1
|
Liu M, Zhu M, Huang Y, Wu J, Peng Z, Liang Y. Prognostic model and ceRNA network of m7G- and radiosensitivity-related genes in hepatocellular carcinoma. Heliyon 2024; 10:e29925. [PMID: 38707306 PMCID: PMC11068534 DOI: 10.1016/j.heliyon.2024.e29925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Background Radiotherapy is an effective treatment for hepatocellular carcinoma (HCC). Recent studies indicated that N7-methylguanosine (m7G)-associated genes are involved in radioresistance and prognosis of HCC. However, the prognostic value and underlying mechanism of m7G-and radiosensitivity-associated genes are still lacking. Methods The related statistics of HCC were downloaded from The Cancer Genome Atlas (TCGA). M7G- and radiosensitivity-associated genes were screened and evaluated using correlation, differential, univariate, and multivariate analysis. The least absolute shrinkage and selection operator (LASSO) algorithm was used to establish a prognostic model. Prognostic efficacy, functional analysis, immune cell infiltration,and drug sensitivity of the prognostic model were assessed. The ceRNA network was predicted and evaluated through the StarBase database, correlation analysis, expression analysis, and survival analysis. Result METTL1, EIF3D, NCBP2, and WDR4 participated in prognosis model construction. The favorable prediction efficiency has been verified in both the training and verification sets. Different risk groups have differences in prognosis outcome, function analysis, immune cell infiltration, and drug sensitivity. NCBP2 can be used to predict the prognosis and has excellent potential in immunotherapy. A prognostic ceRNA network based on the NCBP2/miR-122-5p axis was established. Conclusion The prognosis model of m7G- and radiosensitivity-related genes is constructed, and widely used in clinical prognosis, immunotherapy, and drug therapy. NCBP2, as a hub gene, may be a prognostic biomarker for HCC and is related to immunotherapy. Establishing the NCBP2/miR-122-5p axis helps study the mechanism of ceRNA and provides new ideas for finding a new candidate biomarker.
Collapse
Affiliation(s)
- Miaowen Liu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meiyan Zhu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yingxiong Huang
- Department of Emergency, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Wu
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Liang
- Department of Nephrology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, China
| |
Collapse
|
2
|
Liu H, Huang Y, Li Z, Han S, Liu T, Zhao Q. An innovative gene expression modulating strategy by converting nucleic acids into HNC therapeutics using carrier-free nanoparticles. Front Immunol 2024; 14:1343428. [PMID: 38274829 PMCID: PMC10808498 DOI: 10.3389/fimmu.2023.1343428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Background Cell fate and microenvironmental changes resulting from aberrant expression of specific proteins in tumors are one of the major causes of inadequate anti-tumor immune response and poor prognosis in head and neck cancer (HNC). Eukaryotic initiation factor 3C (eIF3c) has emerged as a promising therapeutic target for HNC due to its ability to regulate protein expression levels in tumor cells, but its drug development is difficult to achieve by targeting traditional protein-protein interactions. siRNA has emerged as a highly promising modality for drug development targeting eIF3c, while its application is hindered by challenges pertaining to inadequate stability and insufficient concentration specifically within tumor sites. Method We employed a method to convert flexible siRNAs into stable and biologically active infinite Auric-sulfhydryl coordination supramolecular siRNAs (IacsRNAs). Through coordinated self-assembly, we successfully transformed eIF3C siRNAs into the carrier-free HNC nanotherapeutic agent Iacs-eif3c-RNA. The efficacy of this agent was evaluated in vivo using HNC xenograft models, demonstrating promising antitumor effects. Results Iacs-eif3c-RNA demonstrated the ability to overcome the pharmacological obstacle associated with targeting eIF3C, resulting in a significant reduction in eIF3C expression within tumor tissues, as well as effective tumor cell proliferating suppression and apoptosis promotion. In comparison to monotherapy utilizing the chemotherapeutic agent cisplatin, Iacs-eif3c-RNA exhibited superior anti-tumor efficacy and favorable biosafety. Conclusion The utilization of Iacs-eif3c-RNA as a carrier-free nanotherapeutic agent presents a promising and innovative approach for addressing HNC treating challenges. Moreover, this strategy demonstrates potential for the translation of therapeutic siRNAs into clinical drugs, extending its applicability to the treatment of other cancers and various diseases.
Collapse
Affiliation(s)
- Heyuan Liu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tianya Liu
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qian Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Wen C, Tian Z, Li L, Chen T, Chen H, Dai J, Liang Z, Ma S, Liu X. SRSF3 and HNRNPH1 Regulate Radiation-Induced Alternative Splicing of Protein Arginine Methyltransferase 5 in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232314832. [PMID: 36499164 PMCID: PMC9738276 DOI: 10.3390/ijms232314832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is an epigenetic regulator which has been proven to be a potential target for cancer therapy. We observed that PRMT5 underwent alternative splicing (AS) and generated a spliced isoform PRMT5-ISO5 in hepatocellular carcinoma (HCC) patients after radiotherapy. However, the regulatory mechanism and the clinical implications of IR-induced PRMT5 AS are unclear. This work revealed that serine and arginine rich splicing factor 3 (SRSF3) silencing increased PRMT5-ISO5 level, whereas heterogeneous nuclear ribonucleoprotein H 1 (HNRNPH1) silencing reduced it. Then, we found that SRSF3 and HNRNPH1 competitively combined with PRMT5 pre-mRNA located at the region around the 3'- splicing site on intron 2 and the alternative 3'- splicing site on exon 4. IR-induced SRSF3 downregulation led to an elevated level of PRMT5-ISO5, and exogenous expression of PRMT5-ISO5 enhanced cell radiosensitivity. Finally, we confirmed in vivo that IR induced the increased level of PRMT5-ISO5 which in turn enhanced tumor killing and regression, and liver-specific Prmt5 depletion reduced hepatic steatosis and delayed tumor progression of spontaneous HCC. In conclusion, our data uncover the competitive antagonistic interaction of SRSF3 and HNRNPH1 in regulating PRMT5 splicing induced by IR, providing potentially effective radiotherapy by modulating PRMT5 splicing against HCC.
Collapse
Affiliation(s)
- Chaowei Wen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhujun Tian
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Lan Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Tongke Chen
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Huajian Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jichen Dai
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhenzhen Liang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325014, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325014, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou 325035, China
- Correspondence:
| |
Collapse
|
4
|
EIF3C Promotes Lung Cancer Tumorigenesis by Regulating the APP/HSPA1A/LMNB1 Axis. DISEASE MARKERS 2022; 2022:9464094. [PMID: 36157221 PMCID: PMC9492341 DOI: 10.1155/2022/9464094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
Objective This study was designed to explore the role and mechanism of eukaryotic initiation factor 3C (EIF3C) in the proliferation and apoptosis of lung cancer cells. Methods EIF3C expression in clinic lung cancer tissues was detected by immunohistochemistry assay. Cell transfection with lentivirus EIF3C short hairpin RNA (shRNA) was performed with Lipofectamine 2000. Cell proliferation was evaluated by Celigo and MTT assays. Caspase-3/7 activity was assessed using caspase-3/7 assay kit for cell apoptosis detection. The apoptosis rate of lung cancer cells was assessed by flow cytometry. A transplanted tumor nude-mouse model was established to clarify the role of EIF3C in lung cancer. The potential mechanism of EIF3C was explored by mRNA microarray analysis. Among the top 30 up- and downregulated mRNAs selected for RT-qPCR, 5 were chosen for western blot analysis. Results EIF3C was abnormally overexpressed in lung cancer cell lines and tissues. Silencing EIF3C suppressed the proliferation and promoted the apoptosis of lung cancer cells. In vivo experiments using transplanted tumor nude-mouse model suggested that EIF3C promoted lung cancer tumorigenesis. Further, mRNA microarray analyses identified 189 upregulated and 83 downregulated differentially expressed mRNA between the KD and negative control groups. After validation by RT-qPCR and western blot, three downstream genes (APP, HSPA1A, and LMNB1) were confirmed. Conclusion EIF3C overexpression may facilitate the proliferation and hamper the apoptosis of lung cancer cells by regulating the APP/HSPA1A/LMNB1 axis.
Collapse
|
5
|
Zhao Q, Luo X, Li H, Bai Y, Chen Q, Yang M, Pei B, Xu C, Han S. Targeting EIF3C to suppress the development and progression of nasopharyngeal carcinoma. Front Bioeng Biotechnol 2022; 10:994628. [PMID: 36147539 PMCID: PMC9485884 DOI: 10.3389/fbioe.2022.994628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Nasopharyngeal carcinoma occurs in many parts of the pars nasalis pharyngis, and the pathological type is mainly squamous cell carcinoma. Because of the special position of nasopharynx, breathing, pronunciation and daily life will be seriously affected. At present, the research direction of nasopharyngeal carcinoma is mainly to explore the law of tumor cell proliferation and migration, study the molecular mechanism, master its biological behavior and clinical significance, try to find therapeutic targets, and further improve the level of tumor treatment. However, the pathologic structure and molecular mechanism of nasopharyngeal carcinoma have not been fully elucidated. In this study, the Lentivirus-mediated EIF3C shRNA vector (L.V-shEIF3C) was constructed to down-regulate the expression of EIF3C in human pharyngeal squamous carcinoma cell FaDu and the human nasopharyngeal carcinoma cell 5-8F, it was found that down-regulation of EIF3C could significantly inhibit the cell proliferation, promote cell apoptosis, induce cell cycle arrest, and inhibit the formation and growth of tumors in mouse models. This study provides strong evidence that EIF3C is a key gene driving the development and progression of head and neck cancer, which is of great significance for the diagnosis, prognosis or treatment of tumors, suggesting that EIF3C may become a valuable therapeutic development and intervention target.
Collapse
|
6
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Feldo M, Kocki J, Bogucka-Kocka A. miRNA Regulatory Networks Associated with Peripheral Vascular Diseases. J Clin Med 2022; 11:3470. [PMID: 35743538 PMCID: PMC9224609 DOI: 10.3390/jcm11123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence indicates a crucial role of miRNA regulatory function in a variety of mechanisms that contribute to the development of diseases. In our previous work, alterations in miRNA expression levels and targeted genes were shown in peripheral blood mononuclear cells (PBMCs) from patients with lower extremity artery disease (LEAD), abdominal aortic aneurysm (AAA), and chronic venous disease (CVD) in comparison with healthy controls. In this paper, previously obtained miRNA expression profiles were compared between the LEAD, AAA, and CVD groups to find either similarities or differences within the studied diseases. Differentially expressed miRNAs were identified using the DESeq2 method implemented in the R programming software. Pairwise comparisons (LEAD vs. AAA, LEAD vs. CVD, and AAA vs. CVD) were performed and revealed 10, 8, and 17 differentially expressed miRNA transcripts, respectively. The functional analysis of the obtained miRNAs was conducted using the miRNet 2.0 online tool and disclosed associations with inflammation and cellular differentiation, motility, and death. The miRNet 2.0 tool was also used to identify regulatory interactions between dysregulated miRNAs and target genes in patients with LEAD, AAA, and CVD. The presented research provides new information about similarities and differences in the miRNA-dependent regulatory mechanisms involved in the pathogenesis of LEAD, AAA, and CVD.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Karol P. Ruszel
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
7
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
8
|
Song S, Liu J, Zhang M, Gao X, Sun W, Liu P, Wang Y, Li J. Eukaryotic translation initiation factor 3 subunit B could serve as a potential prognostic predictor for breast cancer. Bioengineered 2022; 13:2762-2776. [PMID: 35040374 PMCID: PMC8974155 DOI: 10.1080/21655979.2021.2017567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The EIF3 gene family is essential in controlling translation initiation during the cell cycle. The significance of the EIF3 subunits as prognostic markers and therapeutic targets in breast cancer is not yet clear. We analyzed the expression of EIF3 subunits in breast cancer on the GEPIA and Oncomine databases and compared their expression in breast cancer and normal tissues using BRCA data downloaded from TCGA. Then we performed clinical survival analysis on the Kaplan–Meier Plotter database and clinicopathologic analysis on the bc-genexMiner v4.1 database. And EIF3B was chosen for mutation analysis via the Cancer SEA online tool. Meanwhile, we performed the immunohistochemical assay, real-time RT-PCR, and Western blotting to analyze EIF3B expression levels in breast cancer. An EIF3B knockdown and a negative control cell line were conducted for MTT assay and cell cycle analysis to assess cell growth. Specifically, the results of TCGA and online databases demonstrated that upregulated EIF3B was associated with poorer overall and advanced tumor progression. We also confirmed that EIF3B was more highly expressed in breast cancer cells and tissues than normal and correlated with a worse outcome. And knockdown of EIF3B expression inhibited the cell cycle and proliferation. Furthermore, EIF3B was highly mutated in breast cancer. Collectively, our results suggested EIF3B as a potential prognostic marker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Shaoran Song
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Miao Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Xiaoqian Gao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Wei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Juan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| |
Collapse
|
9
|
Delgado ME, Cárdenas BI, Farran N, Fernandez M. Metabolic Reprogramming of Liver Fibrosis. Cells 2021; 10:3604. [PMID: 34944111 PMCID: PMC8700241 DOI: 10.3390/cells10123604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is an excessive and imbalanced deposition of fibrous extracellular matrix (ECM) that is associated with the hepatic wound-healing response. It is also the common mechanism that contributes to the impairment of the liver function that is observed in many chronic liver diseases (CLD). Despite the efforts, no effective therapy against fibrosis exists yet. Worryingly, due to the growing obesity pandemic, fibrosis incidence is on the rise. Here, we aim to summarize the main components and mechanisms involved in the progression of liver fibrosis, with special focus on the metabolic regulation of key effectors of fibrogenesis, hepatic stellate cells (HSCs), and their role in the disease progression. Hepatic cells that undergo metabolic reprogramming require a tightly controlled, fine-tuned cellular response, allowing them to meet their energetic demands without affecting cellular integrity. Here, we aim to discuss the role of ribonucleic acid (RNA)-binding proteins (RBPs), whose dynamic nature being context- and stimuli-dependent make them very suitable for the fibrotic situation. Thus, we will not only summarize the up-to-date literature on the metabolic regulation of HSCs in liver fibrosis, but also on the RBP-dependent post-transcriptional regulation of this metabolic switch that results in such important consequences for the progression of fibrosis and CLD.
Collapse
Affiliation(s)
- M. Eugenia Delgado
- IDIBAPS Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain; (B.I.C.); (N.F.)
| | | | | | - Mercedes Fernandez
- IDIBAPS Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain; (B.I.C.); (N.F.)
| |
Collapse
|
10
|
Guo J, Zheng J, Zhang H, Tong J. RNA m6A methylation regulators in ovarian cancer. Cancer Cell Int 2021; 21:609. [PMID: 34794452 PMCID: PMC8600856 DOI: 10.1186/s12935-021-02318-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification of mammalian mRNAs and plays a vital role in many diseases, especially tumours. In recent years, m6A has become the topic of intense discussion in epigenetics. M6A modification is dynamically regulated by methyltransferases, demethylases and RNA-binding proteins. Ovarian cancer (OC) is a common but highly fatal malignancy in female. Increasing evidence shows that changes in m6A levels and the dysregulation of m6A regulators are associated with the occurrence, development or prognosis of OC. In this review, the latest studies on m6A and its regulators in OC have been summarized, and we focus on the key role of m6A modification in the development and progression of OC. Additionally, we also discuss the potential use of m6A modification and its regulators in the diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Jialu Guo
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jianfeng Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Huizhi Zhang
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinyi Tong
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China. .,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
11
|
Rabaglino MB, Wakabayashi M, Pearson JT, Jensen LJ. Effect of age on the vascular proteome in middle cerebral arteries and mesenteric resistance arteries in mice. Mech Ageing Dev 2021; 200:111594. [PMID: 34756926 DOI: 10.1016/j.mad.2021.111594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 10/20/2022]
Abstract
Aging is associated with hypertension and brain blood flow dysregulation, which are major risk factors for cardiovascular and neurodegenerative diseases. Structural remodeling, endothelial dysfunction, or hypercontractility of resistance vessels may cause increased total peripheral resistance and hypertension. Recent studies showed that G protein- and RhoA/Rho-kinase pathways are involved in increased mean arterial pressure (MAP) and arterial tone in middle-aged mice. We aimed to characterize the age-dependent changes in the vascular proteome in normal laboratory mice using mass spectrometry and bioinformatics analyses on middle cerebral arteries and mesenteric resistance arteries from young (3 months) vs. middle-aged (14 months) mice. In total, 31 proteins were significantly affected by age whereas 172 proteins were differentially expressed by vessel type. Hierarchical clustering revealed that 207 proteins were significantly changed or clustered by age. Vitamin B6 pathway, Biosynthesis of antibiotics, Regulation of actin cytoskeleton and Endocytosis were the top enriched KEGG pathways by age. Several proteins in the RhoA/Rho-kinase pathway changed in a manner consistent with hypertension and dysregulation of cerebral perfusion. Although aging had a less profound effect than vessel type on the resistance artery proteome, regulation of actin cytoskeleton, including the RhoA/Rho-kinase pathway, is an important target for age-dependent hypertension.
Collapse
Affiliation(s)
- Maria Belen Rabaglino
- Dept. of Applied Mathematics and Computer Science, Danish Technical University, Denmark
| | - Masaki Wakabayashi
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - James Todd Pearson
- Dept. of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Lars Jørn Jensen
- Dept. of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
12
|
Qu N, Bo X, Li B, Ma L, Wang F, Zheng Q, Xiao X, Huang F, Shi Y, Zhang X. Role of N6-Methyladenosine (m 6A) Methylation Regulators in Hepatocellular Carcinoma. Front Oncol 2021; 11:755206. [PMID: 34692544 PMCID: PMC8529104 DOI: 10.3389/fonc.2021.755206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Liver cancer is the fifth most common malignant tumor in terms of incidence and the third leading cause of cancer-related mortality globally. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Although great progress has been made in surgical techniques, hepatic artery chemoembolization, molecular targeting and immunotherapy, the prognosis of liver cancer patients remains very poor. N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic cells and regulates various stages of the RNA life cycle. Many studies have reported that the abnormal expression of m6A-related regulators in HCC represent diagnostic and prognostic markers and potential therapeutic targets. In this review, firstly, we introduce the latest research on m6A-related regulators in detail. Next, we summarize the mechanism of each regulator in the pathogenesis and progression of HCC. Finally, we summarize the potential diagnostic, prognostic and therapeutic value of the regulators currently reported in HCC.
Collapse
Affiliation(s)
- Nanfang Qu
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiaotong Bo
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bin Li
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lei Ma
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Feng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qinghua Zheng
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuhua Xiao
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Fengmei Huang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yuanyuan Shi
- Department of Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuemei Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
13
|
Integrated analysis of RNA-binding proteins in thyroid cancer. PLoS One 2021; 16:e0247836. [PMID: 33711033 PMCID: PMC7954316 DOI: 10.1371/journal.pone.0247836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/14/2021] [Indexed: 12/23/2022] Open
Abstract
Recently, the incidence of thyroid cancer (THCA) has been on the rise. RNA binding proteins (RBPs) and their abnormal expression are closely related to the emergence and pathogenesis of tumor diseases. In this study, we obtained gene expression data and corresponding clinical information from the TCGA database. A total of 162 aberrantly expressed RBPs were obtained, comprising 92 up-regulated and 70 down-regulated RBPs. Then, we performed a functional enrichment analysis and constructed a PPI network. Through univariate Cox regression analysis of key genes and found that NOLC1 (p = 0.036), RPS27L (p = 0.011), TDRD9 (p = 0.016), TDRD6 (p = 0.002), IFIT2 (p = 0.037), and IFIT3 (p = 0.02) were significantly related to the prognosis. Through the online website Kaplan-Meier plotter and multivariate Cox analysis, we identified 2 RBP-coding genes (RPS27L and IFIT3) to construct a predictive model in the entire TCGA dataset and then validate in two subsets. In-depth analysis revealed that the data gave by this model, the patient's high-risk score is very closely related to the overall survival rate difference (p = 0.038). Further, we investigated the correlation between the model and the clinic, and the results indicated that the high-risk was in the male group (p = 0.011) and the T3-4 group (p = 0.046) was associated with a poor prognosis. On the whole, the conclusions of our research this time can make it possible to find more insights into the research on the pathogenesis of THCA, this could be beneficial for individualized treatment and medical decision making.
Collapse
|
14
|
Song P, Yang F, Jin H, Wang X. The regulation of protein translation and its implications for cancer. Signal Transduct Target Ther 2021; 6:68. [PMID: 33597534 PMCID: PMC7889628 DOI: 10.1038/s41392-020-00444-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/30/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
In addition to the deregulation of gene transcriptions and post-translational protein modifications, the aberrant translation from mRNAs to proteins plays an important role in the pathogenesis of various cancers. Targeting mRNA translation are expected to become potential approaches for anticancer treatments. Protein translation is affected by many factors including translation initiation factors and RNA-binding proteins. Recently, modifications of mRNAs mainly N6-methyladenine (m6A) modification and noncoding RNAs, such as microRNAs and long noncoding RNAs are involved. In this review, we generally summarized the recent advances on the regulation of protein translation by the interplay between mRNA modifications and ncRNAs. By doing so, we hope this review could offer some hints for the development of novel approaches in precision therapy of human cancers.
Collapse
Affiliation(s)
- Ping Song
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Fan Yang
- grid.13402.340000 0004 1759 700XDepartment of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Hongchuan Jin
- grid.13402.340000 0004 1759 700XKey Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Xian Wang
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| |
Collapse
|
15
|
Hu W, Wang Y, Fang Z, He W, Li S. Integrated Characterization of lncRNA-Immune Interactions in Prostate Cancer. Front Cell Dev Biol 2021; 9:641891. [PMID: 33665192 PMCID: PMC7921328 DOI: 10.3389/fcell.2021.641891] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer is among the top mortality factors in male around the world. Long non-coding RNAs (lncRNAs) have been shown to play crucial roles in tumor biology and immunology. However, lncRNA-immune interactions have not yet examined in prostate cancer. Here, we performed integrated analysis to characterize lncRNA-immune interactions in prostate cancer through multidimensional aspects, including immune-related hallmarks, tumor immunogenomic signatures, immune-related biological processes, immune cells, and immune checkpoints. We dissected the dysregulation of lncRNAs and their clinical relevance in prostate cancer, such as RP11-627G23.1 and RP11-465N4.5. Immune-related hallmarks took up the major parts among top significant lncRNA-hallmark interactions. Our analysis revealed that TGF-β signaling pathway was the most frequent to associate with lncRNAs, which is a signature of immune response in cancer. In addition, immune response and its regulation were the most closely connected immunological processes with lncRNA, implying the regulatory roles of lncRNAs on immune response in prostate cancer. We found that memory resting CD4+ T cells were the most lncRNA-correlated immune cell. LINC00861 was found to be potentially intervening targets of immunotherapy for prostate cancer patients, which was significantly associated with PD-1 and CTLA4. Collectively, we offered a handy resource to investigate regulatory roles of lncRNAs on tumor immunology and the development of clinical utility of lncRNAs in prostate cancer.
Collapse
Affiliation(s)
- Wei Hu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanru Wang
- Department of Nuclear Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhixiao Fang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Nuclear Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Shengli Li
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Man Z, Chen Y, Gao L, Xei G, Li Q, Lu Q, Yan J. A Prognostic Model Based on RNA Binding Protein Predicts Clinical Outcomes in Hepatocellular Carcinoma Patients. Front Oncol 2021; 10:613102. [PMID: 33643914 PMCID: PMC7907500 DOI: 10.3389/fonc.2020.613102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of RNA binding proteins (RBPs) is closely associated with tumor events. However, the function of RBPs in hepatocellular carcinoma (HCC) has not been fully elucidated. The RNA sequences and relevant clinical data of HCC were retrieved from the The Cancer Genome Atlas (TCGA) database to identify distinct RBPs. Subsequently, univariate and multivariate cox regression analysis was performed to evaluate the overall survival (OS)-associated RBPs. The expression levels of prognostic RBP genes and survival information were analyzed using a series of bioinformatics tool. A total of 365 samples with 1,542 RBPs were included in this study. One hundred and eighty-seven differently RBPs were screened, including 175 up-regulated and 12 down-regulated. The independent OS-associated RBPs of NHP2, UPF3B, and SMG5 were used to develop a prognostic model. Survival analysis showed that low-risk patients had a significantly longer OS and disease-free survival (DFS) when compared to high-risk patients (HR: 2.577, 95% CI: 1.793-3.704, P < 0.001 and HR: 1.599, 95% CI: 1.185-2.159, P = 0.001, respectively). The International Cancer Genome Consortium (ICGC) database was used to externally validate the model, and the OS of low-risk patients were found to be longer than that of high-risk patients (P < 0.001). The Nomograms of OS and DFS were plotted to help in clinical decision making. These results showed that the model was effective and may help in prognostic stratification of HCC patients. The prognostic prediction model based on RBPs provides new insights for HCC diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Zhongsong Man
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, China
| | - Yongqiang Chen
- Department of Clinical Laboratory, XuZhou Central Hospital, Jiangsu, China
| | - Lu Gao
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Guowei Xei
- Center of Hepatobiliary Pancreatic Disease, The Affiliated Hospital of Qinghai University, Qinghai, China
| | - Quanfu Li
- Center of Hepatobiliary Pancreatic Disease, The Second Hospital, Baoding, China
| | - Qian Lu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing, China
| |
Collapse
|
17
|
Tian S, Liu J, Sun K, Liu Y, Yu J, Ma S, Zhang M, Jia G, Zhou X, Shang Y, Han Y. Systematic Construction and Validation of an RNA-Binding Protein-Associated Model for Prognosis Prediction in Hepatocellular Carcinoma. Front Oncol 2021; 10:597996. [PMID: 33575212 PMCID: PMC7870868 DOI: 10.3389/fonc.2020.597996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Evidence from prevailing studies show that hepatocellular carcinoma (HCC) is among the top cancers with high mortality globally. Gene regulation at post-transcriptional level orchestrated by RNA-binding proteins (RBPs) is an important mechanism that modifies various biological behaviors of HCC. Currently, it is not fully understood how RBPs affects the prognosis of HCC. In this study, we aimed to construct and validate an RBP-related model to predict the prognosis of HCC patients. METHODS Differently expressed RBPs were identified in HCC patients based on the GSE54236 dataset from the Gene Expression Omnibus (GEO) database. Integrative bioinformatics analyses were performed to select hub genes. Gene expression patterns were validated in The Cancer Genome Atlas (TCGA) database, after which univariate and multivariate Cox regression analyses, as well as Kaplan-Meier analysis were performed to develop a prognostic model. Then, the performance of the prognostic model was assessed using receiver operating characteristic (ROC) curves and clinicopathological correlation analysis. Moreover, data from the International Cancer Genome Consortium (ICGC) database were used for external validation. Finally, a nomogram combining clinicopathological parameters and prognostic model was established for the individual prediction of survival probability. RESULTS The prognostic risk model was finally constructed based on two RBPs (BOP1 and EZH2), facilitating risk-stratification of HCC patients. Survival was markedly higher in the low-risk group relative to the high-risk group. Moreover, higher risk score was associated with advanced pathological grade and late clinical stage. Besides, the risk score was found to be an independent prognosis factor based on multivariate analysis. Nomogram including the risk score and clinical stage proved to perform better in predicting patient prognosis. CONCLUSIONS The RBP-related prognostic model established in this study may function as a prognostic indicator for HCC, which could provide evidence for clinical decision making.
Collapse
Affiliation(s)
- Siyuan Tian
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Jingyi Liu
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Keshuai Sun
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yansheng Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Jiahao Yu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Shuoyi Ma
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Gui Jia
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Ying Han
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
18
|
Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, Cheng C, Li L, Pi J, Si Y, Xiao H, Li L, Rao S, Wang F, Yu J, Yu J, Zou D, Yi P. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res 2020; 48:3816-3831. [PMID: 31996915 PMCID: PMC7144925 DOI: 10.1093/nar/gkaa048] [Citation(s) in RCA: 437] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 01/17/2023] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant RNA modification in mammal mRNAs and increasing evidence suggests the key roles of m6A in human tumorigenesis. However, whether m6A, especially its ‘reader’ YTHDF1, targets a gene involving in protein translation and thus affects overall protein production in cancer cells is largely unexplored. Here, using multi-omics analysis for ovarian cancer, we identified a novel mechanism involving EIF3C, a subunit of the protein translation initiation factor EIF3, as the direct target of the YTHDF1. YTHDF1 augments the translation of EIF3C in an m6A-dependent manner by binding to m6A-modified EIF3C mRNA and concomitantly promotes the overall translational output, thereby facilitating tumorigenesis and metastasis of ovarian cancer. YTHDF1 is frequently amplified in ovarian cancer and up-regulation of YTHDF1 is associated with the adverse prognosis of ovarian cancer patients. Furthermore, the protein but not the RNA abundance of EIF3C is increased in ovarian cancer and positively correlates with the protein expression of YTHDF1 in ovarian cancer patients, suggesting modification of EIF3C mRNA is more relevant to its role in cancer. Collectively, we identify the novel YTHDF1-EIF3C axis critical for ovarian cancer progression which can serve as a target to develop therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Tao Liu
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jing Jin
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingya Luo
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chunming Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, USA
| | - Lanfang Li
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jingnan Pi
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Yanmin Si
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Hualiang Xiao
- Department of Pathology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Li Li
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fang Wang
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jia Yu
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, China
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
19
|
Walbrecq G, Lecha O, Gaigneaux A, Fougeras MR, Philippidou D, Margue C, Tetsi Nomigni M, Bernardin F, Dittmar G, Behrmann I, Kreis S. Hypoxia-Induced Adaptations of miRNomes and Proteomes in Melanoma Cells and Their Secreted Extracellular Vesicles. Cancers (Basel) 2020; 12:cancers12030692. [PMID: 32183388 PMCID: PMC7140034 DOI: 10.3390/cancers12030692] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Reduced levels of intratumoural oxygen are associated with hypoxia-induced pro-oncogenic events such as invasion, metabolic reprogramming, epithelial–mesenchymal transition, metastasis and resistance to therapy, all favouring cancer progression. Small extracellular vesicles (EV) shuttle various cargos (proteins, miRNAs, DNA and others). Tumour-derived EVs can be taken up by neighbouring or distant cells in the tumour microenvironment, thus facilitating intercellular communication. The quantity of extracellular vesicle secretion and their composition can vary with changing microenvironmental conditions and disease states. Here, we investigated in melanoma cells the influence of hypoxia on the content and number of secreted EVs. Whole miRNome and proteome profiling revealed distinct expression patterns in normoxic or hypoxic growth conditions. Apart from the well-known miR-210, we identified miR-1290 as a novel hypoxia-associated microRNA, which was highly abundant in hypoxic EVs. On the other hand, miR-23a-5p and -23b-5p were consistently downregulated in hypoxic conditions, while the protein levels of the miR-23a/b-5p-predicted target IPO11 were concomitantly upregulated. Furthermore, hypoxic melanoma EVs exhibit a signature consisting of six proteins (AKR7A2, DDX39B, EIF3C, FARSA, PRMT5, VARS), which were significantly associated with a poor prognosis for melanoma patients, indicating that proteins and/or miRNAs secreted by cancer cells may be exploited as biomarkers.
Collapse
Affiliation(s)
- Geoffroy Walbrecq
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Odile Lecha
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Miriam R. Fougeras
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.R.F.)
- Doctoral School in Science and Engineering (DSSE), Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Milène Tetsi Nomigni
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - François Bernardin
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.R.F.)
| | - Gunnar Dittmar
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.R.F.)
| | - Iris Behrmann
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
- Correspondence:
| |
Collapse
|
20
|
The mRNA-binding Protein TTP/ZFP36 in Hepatocarcinogenesis and Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111754. [PMID: 31717307 PMCID: PMC6896064 DOI: 10.3390/cancers11111754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatic lipid deposition and inflammation represent risk factors for hepatocellular carcinoma (HCC). The mRNA-binding protein tristetraprolin (TTP, gene name ZFP36) has been suggested as a tumor suppressor in several malignancies, but it increases insulin resistance. The aim of this study was to elucidate the role of TTP in hepatocarcinogenesis and HCC progression. Employing liver-specific TTP-knockout (lsTtp-KO) mice in the diethylnitrosamine (DEN) hepatocarcinogenesis model, we observed a significantly reduced tumor burden compared to wild-type animals. Upon short-term DEN treatment, modelling early inflammatory processes in hepatocarcinogenesis, lsTtp-KO mice exhibited a reduced monocyte/macrophage ratio as compared to wild-type mice. While short-term DEN strongly induced an abundance of saturated and poly-unsaturated hepatic fatty acids, lsTtp-KO mice did not show these changes. These findings suggested anti-carcinogenic actions of TTP deletion due to effects on inflammation and metabolism. Interestingly, though, investigating effects of TTP on different hallmarks of cancer suggested tumor-suppressing actions: TTP inhibited proliferation, attenuated migration, and slightly increased chemosensitivity. In line with a tumor-suppressing activity, we observed a reduced expression of several oncogenes in TTP-overexpressing cells. Accordingly, ZFP36 expression was downregulated in tumor tissues in three large human data sets. Taken together, this study suggests that hepatocytic TTP promotes hepatocarcinogenesis, while it shows tumor-suppressive actions during hepatic tumor progression.
Collapse
|
21
|
Fan M, Wang K, Wei X, Yao H, Chen Z, He X. Upregulated expression of eIF3C is associated with malignant behavior in renal cell carcinoma. Int J Oncol 2019; 55:1385-1395. [PMID: 31638200 DOI: 10.3892/ijo.2019.4903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/01/2019] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor 3c (eIF3C) is involved in the initiation of protein translation. Aberrant eIF3C expression has been reported in different types of human cancer. The present study aimed to assess the role of eIF3C in the malignant behavior of renal cell carcinoma in vitro and in vivo. eIF3C expression was assessed in 16 pairs of renal cell carcinoma (RCC) and matched distant normal tissues, and in RCC cell lines using immunohistochemistry. Subsequently, eIF3C was depleted using lentiviral short hairpin RNA and cell proliferation, cell cycle distribution and apoptosis of these eIF3C‑depleted cells were examined. Additionally, tumor cell xenograft assays in nude mice, Affymetrix microarrays and ingenuity pathway analyses were performed. eIF3C expression was upregulated in RCC tissues and cell lines. Depletion of eIF3C reduced tumor cell proliferation and arrested them at the G1 stage, thus promoting their apoptosis in vitro. Depletion of eIF3C also inhibited the formation and growth of tumor cell xenografts in nude mice. In addition, depletion of eIF3C altered the expression levels of 994 differentially expressed genes in RCC cells (516 genes were upregulated and 478 genes were downregulated). The expression levels of phosphorylated‑AKT, c‑JUN and NFKB inhibitor α were lower in the shorth hairpin RNA eIF3C‑transfected RCC cells compared with in the control group. In conclusion, the present study demonstrated that upregulated eIF3C expression contributed to the development and progression of RCC. Future studies should further evaluate whether eIF3C could be used as a potential strategy for RCC targeting therapy.
Collapse
Affiliation(s)
- Min Fan
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Kai Wang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaohui Wei
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Hongwei Yao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
22
|
Chai RC, Chang YZ, Wang QW, Zhang KN, Li JJ, Huang H, Wu F, Liu YQ, Wang YZ. A Novel DNA Methylation-Based Signature Can Predict the Responses of MGMT Promoter Unmethylated Glioblastomas to Temozolomide. Front Genet 2019; 10:910. [PMID: 31611911 PMCID: PMC6776832 DOI: 10.3389/fgene.2019.00910] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant glioma, with a median overall survival (OS) of 14–16 months. Temozolomide (TMZ) is the first-line chemotherapy drug for glioma, but whether TMZ should be withheld from patients with GBMs that lack O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation is still under debate. DNA methylation profiling holds great promise for further stratifying the responses of MGMT promoter unmethylated GBMs to TMZ. In this study, we studied 147 TMZ-treated MGMT promoter unmethylated GBM, whose methylation information was obtained from the HumanMethylation27 (HM-27K) BeadChips (n = 107) and the HumanMethylation450 (HM-450K) BeadChips (n = 40) for training and validation, respectively. In the training set, we performed univariate Cox regression and identified that 3,565 CpGs were significantly associated with the OS of the TMZ-treated MGMT promoter unmethylated GBMs. Functional analysis indicated that the genes corresponding to these CpGs were enriched in the biological processes or pathways of mitochondrial translation, cell cycle, and DNA repair. Based on these CpGs, we developed a 31-CpGs methylation signature utilizing the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm. In both training and validation datasets, the signature identified the TMZ-sensitive GBMs in the MGMT promoter unmethylated GBMs, and only the patients in the low-risk group appear to benefit from the TMZ treatment. Furthermore, these identified TMZ-sensitive MGMT promoter unmethylated GBMs have a similar OS when compared with the MGMT promoter methylated GBMs after TMZ treatment in both two datasets. Multivariate Cox regression demonstrated the independent prognostic value of the signature in TMZ-treated MGMT promoter unmethylated GBMs. Moreover, we also noticed that the hallmark of epithelial–mesenchymal transition, ECM related biological processes and pathways were highly enriched in the MGMT unmethylated GBMs with the high-risk score, indicating that enhanced ECM activities could be involved in the TMZ-resistance of GBM. In conclusion, our findings promote our understanding of the roles of DNA methylation in MGMT umethylated GBMs and offer a very promising TMZ-sensitivity predictive signature for these GBMs that could be tested prospectively.
Collapse
Affiliation(s)
- Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Zhou Chang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang-Wei Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ke-Nan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing-Jun Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Qing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong-Zhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Eukaryotic initiation factor 3, subunit C silencing inhibits cell proliferation and promotes apoptosis in human ovarian cancer cells. Biosci Rep 2019; 39:BSR20191124. [PMID: 31316002 PMCID: PMC6685053 DOI: 10.1042/bsr20191124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/02/2019] [Accepted: 07/14/2019] [Indexed: 01/23/2023] Open
Abstract
Ovarian cancer remains the leading cause of death among all gynaecological cancers, illustrating the urgent need to understand the molecular mechanisms involved in this disease. Eukaryotic initiation factor 3c (EIF3c) plays an important role in protein translation and cancer cell growth and proliferation, but its role in human ovarian cancer is unclear. Our results showed that EIF3c silencing significantly up-regulated 217 and down-regulated 340 genes. Ingenuity Pathway Analysis (IPA) indicated that the top differentially expressed genes are involved in ‘Classical Pathways’, ‘Diseases and Functions’ and ‘Networks’, especially those involved in signalling and cellular growth and proliferation. In addition, eIF3c silencing inhibited cellular proliferation, enhanced apoptosis and regulated the expression of apoptosis-associated proteins. In conclusion, these results indicate that by dysregulating translational initiation, eIF3c plays an important role in the proliferation and survival of human ovarian cancer cells. These results should provide experimental directions for further in-depth studies on important human ovarian cancer cell pathways.
Collapse
|
24
|
Cheng L, Qiu L, Zhang R, Qian D, Wang M, Sun M, Zhu X, Wang Y, Guo W, Wei Q. Functional variant of MTOR rs2536 and survival of Chinese gastric cancer patients. Int J Cancer 2019; 144:251-262. [PMID: 29978580 DOI: 10.1002/ijc.31656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/06/2018] [Accepted: 06/06/2018] [Indexed: 01/08/2023]
Abstract
We previously reported that some single nucleotide polymorphisms (SNPs) of candidate genes involved in the MTOR complex1 (MTORC1) were associated with risk of gastric cancer (GCa). In the present study, we further evaluated associations of eight potentially functional SNPs of MTOR, MLST8 and RPTOR with survival of 1002 GCa patients and also investigated molecular mechanisms underlying such associations. Specifically, we found that the MTOR rs2536 C allele at the microRNA binding site was independently associated with a 26% reduction of death risk (HR = 0.74, 95% CI = 0.57-0.96, p = 0.022). The results remained noteworthy with a prior false positive probability of 0.1. Genotype-phenotype correlation analysis in 144 patients' adjacent normal gastric tissue samples revealed that the MTOR expression levels were lower in rs2536 TC/CC carriers than that in wild-type TT carriers (p = 0.043). Dual luciferase assays revealed that the rs2536 C allele had a higher binding affinity to microRNA-150, leading to a decreased transcriptional activity of MTOR, compared to the rs2536 T allele. Further functional analysis revealed that MTOR knockdown by small interference RNA impaired proliferation, migration, and invasion ability in GCa cell lines. In conclusion, The MTOR rs2536 T > C change may be a biomarker for survival of Chinese GCa patients, likely by modulating microRNA-induced gene expression silencing. Additional studies are needed to validate our findings.
Collapse
Affiliation(s)
- Lei Cheng
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lixin Qiu
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Ruoxin Zhang
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Danwen Qian
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Mengyun Wang
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Menghong Sun
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaodong Zhu
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yanong Wang
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Weijian Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Qingyi Wei
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
25
|
Li S, Hu Z, Zhao Y, Huang S, He X. Transcriptome-Wide Analysis Reveals the Landscape of Aberrant Alternative Splicing Events in Liver Cancer. Hepatology 2019; 69:359-375. [PMID: 30014619 DOI: 10.1002/hep.30158] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/30/2018] [Indexed: 01/02/2023]
Abstract
Alternative splicing (AS) is assumed to be a pivotal determinant for the generation of diverse transcriptional variants in cancer. However, the comprehensive dysregulation of AS and the prospective biological and clinical relevance in hepatocellular carcinoma (HCC) remain obscure. Here, we identified and depicted the AS landscape in HCC by performing reference-based assembly of sequencing reads from over 600 RNA sequencing (RNA-seq) libraries. We detected various differentially spliced ASEs across patients covering not only protein-coding genes, but also considerable numbers of noncoding genes. Strikingly, alternative transcription initiation was found to frequently occur in HCC. These differential ASEs were highly related to "cancer hallmarks" and involved in metabolism-related pathways in particular. In addition, 243 differential ASEs were identified as risk predictors for HCC patient survival. The isoform switch of metabolism-related gene UGP2 (UDP-glucose pyrophosphorylase 2) might play an essential role in HCC. We further constructed regulatory networks between RNA-binding protein (RBP) genes and the corresponding ASEs. Further analysis demonstrated that the regulated networks were enriched in a variety of metabolism-related pathways. Conclusion: Differential ASEs are prevalent in HCC, where alternative transcription initiation was found to frequently occur. We found that genes having differential ASEs were significantly enriched in metabolism-related pathways. The expression variations, binding relations, and even mutations of RBP genes largely influenced differential ASEs in HCC.
Collapse
Affiliation(s)
- Shengli Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingjun Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Shintani T, Higashisaka K, Maeda M, Hamada M, Tsuji R, Kurihara K, Kashiwagi Y, Sato A, Obana M, Yamamoto A, Kawasaki K, Lin Y, Kijima T, Kinehara Y, Miwa Y, Maeda S, Morii E, Kumanogoh A, Tsutsumi Y, Nagatomo I, Fujio Y. Eukaryotic translation initiation factor 3 subunit C is associated with acquired resistance to erlotinib in non-small cell lung cancer. Oncotarget 2018; 9:37520-37533. [PMID: 30680067 PMCID: PMC6331022 DOI: 10.18632/oncotarget.26494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
The acquisition of resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) is one of the major problems in the pharmacotherapy against non-small cell lung cancers; however, molecular mechanisms remain to be fully elucidated. Here, using a newly-established erlotinib-resistant cell line, PC9/ER, from PC9 lung cancer cells, we demonstrated that the expression of translation-related molecules, including eukaryotic translation initiation factor 3 subunit C (eIF3c), was upregulated in PC9/ER cells by proteome analyses. Immunoblot analyses confirmed that eIF3c protein increased in PC9/ER cells, compared with PC9 cells. Importantly, the knockdown of eIF3c with its siRNAs enhanced the drug sensitivity in PC9/ER cells. Mechanistically, we found that LC3B-II was upregulated in PC9/ER cells, while downregulated by the knockdown of eIF3c. Consistently, the overexpression of eIF3c increased the number of autophagosomes, proposing the causality between eIF3c expression and autophagy. Moreover, chloroquine, an autophagy inhibitor, restored the sensitivity to erlotinib. Finally, immunohistochemical analyses of biopsy samples showed that the frequency of eIF3c-positive cases was higher in the patients with EGFR-TKI resistance than those prior to EGFR-TKI treatment. Moreover, the eIF3c-positive cases exhibited poor prognosis in EGFR-TKI treatment. Collectively, the upregulation of eIF3c could impair the sensitivity to EGFR-TKI as a novel mechanism of the drug resistance.
Collapse
Affiliation(s)
- Takuya Shintani
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Department of Pharmacy, Osaka University Hospital, Suita, Japan
| | - Kazuma Higashisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makiko Maeda
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Masaya Hamada
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ryosuke Tsuji
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Koudai Kurihara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yuri Kashiwagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Atsuhiro Sato
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Masanori Obana
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ayaha Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Keisuke Kawasaki
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ying Lin
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takashi Kijima
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuhei Kinehara
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshihiro Miwa
- Department of Pharmacy, Osaka University Hospital, Suita, Japan
| | - Shinichiro Maeda
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Department of Pharmacy, Osaka University Hospital, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Fujio
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
27
|
Qu D, Cui F, Lu D, Yang Y, Xu Y. DEP domain containing 1 predicts prognosis of hepatocellular carcinoma patients and regulates tumor proliferation and metastasis. Cancer Sci 2018; 110:157-165. [PMID: 30417471 PMCID: PMC6317931 DOI: 10.1111/cas.13867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022] Open
Abstract
DEP domain containing 1 (DEPDC1) protein is a novel oncoantigen upregulated in multiple types of cancers which present oncogenic activity and high immunogenicity. However, the function and therapeutic potential of DEPDC1 in hepatocellular carcinoma (HCC) remain unclear. In the present study, we showed that DEPDC1 was frequently upregulated in HCC and associated with cancer diagnosis and poor prognosis for HCC patients. Moreover, DEPDC1 promotes HCC cell proliferation in vitro as well as carcinogenesis in vivo. Notably, DEPDC1 overexpression also increases the neoplasm metastasis ability of HCC cells both in vivo and in vitro. Gene set enrichment analysis results showed that DEPDC1 expression is positively correlated with K‐RAS signal pathway, pathways in cancer and WNT/β‐catenin signal pathway, all of which are closely associated with specific cancer‐related gene sets. Our study provides the basis for further investigation of the molecular mechanism by which DEPDC1 promotes the development and metastasis of HCC.
Collapse
Affiliation(s)
- Di Qu
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Cui
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Lu
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Yang
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuqing Xu
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Li Z, Zhang J, Liu X, Li S, Wang Q, Di Chen, Hu Z, Yu T, Ding J, Li J, Yao M, Fan J, Huang S, Gao Q, Zhao Y, He X. The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nat Commun 2018; 9:1572. [PMID: 29679004 PMCID: PMC5910401 DOI: 10.1038/s41467-018-04006-0] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Recurrent chromosomal aberrations have led to the discovery of oncogenes or tumour suppressors involved in carcinogenesis. Here we characterized an oncogenic long intergenic non-coding RNA in the frequent DNA-gain regions in hepatocellular carcinoma (HCC), LINC01138 (long intergenic non-coding RNA located on 1q21.2). The LINC01138 locus is frequently amplified in HCC; the LINC01138 transcript is stabilized by insulin like growth factor-2 mRNA-binding proteins 1/3 (IGF2BP1/IGF2BP3) and is associated with the malignant features and poor outcomes of HCC patients. LINC01138 acts as an oncogenic driver that promotes cell proliferation, tumorigenicity, tumour invasion and metastasis by physically interacting with arginine methyltransferase 5 (PRMT5) and enhancing its protein stability by blocking ubiquitin/proteasome-dependent degradation in HCC. The discovery of LINC01138, a promising prognostic indicator, provides insight into the molecular pathogenesis of HCC, and the LINC01138/PRMT5 axis is an ideal therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Zhe Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiwei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinyang Liu
- Liver Cancer Institute, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shengli Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qifeng Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Di Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhixiang Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jie Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yingjun Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Collaborative Innovation Center for Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
29
|
Xu F, Gu J, Wang L, Liu R, Yuan Y, Wang H, Jiang J, Mao W, Lu C, Ge D. Up-regulation Of EIF3e Is Associated with The Progression of Esophageal Squamous Cell Carcinoma and Poor Prognosis in Patients. J Cancer 2018; 9:1135-1144. [PMID: 29675094 PMCID: PMC5907661 DOI: 10.7150/jca.22546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/16/2017] [Indexed: 01/13/2023] Open
Abstract
Introduction: Esophageal cancer is one of the most common malignant tumors in the world. Eukaryotic translation initiation factors 3e (eIF3e) makes a notable difference in the initiation of protein synthesis and tumor progression. However, the role of eIF3e in ESCC has not been revealed yet. This study aims to investigate the bio-functional and prognostic role of eIF3e in human ESCC tissues and cells. Methods: Immunohistochemical staining and Western blot were performed to detect the eIF3e expression in ESCC patients' tissues. The Kaplan-Meier product limit method and Cox regression were conducted to analyze the association between eIF3e expression, together with other related clinical/pathological features, and patients' prognosis. In the analysis of bio-functional role of eIF3e, CCK-8 and Transwell assay were performed to compare the proliferative and migrative ability after knockdown of eIF3e. Results: Up-regulation of eIF3e were demonstrated in ESCC tissues compared with the corresponding para-cancerous tissues. Overexpression of eIF3e was associated with deep tumor depth, lymph nodes metastasis, and advanced TNM stage. Importantly, the patients with high eIF3e expression suffered shorter overall and disease-free survival. Lymph node metastasis and histological grade served as independent prognostic predictors in patients' prognosis. Knockdown of eIF3e could inhibit cell proliferation and migration, in vitro. Conclusions: The eIF3e expression, or combined with other members of eIF3 complex, might predict poor prognosis of ESCC and serve as a potential breakthrough in the multimodality therapy of ESCC.
Collapse
Affiliation(s)
- Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Lin Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Ronghua Liu
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
| | - Yunfeng Yuan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Hao Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jiahao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Wei Mao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
30
|
EIF3C-enhanced exosome secretion promotes angiogenesis and tumorigenesis of human hepatocellular carcinoma. Oncotarget 2018; 9:13193-13205. [PMID: 29568350 PMCID: PMC5862571 DOI: 10.18632/oncotarget.24149] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/03/2018] [Indexed: 01/18/2023] Open
Abstract
Targeting tumor angiogenesis is a common strategy against human hepatocellular carcinoma (HCC). However, identification of molecular targets as biomarker for elevating therapeutic efficacy is critical to prolong HCC patient survival. Here, we showed that EIF3C (eukaryotic translation initiation factor 3 subunit C) is upregulated during HCC tumor progression and associated with poor patient survival. Expression of EIF3C did not alter proliferation and expression of other tumor progressive genes such as HIF1A, TGFβ1 and VEGF, but reduced cell migration in HCC cells. Nevertheless, expression of EIF3C in HCC cells significantly increase secretion of extracellular exosomes confirmed by increased exosomes labelling by PKH26 fluorescent dye, vesicles in exosome size detected by electronic microscopy and nanoparticle tracking analysis, and expression of divergent exosome markers. The EIF3C-increased exosomes were oncogenic to potentiate tumor angiogenesis via tube formation of HUVEC cells and growth of vessels by plugs assays on nude mice. Subcutaneous inoculation of EIF3C-exosomes mixed with Huh7 HCC cells not only promoted growth of vessels but also increased expression of EIF3C in tumors. Conversely, treatment of exosome inhibitor GW4869 reversed aforementioned oncogenic assays. We identified EIF3C activated expression of S100A11 involved in EIF3C-exosome increased tube formation in angiogenesis. Simultaneous high expression of EIF3C and S100A11 in human HCC tumors for RNA level in TCGA and protein level by IHC are associated with poor survival of HCC patients. Collectively, our results demonstrated that EIF3C overexpression is a potential target of angiogenesis for treatment with exosome inhibitor or S100A11 reduction to suppress HCC angiogenesis and tumorigenesis.
Collapse
|
31
|
Zhao W, Li X, Wang J, Wang C, Jia Y, Yuan S, Huang Y, Shi Y, Tong Z. Decreasing Eukaryotic Initiation Factor 3C (EIF3C) Suppresses Proliferation and Stimulates Apoptosis in Breast Cancer Cell Lines Through Mammalian Target of Rapamycin (mTOR) Pathway. Med Sci Monit 2017; 23:4182-4191. [PMID: 28854163 PMCID: PMC5590544 DOI: 10.12659/msm.906389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Translation initiation is the rate limiting step of protein synthesis and is highly regulated. Eukaryotic initiation factor 3C (EIF3C), an oncogene overexpressed in several human cancers, plays an important role in tumorigenesis and cell proliferation. Material/Methods Immunohistochemistry was used to determine the expression of EIF3C in breast cancer tissues from 42 patients. We investigated whether EIF3C silencing decreases breast cancer cell proliferation as assessed by colony formation assay, and whether EIF3C gene knockdown induces apoptosis as assessed by flow cytometry analysis. We utilized the stress and apoptosis signaling antibody array kit, while p-ERK1/2, p-Akt, p-Smad2, p-p38 MAPK, cleaved caspase-3, and cleaved caspase-7 were explored between EIF3C-siRNA and controls. Furthermore, the effects of EIF3C gene knockdown in mTOR pathway were analyzed by western blotting for different cell lines. Results In EIF3C-positive tumors, 32 out of 42 showed significantly higher frequencies of high grade group by immunoreactivity (p=0.0016). BrdU incorporation after four days of cell plating was significantly suppressed in MDA-MB-231 cells by EIF3C knockdown compared with controls, with average changes of 7.8-fold (p<0.01). Clone number was significantly suppressed in MDA-MB-231 cells by EIF3C knockdown compared with controls (p<0.05). Cell apoptosis was significantly increased in the EIF3C-siRNA group when compared with the cells that were transfected with scrambled siRNA (3.51±0.0842 versus 13.24±0.2307, p<0.01). The mTOR signaling pathway was involved in decreasing EIF3C translational efficiency. Conclusions Unveiling the mechanisms of EIF3 action in tumorigenesis may help identify attractive targets for cancer therapy.
Collapse
Affiliation(s)
- Weipeng Zhao
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China (mainland)
| | - Xichuan Li
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China (mainland)
| | - Jun Wang
- Department of Oncology, General Hospital, Jinan Command of the People's Liberation Army, Jinan, Shandong, China (mainland)
| | - Chen Wang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China (mainland)
| | - Yongsheng Jia
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China (mainland)
| | - Shunzong Yuan
- Department of Lymphoma, Head and Neck Cancer, The Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China (mainland)
| | - Yong Huang
- Department of Pathology, People's Liberation Army General Hospital, Beijing, China (mainland)
| | - Yehui Shi
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China (mainland)
| | - Zhongsheng Tong
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China (mainland)
| |
Collapse
|
32
|
Li T, Li S, Chen D, Chen B, Yu T, Zhao F, Wang Q, Yao M, Huang S, Chen Z, He X. Transcriptomic analyses of RNA-binding proteins reveal eIF3c promotes cell proliferation in hepatocellular carcinoma. Cancer Sci 2017; 108:877-885. [PMID: 28231410 PMCID: PMC5448617 DOI: 10.1111/cas.13209] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 02/06/2023] Open
Abstract
RNA‐binding proteins (RBPs) play fundamental roles in the RNA life cycle. The aberrant expression of RBPs is often observed in human disease, including cancer. In this study, we screened for the expression levels of 1542 human RBPs in The Cancer Genome Atlas liver hepatocellular carcinoma samples and found 92 consistently upregulated RBP genes in HCC compared with normal samples. Additionally, we undertook a Kaplan–Meier analysis and found that high expression of 15 RBP genes was associated with poor prognosis in patients with HCC. Furthermore, we found that eIF3c promotes HCC cell proliferation in vitro as well as tumorigenicity in vivo. Gene Set Enrichment Analysis showed that high eIF3c expression is positively associated with KRAS, vascular endothelial growth factor, and Hedgehog signaling pathways, all of which are closely associated with specific cancer‐related gene sets. Our study provides the basis for further investigation of the molecular mechanism by which eIF3c promotes the development and progression of HCC.
Collapse
Affiliation(s)
- Tangjian Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengli Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bing Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qifeng Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|