and chemoresistance, targeting interactions between tumor cells and their stroma provides new therapeutic approaches. Dual-targeted nanotherapeutics selectively acting on both tumor and stromal cells may overcome the limits of tumor cell-targeting single-ligand nanomedicine due to the complexity of the tumor microenvironment. METHODS Gold-core/silica-shell nanoparticles embedding a water-soluble iridium(III) complex as photosensitizer and luminescent probe (Iren-AuSiO2_COOH) were efficiently decorated with amino-terminated EGFR (CL4) and PDGFRβ (Gint4.T) aptamers (Iren-AuSiO2_Aptamer). The targeting specificity, and the synergistic photodynamic and photothermal effects of either single- and dual-aptamer-decorated nanoparticles have been assessed by confocal microscopy and cell viability assays, respectively, on different human cell types including mesenchymal subtype triple-negative breast cancer (MES-TNBC) MDA-MB-231 and BT-549 cell lines (both EGFR and PDGFRβ positive), luminal/HER2-positive breast cancer BT-474 and epidermoid carcinoma A431 cells (only EGFR positive) and adipose-derived mesenchymal stromal/stem cells (MSCs) (only PDGFRβ positive). Cells lacking expression of both receptors were used as negative controls. To take into account the tumor-stroma interplay, fluorescence imaging and cytotoxicity were evaluated in preclinical three-dimensional (3D) stroma-rich breast cancer models. RESULTS We show efficient capability of Iren-AuSiO2_Aptamer nanoplatforms to selectively enter into target cells, and kill them, through EGFR and/or PDGFRβ recognition. Importantly, by targeting EGFR+ tumor/PDGFRβ+ stromal cells in the entire tumor bulk, the dual-aptamer-engineered nanoparticles resulted more effective than unconjugated or single-aptamer-conjugated nanoparticles in either 3D spheroids cocultures of tumor cells and MSCs, and in breast cancer organoids derived from pathologically and molecularly well-characterized tumors. CONCLUSIONS Our study proposes smart, novel and safe multifunctional nanoplatforms simultaneously addressing cancer-stroma within the tumor microenvironment, which are: (i) actively delivered to the targeted cells through highly specific aptamers; (ii) localized by means of their luminescence, and (iii) activated via minimally invasive light, launching efficient tumor death, thus providing innovative precision therapeutics. Given the unique features, the proposed dual targeted nanoformulations may open a new door to precision cancer treatment.
Collapse
Affiliation(s)
- Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Alessandra Caliendo
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Elena Morrone
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, CS, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Matteo Martini
- Institute of Light and Matter, UMR 5306, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Monica Cantile
- Institutional Biobank-Scientific Directorate, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Margherita Cerrone
- Pathology Unit, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, 80145, Naples, Italy
| | - Massimo La Deda
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, CS, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Loredana Ricciardi
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy.
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy.
| |
Collapse
|
29
|
Minne M, Terrie L, Wüst R, Hasevoets S, Vanden Kerchove K, Nimako K, Lambrichts I, Thorrez L, Declercq H. Generating human skeletal myoblast spheroids for vascular myogenic tissue engineering. Biofabrication 2024; 16:025035. [PMID: 38437715 DOI: 10.1088/1758-5090/ad2fd5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Engineered myogenic microtissues derived from human skeletal myoblasts offer unique opportunities for varying skeletal muscle tissue engineering applications, such asin vitrodrug-testing and disease modelling. However, more complex models require the incorporation of vascular structures, which remains to be challenging. In this study, myogenic spheroids were generated using a high-throughput, non-adhesive micropatterned surface. Since monoculture spheroids containing human skeletal myoblasts were unable to remain their integrity, co-culture spheroids combining human skeletal myoblasts and human adipose-derived stem cells were created. When using the optimal ratio, uniform and viable spheroids with enhanced myogenic properties were achieved. Applying a pre-vascularization strategy, through addition of endothelial cells, resulted in the formation of spheroids containing capillary-like networks, lumina and collagen in the extracellular matrix, whilst retaining myogenicity. Moreover, sprouting of endothelial cells from the spheroids when encapsulated in fibrin was allowed. The possibility of spheroids, from different maturation stages, to assemble into a more large construct was proven by doublet fusion experiments. The relevance of using three-dimensional microtissues with tissue-specific microarchitecture and increased complexity, together with the high-throughput generation approach, makes the generated spheroids a suitable tool forin vitrodrug-testing and human disease modeling.
Collapse
Affiliation(s)
- Mendy Minne
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Lisanne Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Rebecca Wüst
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Steffie Hasevoets
- Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, UHasselt, Diepenbeek, Belgium
| | - Kato Vanden Kerchove
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Kakra Nimako
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, UHasselt, Diepenbeek, Belgium
| | - Lieven Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Heidi Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| |
Collapse
|
30
|
Hu J, Liu K, Ghosh C, Khaket TP, Shih H, Kebebew E. Anaplastic thyroid cancer spheroids as preclinical models to test therapeutics. J Exp Clin Cancer Res 2024; 43:85. [PMID: 38500204 PMCID: PMC10949686 DOI: 10.1186/s13046-024-03009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/10/2024] [Indexed: 03/20/2024] Open
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive thyroid cancer. Despite advances in tissue culture techniques, a robust model for ATC spheroid culture is yet to be developed. In this study, we created an efficient and cost-effective 3D tumor spheroids culture system from human ATC cells and existing cell lines that better mimic patient tumors and that can enhance our understanding of in vivo treatment response. We found that patient-derived ATC cells and cell lines can readily form spheroids in culture with a unique morphology, size, and cytoskeletal organization. We observed both cohesive (dense and solid structures) and discohesive (irregularly shaped structures) spheroids within the same culture condition across different cell lines. BRAFWT ATC spheroids grew in a cohesive pattern, while BRAFV600E-mutant ATC spheroids had a discohesive organization. In the patient-derived BRAFV600E-mutant ATC spheroids, we observed both growth patterns, but mostly the discohesive type. Histologically, ATC spheroids had a similar morphology to the patient's tumor through H&E staining and proliferation marker staining. Moreover, RNA sequencing analysis revealed that the gene expression profile of tumor cells derived from the spheroids closely matched parental patient tumor-derived cells in comparison to monolayer cultures. In addition, treatment response to combined BRAF and MEK inhibition in BRAFV600E-mutant ATC spheroids exhibited a similar sensitivity to the patient clinical response. Our study provides a robust and novel ex vivo spheroid model system that can be used in both established ATC cell lines and patient-derived tumor samples to better understand the biology of ATC and to test therapeutics.
Collapse
Affiliation(s)
- Jiangnan Hu
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Kaili Liu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Chandrayee Ghosh
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Tejinder Pal Khaket
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Helen Shih
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Electron Kebebew
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
31
|
Quan Y, Zhou M, Li J, Yang Y, Guo J, Tang T, Liu P. The m6A methyltransferase RBM15 affects tumor cell stemness and progression of cervical cancer by regulating the stability of lncRNA HEIH. Exp Cell Res 2024; 436:113924. [PMID: 38280435 DOI: 10.1016/j.yexcr.2024.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 01/29/2024]
Abstract
Cervical cancer (CC), as a common female malignant tumor in the world, is an important risk factor endangering women's health worldwide. The purpose of this study was to investigate the role of RBM15 in CC. The TCGA database was used to screen differentially expressed m6A genes in normal and tumor tissues. QRT-PCR was used to quantify HEIH, miR-802, EGFR, cell stemness, and epithelial-mesenchymal transition (EMT)-related genes. The interaction between HEIH and miR-802 was verified by dual-luciferase reporter assay and RIP assay. The occurrence of tumor cells after different treatments was detected by CCK-8, transwell and EdU staining. BALB/c nude mice were used to examine the effects of different treatments on tumor growth and cell stemness in vivo. RBM15 was upregulated in tumor tissues and cells. M6A was highly enriched in HEIH and enhances its RNA stability. HEIH acts as an oncogenic lncRNA to promote CC cell proliferation, migration and tumor growth. Mechanistically, HEIH regulates tumor cell stemness and promotes the proliferation and migration of CC cells by competitively adsorbing miR-802 and up-regulating the expression of EGFR. In short, our data shown that the m6A methyltransferase RBM15 could affect tumor cell proliferation, metastasis and cell stemness by stabilizing HEIH expression.
Collapse
Affiliation(s)
- Yi Quan
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| | - Muchuan Zhou
- Department of Anesthesia, Sichuan Integrative Medicine Hospital, Sichuan Academy of Chinese Medicine Science (SACMS), Chengdu, 610000, PR China; Sichuan Provincial Key Laboratory of Quality of Chinese Medicinal Materials and Research on Innovative Chinese Medicine, Chengdu, 610041, Sichuan, PR China
| | - Jinhong Li
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| | - Yihong Yang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| | - Junliang Guo
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China.
| | - Tian Tang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| | - Ping Liu
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| |
Collapse
|
32
|
Pinto CIG, Branco ADM, Bucar S, Fonseca A, Abrunhosa AJ, da Silva CL, Guerreiro JF, Mendes F. Evaluation of the theranostic potential of [ 64Cu]CuCl 2 in glioblastoma spheroids. EJNMMI Res 2024; 14:26. [PMID: 38453813 PMCID: PMC10920519 DOI: 10.1186/s13550-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Glioblastoma is an extremely aggressive malignant tumor with a very poor prognosis. Due to the increased proliferation rate of glioblastoma, there is the development of hypoxic regions, characterized by an increased concentration of copper (Cu). Considering this, 64Cu has attracted attention as a possible theranostic radionuclide for glioblastoma. In particular, [64Cu]CuCl2 accumulates in glioblastoma, being considered a suitable agent for positron emission tomography. Here, we explore further the theranostic potential of [64Cu]CuCl2, by studying its therapeutic effects in advanced three-dimensional glioblastoma cellular models. First, we established spheroids from three glioblastoma (T98G, U373, and U87) and a non-tumoral astrocytic cell line. Then, we evaluated the therapeutic responses of spheroids to [64Cu]CuCl2 exposure by analyzing spheroids' growth, viability, and cells' proliferative capacity. Afterward, we studied possible mechanisms responsible for the therapeutic outcomes, including the uptake of 64Cu, the expression levels of a copper transporter (CTR1), the presence of a cancer stem cell population, and the production of reactive oxygen species (ROS). RESULTS Results revealed that [64Cu]CuCl2 is able to significantly reduce spheroids' growth and viability, while also affecting cells' proliferation capacity. The uptake of 64Cu, the presence of cancer stem-like cells and the production of ROS were in accordance with the therapeutic response. However, expression levels of CTR1 were not in agreement with uptake levels, revealing that other mechanisms could be involved in the uptake of 64Cu. CONCLUSIONS Overall, our results further support [64Cu]CuCl2 potential as a theranostic agent for glioblastoma, unveiling potential mechanisms that could be involved in the therapeutic response.
Collapse
Affiliation(s)
- Catarina I G Pinto
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - André D M Branco
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Fonseca
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
- ICNAS PHARMA, Universidade de Coimbra, Coimbra, Portugal
| | - Antero J Abrunhosa
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
- ICNAS PHARMA, Universidade de Coimbra, Coimbra, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana F Guerreiro
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa and Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Filipa Mendes
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
33
|
Cheng Y, Zou J, He M, Hou X, Wang H, Xu J, Yuan Z, Lan M, Yang Y, Chen X, Gao F. Spatiotemporally controlled Pseudomonas exotoxin transgene system combined with multifunctional nanoparticles for breast cancer antimetastatic therapy. J Control Release 2024; 367:167-183. [PMID: 37562556 DOI: 10.1016/j.jconrel.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The tumor microenvironment is a barrier to breast cancer therapy. Cancer-associated fibroblast cells (CAFs) can support tumor proliferation, metastasis, and drug resistance by secreting various cytokines and growth factors. Abnormal angiogenesis provides sufficient nutrients for tumor proliferation. Considering that CAFs express the sigma receptor (which recognizes anisamide, AA), we developed a CAFs and breast cancer cells dual-targeting nano drug delivery system to transport the LightOn gene express system, a spatiotemporal controlled gene expression consisting of a light-sensitive transcription factor and a specific minimal promoter. We adopted RGD (Arg-Gly-Asp) to selectively bind to the αvβ3 integrin on activated vascular endothelial cells and tumor cells. After the LightOn system has reached the tumor site, LightOn gene express system can spatiotemporal controllably express toxic Pseudomonas exotoxin An under blue light irradiation. The LightOn gene express system, combined with multifunctional nanoparticles, achieved high targeting delivery efficiency both in vitro and in vivo. It also displayed strong tumor and CAFs inhibition, anti-angiogenesis ability and anti-metastasis ability, with good safety. Moreover, it improved survival rate, survival time, and lung metastasis rate in a mouse breast cancer model. This study proves the efficacy of combining the LightOn system with targeted multifunctional nanoparticles in tumor and anti-metastatic therapy and provides new insights into tumor microenvironment regulation.
Collapse
Affiliation(s)
- Yi Cheng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Muye He
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Hou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongtao Wang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajun Xu
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Yang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xianjun Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
34
|
Gay MD, Drda JC, Chen W, Huang Y, Yassin AA, Duka T, Fang H, Shivapurkar N, Smith JP. Implicating the cholecystokinin B receptor in liver stem cell oncogenesis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G291-G309. [PMID: 38252699 PMCID: PMC11211039 DOI: 10.1152/ajpgi.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related deaths worldwide. Chronic inflammation and fibrosis are the greatest risk factors for the development of HCC. Although the cell of origin for HCC is uncertain, many theories believe this cancer may arise from liver progenitor cells or stem cells. Here, we describe the activation of hepatic stem cells that overexpress the cholecystokinin-B receptor (CCK-BR) after liver injury with either a DDC diet (0.1% 3, 5-diethoxy-carbonyl 1,4-dihydrocollidine) or a NASH-inducing CDE diet (choline-deficient ethionine) in murine models. Pharmacologic blockade of the CCK-BR with a receptor antagonist proglumide or knockout of the CCK-BR in genetically engineered mice during the injury diet reduces the expression of hepatic stem cells and prevents the formation of three-dimensional tumorspheres in culture. RNA sequencing of livers from DDC-fed mice treated with proglumide or DDC-fed CCK-BR knockout mice showed downregulation of differentially expressed genes involved in cell proliferation and oncogenesis and upregulation of tumor suppressor genes compared with controls. Inhibition of the CCK-BR decreases hepatic transaminases, fibrosis, cytokine expression, and alters the hepatic immune cell signature rendering the liver microenvironment less oncogenic. Furthermore, proglumide hastened recovery after liver injury by reversing fibrosis and improving markers of synthetic function. Proglumide is an older drug that is orally bioavailable and being repurposed for liver conditions. These findings support a promising therapeutic intervention applicable to patients to prevent the development of HCC and decrease hepatic fibrosis.NEW & NOTEWORTHY This investigation identified a novel pathway involving the activation of hepatic stem cells and liver oncogenesis. Receptor blockade or genetic disruption of the cholecystokinin-B receptor (CCK-BR) signaling pathway decreased the activation and proliferation of hepatic stem cells after liver injury without eliminating the regenerative capacity of healthy hepatocytes.
Collapse
Affiliation(s)
- Martha D Gay
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Jack C Drda
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Wenqiang Chen
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Yimeng Huang
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| | - Amal A Yassin
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| | - Tetyana Duka
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Hongbin Fang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, District of Columbia, United States
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
- Department of Oncology, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
35
|
Dong X, Wang L, Wang D, Yu M, Yang XJ, Cai H. Proteomic study on nintedanib in gastric cancer cells. PeerJ 2024; 12:e16771. [PMID: 38406279 PMCID: PMC10893871 DOI: 10.7717/peerj.16771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/18/2023] [Indexed: 02/27/2024] Open
Abstract
Background Gastric cancer is a very common gastrointestinal tumor with a high mortality rate. Nintedanib has been shown to significantly reduce tumor cell proliferation and increase apoptosis in gastric cancer cells in vitro. However, its systemic action mechanism on gastric cancer cells remains unclear. A high-throughput proteomic approach should help identify the potential mechanisms and targets of nintedanib on gastric cancer cells. Methods The effects of nintedanib on the biological behavior of gastric cancer cells were evaluated. A cytotoxic proliferation assay was performed to estimate the half maximal inhibitory concentration (IC50). AGS cells were divided into control, and nintedanib-treated groups (5 µM, 48 h), and differential protein expression was investigated using tandem mass tags (TMT) proteomics. The molecular mechanisms of these differentially expressed proteins and their network interactions were then analyzed using bioinformatics, and potential nintedanib targets were identified. Results This study identified 845 differentially expressed proteins in the nintedanib-treated group (compared to the control group), comprising 526 up-regulated and 319 down-regulated proteins. Bioinformatics analysis revealed that the differentially expressed proteins were primarily enriched in biological pathways for branched-chain amino acid metabolism, steroid biosynthesis, propionate metabolism, fatty acid metabolism, lysosome, peroxisome, and ferroptosis. Key driver analysis revealed that proteins, such as enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), isocitrate dehydrogenase 1 (IDH1), acyl-CoA oxidase 1 (ACOX1), acyl-CoA oxidase 2 (ACOX2), acyl-CoA oxidase 3 (ACOX3), and acetyl-CoA acyltransferase 1 (ACAA1) could be linked with nintedanib action. Conclusion Nintedanib inhibits the proliferation, invasion, and metastasis of gastric cancer cells. The crossover pathways and protein networks predicted by proteomics should provide more detailed molecular information enabling the use of nintedanib against gastric cancer.
Collapse
Affiliation(s)
- Xiaohua Dong
- The First School of Clinical Medicine, Lanzhou University, LanZhou, China
- Department of General Surgery, Gansu Provincial Hospital, LanZhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, LanZhou, China
| | - Liuli Wang
- The First School of Clinical Medicine, Lanzhou University, LanZhou, China
| | - Da Wang
- Department of General Surgery, Gansu Provincial Hospital, LanZhou, China
| | - Miao Yu
- Department of General Surgery, Gansu Provincial Hospital, LanZhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, LanZhou, China
| | - Xiao jun Yang
- The First School of Clinical Medicine, Lanzhou University, LanZhou, China
- Department of General Surgery, Gansu Provincial Hospital, LanZhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, LanZhou, China
| | - Hui Cai
- The First School of Clinical Medicine, Lanzhou University, LanZhou, China
- Department of General Surgery, Gansu Provincial Hospital, LanZhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, LanZhou, China
| |
Collapse
|
36
|
Zhang Y, Shao Y, Li Y, Li X, Zhang X, E Q, Wang W, Jiang Z, Gan W, Huang Y. The generation of glioma organoids and the comparison of two culture methods. Cancer Med 2024; 13:e7081. [PMID: 38457217 PMCID: PMC10923046 DOI: 10.1002/cam4.7081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/22/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The intra- and inter-tumoral heterogeneity of gliomas and the complex tumor microenvironment make accurate treatment of gliomas challenging. At present, research on gliomas mainly relies on cell lines, stem cell tumor spheres, and xenotransplantation models. The similarity between traditional tumor models and patients with glioma is very low. AIMS In this study, we aimed to address the limitations of traditional tumor models by generating patient-derived glioma organoids using two methods that summarized the cell diversity, histological features, gene expression, and mutant profiles of their respective parent tumors and assess the feasibility of organoids for personalized treatment. MATERIALS AND METHODS We compared the organoids generated using two methods through growth analysis, immunohistological analysis, genetic testing, and the establishment of xenograft models. RESULTS Both types of organoids exhibited rapid infiltration when transplanted into the brains of adult immunodeficient mice. However, organoids formed using the microtumor method demonstrated more similar cellular characteristics and tissue structures to the parent tumors. Furthermore, the microtumor method allowed for faster culture times and more convenient operational procedures compared to the Matrigel method. DISCUSSION Patient-derived glioma organoids, especially those generated through the microtumor method, present a promising avenue for personalized treatment strategies. Their capacity to faithfully mimic the cellular and molecular characteristics of gliomas provides a valuable platform for elucidating tumor biology and evaluating therapeutic modalities. CONCLUSION The success rates of the Matrigel and microtumor methods were 45.5% and 60.5%, respectively. The microtumor method had a higher success rate, shorter establishment time, more convenient passage and cryopreservation methods, better simulation of the cellular and histological characteristics of the parent tumor, and a high genetic guarantee.
Collapse
Affiliation(s)
- Yang Zhang
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yunxiang Shao
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yanyan Li
- Department of NeurosurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xuetao Li
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xuewen Zhang
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qinzhi E
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Weichao Wang
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zuoyu Jiang
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wenjuan Gan
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yulun Huang
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
37
|
Bae SH, Lee KY, Han S, Yun CW, Park C, Jang H. SOX2 Expression Does Not Guarantee Cancer Stem Cell-like Characteristics in Lung Adenocarcinoma. Cells 2024; 13:216. [PMID: 38334608 PMCID: PMC10854781 DOI: 10.3390/cells13030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Effectively targeting cancer stemness is essential for successful cancer therapy. Recent studies have revealed that SOX2, a pluripotent stem cell factor, significantly contributes to cancer stem cell (CSC)-like characteristics closely associated with cancer malignancy. However, its contradictory impact on patient survival in specific cancer types, including lung adenocarcinoma (LUAD), underscores the need for more comprehensive research to clarify its functional effect on cancer stemness. In this study, we demonstrate that SOX2 is not universally required for the regulation of CSC-like properties in LUAD. We generated SOX2 knockouts in A549, H358, and HCC827 LUAD cells using the CRISPR/Cas9 system. Our results reveal unchanged CSC characteristics, including sustained proliferation, tumor sphere formation, invasion, migration, and therapy resistance, compared to normal cells. Conversely, SOX2 knockdown using conditional shRNA targeting SOX2, significantly reduced CSC traits. However, these loss-of-function effects were not rescued by SOX2 resistant to shRNA, underscoring the potential for SOX2 protein level-independent results in prior siRNA- or shRNA-based research. Ultimately, our findings demonstrate that SOX2 is not absolutely essential in LUAD cancer cells. This emphasizes the necessity of considering cancer subtype-dependent and context-dependent factors when targeting SOX2 overexpression as a potential therapeutic vulnerability in diverse cancers.
Collapse
Affiliation(s)
- Seung-Hyun Bae
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
| | - Kyung Yong Lee
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Suji Han
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
| | - Chul Won Yun
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
| | - ChanHyeok Park
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
| | - Hyonchol Jang
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
| |
Collapse
|
38
|
Lin YY, Lin YS, Liang CW. Heterogeneity of cancer stem cell-related marker expression is associated with three-dimensional structures in malignant pleural effusion produced by lung adenocarcinoma. Cytopathology 2024; 35:105-112. [PMID: 37897199 DOI: 10.1111/cyt.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/28/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION Cancer stem cells have been described in lung adenocarcinoma-associated malignant pleural effusion. They show clinically important features, including the ability to initiate new tumours and resistance to treatments. However, their correlation with the three-dimensional tumour structures in the effusion is not well understood. METHODS Cell blocks produced from lung adenocarcinoma patients' pleural effusion were examined for cancer stem cell-related markers Nanog and CD133 using immunocytochemistry. The three-dimensional cancer cell structures and CD133 expression patterns were visualized with tissue-clearing technology. The expression patterns were correlated with tumour cell structures, genetic variants and clinical outcomes. RESULTS Thirty-nine patients were analysed. Moderate-to-strong Nanog expression was detected in 27 cases (69%), while CD133 was expressed by more than 1% of cancer cells in 11 cases (28%). Nanog expression was more homogenous within individual specimens, while CD133 expression was detected in single tumour cells or cells within small clusters instead of larger structures in 8 of the 11 positive cases (73%). Although no statistically significant correlation between the markers and tumour genetic variants or patient survival was observed, we recorded seven cases with follow-up specimens after cancer treatment, and four (57%) showed a change in stem cell-related marker expression corresponding to treatment response. CONCLUSIONS Lung adenocarcinoma cells in the pleural effusion show variable expression of cancer stem cell-related markers, some showing a correlation with the size of cell clusters. Their expression level is potentially correlated with cancer treatment effects.
Collapse
Affiliation(s)
- Yen-Yu Lin
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yueh-Shen Lin
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cher-Wei Liang
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
39
|
Myoen S, Mochizuki M, Shibuya-Takahashi R, Fujimori H, Shindo N, Yamaguchi K, Yasuda J, Abe J, Imai T, Sato I, Adachi H, Kawamura S, Ito A, Tamai K. CD271 promotes proliferation and migration in bladder cancer. Genes Cells 2024; 29:73-85. [PMID: 38016691 DOI: 10.1111/gtc.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Bladder cancer is a urothelial cancer and effective therapeutic strategies for its advanced stages are limited. Here, we report that CD271, a neurotrophin receptor, promotes the proliferation and migration of bladder cancer cells. CD271 knockdown decreased proliferation in both adherent and spheroid cultures, and vice versa when CD271 was overexpressed in bladder cancer cell lines. CD271 depletion impaired tumorigenicity in vivo. Migration activity was reduced by CD271 knockdown and TAT-Pep5, a known CD271-Rho GDI-binding inhibitor. Apoptosis was induced by CD271 knockdown. Comprehensive gene expression analysis revealed alterations in E2F- and Myc-related pathways upon CD271 expression. In clinical cases, patients with high CD271 expression showed significantly shortened overall survival. In surgically resected specimens, pERK, a known player in proliferation signaling, colocalizes with CD271. These data indicate that CD271 is involved in bladder cancer malignancy by promoting cell proliferation and migration, resulting in poor prognosis.
Collapse
Affiliation(s)
- Shingo Myoen
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
- Division of Urology, Miyagi Cancer Center, Natori, Miyagi, Japan
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Rie Shibuya-Takahashi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Haruna Fujimori
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Norihisa Shindo
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Jiro Abe
- Division of Thoracic Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Takayuki Imai
- Division of Head and Neck Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Ikuro Sato
- Division of Pathology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Hisanobu Adachi
- Division of Urology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | | | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| |
Collapse
|
40
|
Sunaga N, Kaira K, Shimizu K, Tanaka I, Miura Y, Nakazawa S, Ohtaki Y, Kawabata‐Iwakawa R, Sato M, Girard L, Minna JD, Hisada T. The oncogenic role of LGR6 overexpression induced by aberrant Wnt/β-catenin signaling in lung cancer. Thorac Cancer 2024; 15:131-141. [PMID: 38014454 PMCID: PMC10788478 DOI: 10.1111/1759-7714.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Molecular abnormalities in the Wnt/β-catenin pathway confer malignant phenotypes in lung cancer. Previously, we identified the association of leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6) with oncogenic Wnt signaling, and its downregulation upon β-catenin knockdown in non-small cell lung cancer (NSCLC) cells carrying CTNNB1 mutations. The aim of this study was to explore the mechanisms underlying this association and the accompanying phenotypes. METHODS LGR6 expression in lung cancer cell lines and surgical specimens was analyzed using quantitative RT-PCR and immunohistochemistry. Cell growth was assessed using colony formation assay. Additionally, mRNA sequencing was performed to compare the expression profiles of cells subjected to different treatments. RESULTS LGR6 was overexpressed in small cell lung cancer (SCLC) and NSCLC cell lines, including the CTNNB1-mutated NSCLC cell lines HCC15 and A427. In both cell lines, LGR6 knockdown inhibited cell growth. LGR6 expression was upregulated in spheroids compared to adherent cultures of A427 cells, suggesting that LGR6 participates in the acquisition of cancer stem cell properties. Immunohistochemical analysis of lung cancer specimens revealed that the LGR6 protein was predominantly overexpressed in SCLCs, large cell neuroendocrine carcinomas, and lung adenocarcinomas, wherein LGR6 overexpression was associated with vascular invasion, the wild-type EGFR genotype, and an unfavorable prognosis. Integrated mRNA sequencing analysis of HCC15 and A427 cells with or without LGR6 knockdown revealed LGR6-related pathways and genes associated with cancer development and stemness properties. CONCLUSIONS Our findings highlight the oncogenic roles of LGR6 overexpression induced by aberrant Wnt/β-catenin signaling in lung cancer.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory MedicineGunma University Graduate School of MedicineMaebashiJapan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Kimihiro Shimizu
- Division of General Thoracic Surgery, Department of SurgeryShinshu University School of MedicineNaganoJapan
| | - Ichidai Tanaka
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Yosuke Miura
- Department of Respiratory MedicineGunma University Graduate School of MedicineMaebashiJapan
| | - Seshiru Nakazawa
- Division of General Thoracic Surgery, Integrative Center of General SurgeryGunma University Graduate School of MedicineMaebashiJapan
| | - Yoichi Ohtaki
- Division of General Thoracic Surgery, Integrative Center of General SurgeryGunma University Graduate School of MedicineMaebashiJapan
| | - Reika Kawabata‐Iwakawa
- Division of Integrated Oncology ResearchGunma University Initiative for Advanced Research, Gunma UniversityMaebashiJapan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Luc Girard
- Hamon Center for Therapeutic Oncology ResearchUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology ResearchUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
- Pharmacology, University of Texas Southwestern Medical Center at DallasDallasTexasUSA
- Internal MedicineUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - Takeshi Hisada
- Gunma University Graduate School of Health SciencesMaebashiJapan
| |
Collapse
|
41
|
Bai W, Li Y, Zhao L, Li R, Geng J, Lu Y, Zhao Y, Wang J. Rational design of a ratiometric fluorescent probe for imaging lysosomal nitroreductase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123032. [PMID: 37356386 DOI: 10.1016/j.saa.2023.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Overexpressed nitroreductase (NTR) is often utilized to evaluate the hypoxic degree in tumor tissues, thus it is of great importance to develop high selective and efficient optical method to detect NTR. The dynamic fusion and function of lysosome promoted us to explore the possible appearance of NTR inside this organelle and to probe its behavior in a cellular context. In this work, a ratiometric fluorescent probe based on an extended π-π conjugation of a triphenylamine unit was designed for NTR detection and lysosomes imaging. The dual-emission mechanism of the probe in the presence of catalytic NTR was confirmed by theoretical study. The structure-function relationship between probe and NTR was revealed by docking calculations, suggesting a suitable structural and spatial match of them. The photophysical studies showed the probe had high selectivity, rapid response and a wide pH range towards NTR. MTT assay indicated the probe had low cytotoxicity in both normal (HUVEC) and tumor (MCF-7) cells. Furthermore, the inverse fluorescent imaging results confirmed the probe was NTR-active and exhibited time- and concentration-dependent fluorescence signals. In addition, the relatively high Pearson's correlation coefficient (0.99 in HepG2 and 0.97 in MCF-7 cells, compared to Lyso-Tracker Red) demonstrated the probe had excellent lysosomes colocalization. This study illustrates a ratiometric detection of NTR agent for lysosomes fluorescent imaging, which may provide a novel insight in molecular design.
Collapse
Affiliation(s)
- Wenjun Bai
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yixuan Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Li Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Ruxin Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Jiahou Geng
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yang Lu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Jinhui Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
42
|
Ye L, Zhong F, Sun S, Ou X, Yuan J, Zhu J, Zeng Z. Tamoxifen induces ferroptosis in MCF-7 organoid. J Cancer Res Ther 2023; 19:1627-1635. [PMID: 38156931 DOI: 10.4103/jcrt.jcrt_608_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/05/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Breast cancer is the most common female malignant tumor type globally. The occurrence and development of breast cancer involve ferroptosis, which is closely related to its treatment. The development of breast cancer organoids facilitates the analysis of breast cancer molecular background and tumor biological behavior, including clinical pathological characteristics, drug response, or drug resistance relationship, and promotes the advancement of precision treatment for breast cancer. The three-dimensional (3D) cell culture of breast cancer MCF-7 organoid is more similar to the in vivo environment and thus obtains more realistic results than 2D cell culture. Our study examined the new mechanism of tamoxifen in treating breast cancer through breast cancer MCF-7 organoids. METHODS We used 3D cells to culture breast cancer MCF-7 organoid, as well as tamoxifen-treated MCF-7 and tamoxifen-resistant MCF-7 (MCF-7 TAMR) cells. We used transcriptome sequencing. We detected GPX4 and SLC7A11 protein levels using Western blotting and the content of ATP, glutathione, and ferrous ions using the Cell Counting Lite 3D Kit. We assessed cell viability using the Cell Counting Kit-8 (CCK-8) assay. RESULTS Tamoxifen significantly inhibited the growth of MCF-7 organoids and significantly induced ferroptosis in MCF-7 organoids. The ferroptosis inhibitor reversed the significant tamoxifen-induced MCF-7 organoid inhibition activity. Moreover, the ferroptosis activator enhanced the tamoxifen-induced MCF-7 TAMR cell activity inhibition. CONCLUSION Our study revealed that ferroptosis plays an important role in tamoxifen-induced MCF-7 organoid cell death and provides a new research idea for precise treatment of breast cancer through an organoid model.
Collapse
Affiliation(s)
- Lei Ye
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Fei Zhong
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Shishen Sun
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaowei Ou
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan, China
| | - Jie Yuan
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan, China
| | - Jintao Zhu
- Department of Breast Surgery, Foshan Fosun Chancheng Hospital, Foshan, China
| | - Zhiqiang Zeng
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
- Department of Breast Surgery, Foshan Fosun Chancheng Hospital, Foshan, China
| |
Collapse
|
43
|
Martins de Oliveira L, Alves de Lima LV, Silva MFD, Felicidade I, Lepri SR, Mantovani MS. Disruption of caspase-independent cell proliferation pathway on spheroids (HeLa cells) treated with curcumin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:859-870. [PMID: 37671809 DOI: 10.1080/15287394.2023.2255886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Curcumin is an antiproliferative phytochemical extracted from Curcuma longa L and which has been studied in preclinical drug screening using cell monolayers and animal models. However, several limitations of these culture systems may be overcome by performing screening with three-dimensional (3-D) cell culture. The aim of this study was to investigate the effects of curcumin on cytotoxicity and genotoxicity as well as spheroid growth using cervical adenocarcinoma HeLa cell spheroids by performing RT-PCR mRNA expression of genes involved in cell death (CASP3, CASP8, CASP9, PARP1, BBC3, BIRC5, BCL2, TNF), autophagy (BECN1, SQSTM1), cell cycle regulation (TP53, C-MYC, NF-kB, CDKN1A, m-TOR, TRAF-2), DNA damage repair (H2AFX, GADD45A, GADD45G), oxidative stress (GPX1), reticulum stress (EIF2AK3, ERN1), and invasion (MMP1, MMP9) was investigated. Curcumin was cytotoxic in a concentration-dependent manner. Curcumin-treated spheroids exhibited lower proliferative recovery and cell proliferation attenuation, as observed in the clonogenic assay. Further, no marked genotoxicity was detected. Curcumin-treated spheroids displayed reduced expression of BECN1 (2.9×), CASP9 (2.1×), and PARP1 (2.1×) mRNA. PARP1 inhibition suggested disruption of essential pathways of proliferation maintenance. Downregulated expression of CASP9 mRNA and unchanged expression of CASP3/8 mRNA suggested caspase-independent cell death, whereas downregulated expression of BECN1 mRNA indicated autophagic disruption. Therefore, curcumin exhibits the potential for drug development with antiproliferative activity to be considered for use in cancers.
Collapse
Affiliation(s)
- Liana Martins de Oliveira
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Londrina, Brazil
| | - Luan Vitor Alves de Lima
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Londrina, Brazil
| | - Matheus Felipe da Silva
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Londrina, Brazil
| | - Ingrid Felicidade
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Londrina, Brazil
| | - Sandra Regina Lepri
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Londrina, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Londrina, Brazil
| |
Collapse
|
44
|
Quartieri M, Puspitasari A, Vitacchio T, Durante M, Tinganelli W. The role of hypoxia and radiation in developing a CTCs-like phenotype in murine osteosarcoma cells. Front Cell Dev Biol 2023; 11:1222809. [PMID: 38033871 PMCID: PMC10687637 DOI: 10.3389/fcell.2023.1222809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Cancer treatment has evolved significantly, yet concerns about tumor recurrence and metastasis persist. Within the dynamic tumor microenvironment, a subpopulation of mesenchymal tumor cells, known as Circulating Cancer Stem Cells (CCSCs), express markers like CD133, TrkB, and CD47, making them radioresistant and pivotal to metastasis. Hypoxia intensifies their stemness, complicating their identification in the bloodstream. This study investigates the interplay of acute and chronic hypoxia and radiation exposure in selecting and characterizing cells with a CCSC-like phenotype. Methods: LM8 murine osteosarcoma cells were cultured and subjected to normoxic (21% O2) and hypoxic (1% O2) conditions. We employed Sphere Formation and Migration Assays, Western Blot analysis, CD133 Cell Sorting, and CD133+ Fluorescent Activated Cell Sorting (FACS) analysis with a focus on TrkB antibody to assess the effects of acute and chronic hypoxia, along with radiation exposure. Results: Our findings demonstrate that the combination of radiation and acute hypoxia enhances stemness, while chronic hypoxia imparts a cancer stem-like phenotype in murine osteosarcoma cells, marked by increased migration and upregulation of CCSC markers, particularly TrkB and CD47. These insights offer a comprehensive understanding of the interactions between radiation, hypoxia, and cellular responses in the context of cancer treatment. Discussion: This study elucidates the complex interplay among radiation, hypoxia, and cellular responses, offering valuable insights into the intricacies and potential advancements in cancer treatment.
Collapse
Affiliation(s)
- Martina Quartieri
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Anggraeini Puspitasari
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Biology Division, Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Tamara Vitacchio
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Institut für Festkörperphysik, Technische Universität Darmstadt, Darmstadt, Germany
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
45
|
Rengganaten V, Huang CJ, Wang ML, Chien Y, Tsai PH, Lan YT, Ong HT, Chiou SH, Choo KB. Circular RNA ZNF800 (hsa_circ_0082096) regulates cancer stem cell properties and tumor growth in colorectal cancer. BMC Cancer 2023; 23:1088. [PMID: 37950151 PMCID: PMC10636831 DOI: 10.1186/s12885-023-11571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Cancer stem cells form a rare cell population in tumors that contributes to metastasis, recurrence and chemoresistance in cancer patients. Circular RNAs (circRNAs) are post-transcriptional regulators of gene expression that sponge targeted microRNA (miRNAs) to affect a multitude of downstream cellular processes. We previously showed in an expression profiling study that circZNF800 (hsa_circ_0082096) was up-regulated in cancer stem cell-enriched spheroids derived from colorectal cancer (CRC) cell lines. METHODS Spheroids were generated in suspension spheroidal culture. The ZNF800 mRNA, pluripotency stem cell markers and circZNF800 levels were determined by quantitative RT-PCR. CircZNF800-miRNA interactions were shown in RNA pulldown assays and the miRNA levels determined by stem-loop qRT-PCR. The effects of circZNF800 on cell proliferation were tested by EdU staining followed by flowcytometry. Expression of stem cell markers CD44/CD133, Lgr5 and SOX9 was demonstrated in immunofluorescence microscopy. To manipulate the cellular levels of circZNF800, circZNF800 over-expression was achieved via transfection of in vitro synthesized and circularized circZNF800, and knockdown attained using a CRISPR-Cas13d-circZNF800 vector system. Xenografted nude mice were used to demonstrate effects of circZNF800 over-expression and knockdown on tumor growth in vivo. RESULTS CircZNF800 was shown to be over-expressed in late-stage tumor tissues of CRC patients. Data showed that circZNF800 impeded expression of miR-140-3p, miR-382-5p and miR-579-3p while promoted the mRNA levels of ALK/ACVR1C, FZD3 and WNT5A targeted by the miRNAs, as supported by alignments of seed sequences between the circZNF800-miRNA, and miRNA-mRNA paired interactions. Analysis in CRC cells and biopsied tissues showed that circZNF800 positively regulated the expression of intestinal stem cell, pluripotency and cancer stem cell markers, and promoted CRC cell proliferation, spheroid and colony formation in vitro, all of which are cancer stem cell properties. In xenografted mice, circZNF800 over-expression promoted tumor growth, while circZNF800 knockdown via administration of CRISPR Cas13d-circZNF800 viral particles at the CRC tumor sites impeded tumor growth. CONCLUSIONS CircZNF800 is an oncogenic factor that regulate cancer stem cell properties to lead colorectal tumorigenesis, and may be used as a predictive marker for tumor progression and the CRISPR Cas13d-circZNF800 knockdown strategy for therapeutic intervention of colorectal cancer.
Collapse
Affiliation(s)
- Vimalan Rengganaten
- Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Postgraduate Program, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000, Kajang, Malaysia
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, Chinese Culture University, Taipei, 11221, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Yuan-Tzu Lan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Hooi Tin Ong
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Department of Preclinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, 43000, Kajang, Selangor, Malaysia
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan.
| | - Kong Bung Choo
- Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan.
- Department of Preclinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
46
|
Martinez-Ruiz L, Florido J, Rodriguez-Santana C, López-Rodríguez A, Guerra-Librero A, Fernández-Gil BI, García-Tárraga P, Garcia-Verdugo JM, Oppel F, Sudhoff H, Sánchez-Porras D, Ten-Steve A, Fernández-Martínez J, González-García P, Rusanova I, Acuña-Castroviejo D, Carriel V, Escames G. Intratumoral injection of melatonin enhances tumor regression in cell line-derived and patient-derived xenografts of head and neck cancer by increasing mitochondrial oxidative stress. Biomed Pharmacother 2023; 167:115518. [PMID: 37717534 DOI: 10.1016/j.biopha.2023.115518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Head and neck squamous cell carcinoma present a high mortality rate. Melatonin has been shown to have oncostatic effects in different types of cancers. However, inconsistent results have been reported for in vivo applications. Consequently, an alternative administration route is needed to improve bioavailability and establish the optimal dosage of melatonin for cancer treatment. On the other hand, the use of patient-derived tumor models has transformed the field of drug research because they reflect the heterogeneity of patient tumor tissues. In the present study, we explore mechanisms for increasing melatonin bioavailability in tumors and investigate its potential as an adjuvant to improve the therapeutic efficacy of cisplatin in the setting of both xenotransplanted cell lines and primary human HNSCC. We analyzed the effect of two different formulations of melatonin administered subcutaneously or intratumorally in Cal-27 and SCC-9 xenografts and in patient-derived xenografts. Melatonin effects on tumor mitochondrial metabolism was also evaluated as well as melatonin actions on tumor cell migration. In contrast to the results obtained with the subcutaneous melatonin, intratumoral injection of melatonin drastically inhibited tumor progression in HNSCC-derived xenografts, as well as in patient-derived xenografts. Interestingly, intratumoral injection of melatonin potentiated CDDP effects, decreasing Cal-27 tumor growth. We demonstrated that melatonin increases ROS production and apoptosis in tumors, targeting mitochondria. Melatonin also reduces migration capacities and metastasis markers. These results illustrate the great clinical potential of intratumoral melatonin treatment and encourage a future clinical trial in cancer patients to establish a proper clinical melatonin treatment.
Collapse
Affiliation(s)
- Laura Martinez-Ruiz
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain
| | - Javier Florido
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain
| | - César Rodriguez-Santana
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain
| | - Alba López-Rodríguez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain
| | - Ana Guerra-Librero
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain
| | | | - Patricia García-Tárraga
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | | | - Felix Oppel
- Department of Otolaryngology, Head and Neck Surgery, University Hospital OWL of Bielefeld University, Campus Klinikum Bielefeld Mitte, Teutoburger Str. 50, 33604 Bielefeld, Germany
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, University Hospital OWL of Bielefeld University, Campus Klinikum Bielefeld Mitte, Teutoburger Str. 50, 33604 Bielefeld, Germany
| | - David Sánchez-Porras
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Amadeo Ten-Steve
- Biomedical Imaging Research Group (GIBI230-PREBI), La Fe Health Research Institute and Imaging La Fe node at Distributed Network for Biomedical Imaging, Unique Scientific and Technical Infrastructures, Valencia, Spain
| | - José Fernández-Martínez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Pilar González-García
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Iryna Rusanova
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Darío Acuña-Castroviejo
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain
| | - Víctor Carriel
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain.
| | - Germaine Escames
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain.
| |
Collapse
|
47
|
Kulesza J, Paluszkiewicz E, Augustin E. Cellular Effects of Selected Unsymmetrical Bisacridines on the Multicellular Tumor Spheroids of HCT116 Colon and A549 Lung Cancer Cells in Comparison to Monolayer Cultures. Int J Mol Sci 2023; 24:15780. [PMID: 37958764 PMCID: PMC10649579 DOI: 10.3390/ijms242115780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Multicellular tumor spheroids are a good tool for testing new anticancer drugs, including those that may target cancer stem cells (CSCs), which are responsible for cancer progression, metastasis, and recurrence. Therefore, we applied this model in our studies of highly active antitumor unsymmetrical bisacridines (UAs). We investigated the cellular response induced by UAs in 2D and 3D cultures of HCT116 colon and A549 lung cancer cells, with an additional focus on their impact on the CSC-like population. We showed that UAs affected the viability of the studied cells, as well as their spherogenic potential in the 2D and 3D cultures. Furthermore, we proved that the most promising UAs (C-2045 and C-2053) induced apoptosis in the HCT116 and A549 spheres to a similar, or even higher, extent than what was found in monolayer conditions. Next, we identified the population of the CSC-like cells in the 2D and 3D cultures of the studied cell lines by determining the levels of CD166, CD133, CD44, and EpCAM markers. We showed that the selected UAs affected the CSC-like population in both of the cell lines, and that A549 was affected more profoundly in 3D than in 2D cultures. Thus, the UAs exhibited high antitumor properties in both the 2D and 3D conditions, which makes them promising candidates for future therapeutic applications.
Collapse
Affiliation(s)
| | | | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (J.K.); (E.P.)
| |
Collapse
|
48
|
De Marco K, Lepore Signorile M, Di Nicola E, Sanese P, Fasano C, Forte G, Disciglio V, Pantaleo A, Varchi G, Del Rio A, Grossi V, Simone C. SMYD3 Modulates the HGF/MET Signaling Pathway in Gastric Cancer. Cells 2023; 12:2481. [PMID: 37887325 PMCID: PMC10605494 DOI: 10.3390/cells12202481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Gastric cancer (GC) is the third most deadly cancer worldwide. Considerable efforts have been made to find targetable drivers in order to improve patient outcomes. MET is one of the most important factors involved in GC initiation and progression as it plays a major role in GC invasiveness and is related to cancer stemness. Unfortunately, treatment strategies targeting MET are still limited, with a proportion of patients responding to therapy but later developing resistance. Here, we showed that MET is a molecular partner of the SMYD3 methyltransferase in GC cells. Moreover, we found that SMYD3 pharmacological inhibition affects the HGF/MET downstream signaling pathway. Extensive cellular analyses in GC models indicated that EM127, a novel active site-selective covalent SMYD3 inhibitor, can be used as part of a synergistic approach with MET inhibitors in order to enhance the targeting of the HGF/MET pathway. Importantly, our data were confirmed in a 3D GC cell culture system, which was used as a surrogate to evaluate stemness characteristics. Our findings identify SMYD3 as a promising therapeutic target to impair the HGF/MET pathway for the treatment of GC.
Collapse
Affiliation(s)
- Katia De Marco
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Paola Sanese
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Candida Fasano
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Giovanna Forte
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Antonino Pantaleo
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Greta Varchi
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy; (G.V.); (A.D.R.)
| | - Alberto Del Rio
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy; (G.V.); (A.D.R.)
- Innovamol Consulting Srl, 41126 Modena, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
49
|
Cheng JX, Ni H, Yuan Y, Li M, Zhu Y, Ge X, Yin J, Dessai CP, Wang L. Millimeter-deep micron-resolution vibrational imaging by shortwave infrared photothermal microscopy. RESEARCH SQUARE 2023:rs.3.rs-3449548. [PMID: 37886499 PMCID: PMC10602175 DOI: 10.21203/rs.3.rs-3449548/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Deep-tissue chemical imaging plays a vital role in biological and medical applications. Here, we present a shortwave infrared photothermal (SWIP) microscope for millimeter-deep vibrational imaging with sub-micron lateral resolution and nanoparticle detection sensitivity. By pumping the overtone transition of carbon-hydrogen bonds and probing the subsequent photothermal lens with shortwave infrared light, SWIP can obtain chemical contrast from polymer particles located millimeter-deep in a highly scattering phantom. By fast digitization of the optically probed signal, the amplitude of the photothermal signal is shown to be 63 times larger than that of the photoacoustic signal, thus enabling highly sensitive detection of nanoscale objects. SWIP can resolve the intracellular lipids across an intact tumor spheroid and the layered structure in millimeter-thick liver, skin, brain, and breast tissues. Together, SWIP microscopy fills a gap in vibrational imaging with sub-cellular resolution and millimeter-level penetration, which heralds broad potential for life science and clinical applications.
Collapse
|
50
|
Freeburg NF, Peterson N, Ruiz DA, Gladstein AC, Feldser DM. Metastatic Competency and Tumor Spheroid Formation Are Independent Cell States Governed by RB in Lung Adenocarcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1992-2002. [PMID: 37728504 PMCID: PMC10545537 DOI: 10.1158/2767-9764.crc-23-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Inactivation of the retinoblastoma (RB) tumor suppressor in lung adenocarcinoma is associated with the rapid acquisition of metastatic ability and the loss of lung cell lineage commitment. We previously showed that restoration of RB in advanced lung adenocarcinomas in the mouse was correlated with a decreased frequency of lineage decommitted tumors and overt metastases. To identify a causal relationship for RB and its role in reprogramming lineage commitment and reducing metastatic competency in lung adenocarcinoma, we developed multiple tumor spheroid forming lines where RB restoration could be achieved after characterization of the degree of each spheroid's lineage commitment and metastatic ability. Surprisingly, we discovered that RB inactivation dramatically promoted tumor spheroid forming potential in tumors that arise in the KrasLSL-G12D/+; p53flox/flox lung adenocarcinoma model. However, RB reactivation had no effect on the maintenance of tumor spheroid lines once established. In addition, we show that RB-deficient tumor spheroid lines are not uniformly metastatically competent but are equally likely to be nonmetastatic. Interestingly, unlike tumor spheroid maintenance, RB restoration could functionally revert metastatic tumor spheroids to a nonmetastatic cell state. Thus, strategies to reinstate RB pathway activity in lung cancer may reverse metastatic ability and have therapeutic potential. Finally, the acquisition of tumor spheroid forming potential reflects underlying cell state plasticity, which is often predictive of, or even conflated with metastatic ability. Our data support that each is a discrete cell state restricted by RB and question the suitability of tumor spheroid models for their predictive potential of advanced metastatic tumor cell states. SIGNIFICANCE Members of the RB pathway are frequently mutated in lung adenocarcinoma. We show that RB regulates cell state plasticity, tumor spheroid formation, and metastatic competency. Our data indicate that these are independent states where spheroid formation is distinct from metastatic competency. Thus, we caution against conflating spheroid formation and other signs of cell state plasticity with advanced metastatic cell states. Nevertheless, our work supports clinical strategies to reactivate RB pathways.
Collapse
Affiliation(s)
- Nelson F. Freeburg
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nia Peterson
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dain A. Ruiz
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy C. Gladstein
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M. Feldser
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|