1
|
Poenaru RC, Milanesi E, Niculae AM, Dobre AM, Vladut C, Ciocîrlan M, Balaban DV, Herlea V, Dobre M, Hinescu ME. Dysregulation of genes involved in the long-chain fatty acid transport in pancreatic ductal adenocarcinoma. World J Gastrointest Oncol 2025; 17:98409. [DOI: 10.4251/wjgo.v17.i1.98409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.
AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.
METHODS A gene expression analysis of FASN, CD36, SLC27A1, SLC27A2, SLC27A3, SLC27A4, SLC27A5, ACSL1, and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection. The genes were considered significantly dysregulated between the groups when the p value was < 0.05 and the fold change (FC) was ≤ 0.5 and ≥ 2.
RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue: SLC27A2 (FC = 5.66; P = 0.033), SLC27A3 (FC = 2.68; P = 0.040), SLC27A4 (FC = 3.13; P = 0.033), ACSL1 (FC = 4.10; P < 0.001), and ACSL3 (FC = 2.67; P = 0.012). We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors, including the anatomic location, the lymph node involvement, and the presence of metastasis. A significant difference in the expression of SLC27A3 (FC = 3.28; P = 0.040) was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.
CONCLUSION Despite the low number of patients analyzed, these preliminary results seem to be promising. Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy. Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.
Collapse
Affiliation(s)
- Radu Cristian Poenaru
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Elena Milanesi
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Radiobiology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Andrei Marian Niculae
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Anastasia-Maria Dobre
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Catalina Vladut
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology, Prof. Dr. Agrippa Ionescu Clinical Emergency Hospital, Bucharest 011356, Romania
| | - Mihai Ciocîrlan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology, Prof. Dr. Agrippa Ionescu Clinical Emergency Hospital, Bucharest 011356, Romania
| | - Daniel Vasile Balaban
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Vlad Herlea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Fundeni Clinical Institute, Bucharest 022258, Romania
| | - Maria Dobre
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Mihail Eugen Hinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| |
Collapse
|
2
|
Liaghat M, Ferdousmakan S, Mortazavi SH, Yahyazadeh S, Irani A, Banihashemi S, Seyedi Asl FS, Akbari A, Farzam F, Aziziyan F, Bakhtiyari M, Arghavani MJ, Zalpoor H, Nabi-Afjadi M. The impact of epithelial-mesenchymal transition (EMT) induced by metabolic processes and intracellular signaling pathways on chemo-resistance, metastasis, and recurrence in solid tumors. Cell Commun Signal 2024; 22:575. [PMID: 39623377 PMCID: PMC11610171 DOI: 10.1186/s12964-024-01957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The intricate cellular process, known as the epithelial-mesenchymal transition (EMT), significantly influences solid tumors development. Changes in cell shape, metabolism, and gene expression linked to EMT facilitate tumor cell invasion, metastasis, drug resistance, and recurrence. So, a better understanding of the intricate processes underlying EMT and its role in tumor growth may lead to the development of novel therapeutic approaches for the treatment of solid tumors. This review article focuses on the signals that promote EMT and metabolism, the intracellular signaling pathways leading to EMT, and the network of interactions between EMT and cancer cell metabolism. Furthermore, the functions of EMT in treatment resistance, recurrence, and metastasis of solid cancers are covered. Lastly, treatment approaches that focus on intracellular signaling networks and metabolic alterations brought on by EMT will be discussed.
Collapse
Affiliation(s)
- Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | | | - Sheida Yahyazadeh
- Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Irani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Javad Arghavani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Lin J, Lai Y, Lu F, Wang W. Targeting ACSLs to modulate ferroptosis and cancer immunity. Trends Endocrinol Metab 2024:S1043-2760(24)00255-8. [PMID: 39424456 DOI: 10.1016/j.tem.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Five acyl-CoA synthetase long-chain family members (ACSLs) are responsible for catalyzing diverse long-chain fatty acids (LCFAs) into LCFA-acyl-coenzyme A (CoA) for their subsequent metabolism, including fatty acid oxidation (FAO), lipid synthesis, and protein acylation. In this review, we focus on ACSLs and their LCFA substrates and introduce their involvement in regulation of cancer proliferation, metastasis, and therapeutic resistance. Along with the recognition of the decisive role of ACSL4 in ferroptosis - an immunogenic cell death (ICD) initiated by lipid peroxidation - we review the functions of ACSLs on regulating ferroptosis sensitivity. Last, we discuss the current understanding of ACSL on the antitumor immune response. We emphasize the necessity to explore the functions of immune cells expressing ACSLs for developing novel strategies to augment immunotherapy by targeting ACSL.
Collapse
Affiliation(s)
- Junhong Lin
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfeng Lai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fujia Lu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Yamamoto S, Obinata D, Takayama K, Funakoshi D, Fujiwara K, Hara M, Takahashi S, Inoue S. Anillin actin-binding protein expression correlates with poor prognosis for prostate cancer patients. Asian J Urol 2024; 11:569-574. [PMID: 39533998 PMCID: PMC11551517 DOI: 10.1016/j.ajur.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/12/2023] [Indexed: 11/16/2024] Open
Abstract
Objective Octamer transcription factor 1 (OCT1), a transcription factor that interacts with androgen receptor, is involved in prostate cancer (PCa) progression. The OCT1 target gene, Anillin actin-binding protein (ANLN), is highly expressed in castration-resistant PCa tissue; however, it remains unclear whether ANLN expression in hormone-sensitive PCa tissue could be used as a predictive biomarker for poor prognosis of patients. We aimed to investigate ANLN expression in PCa tissue obtained via radical prostatectomy and its correlation with clinical parameters. Methods Immunohistochemical staining for ANLN was performed on 86 PCa specimens, followed by evaluation using immunoreactivity (IR) scores. Prognosis was analyzed by the log-rank test using the Kaplan-Meier method to generate a cancer-specific survival curve. The correlations between ANLN IR and clinical parameters as well as OCT1 IR were analyzed using the Chi-squared test. Results The median IR score was 0 for ANLN. Accordingly, given the low median IR score, an IR score of ≥3 was defined as positive. There were 17 (19.8%) ANLN-positive cases, and these cases had a significantly poorer prognosis. Multivariate analysis revealed that the Gleason score, pathological tumor and lymph node stages, and positive ANLN expression were significant predictors of poor prognosis. Notably, patients with both positive ANLN and high OCT1 expression had a significantly decreased overall survival (p=0.001). Conclusion ANLN, which is a OCT1 target gene especially in castration-resistant PCa, is expressed in a small number of hormone-sensitive PCa cases. Both positive ANLN expression and high OCT1 expression are significantly correlated with poor prognosis for PCa patients.
Collapse
Affiliation(s)
- Shinichiro Yamamoto
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Daigo Funakoshi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Kyoko Fujiwara
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda Surugadai, Chiyoda-ku, Tokyo, Japan
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, Japan
| |
Collapse
|
5
|
Zhao X, Zhu X, Tao H, Zou H, Cao J, Chen Y, Zhang Z, Zhu Y, Li Q, Li M. Liquidambaric acid inhibits the proliferation of hepatocellular carcinoma cells by targeting PPARα-RXRα to down-regulate fatty acid metabolism. Toxicol Appl Pharmacol 2024; 490:117042. [PMID: 39067772 DOI: 10.1016/j.taap.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Hepatocellular carcinoma (HCC) is a primary malignant tumor of the liver. As the global obesity rate rises, non-alcoholic fatty liver disease (NAFLD) has emerged as the most rapidly increasing cause of HCC. Consequently, the regulation of lipid metabolism has become a crucial target for the prevention and treatment of HCC. Liquidambaric acid (LDA), a pentacyclic triterpenoid compound derived from various plants, exhibits diverse biological activities. We found that LDA could inhibit HCC cell proliferation by arresting cell cycle and prompting apoptosis. Additionally, LDA can augment the therapeutic efficacy of Regorafenib in HCC in vitro and vivo. Our study utilized transcriptome analysis, luciferase reporter assays, and co-immunocoprecipitation experiments to elucidate the anti-HCC mechanism of LDA. We discovered that LDA disrupts the formation of the PPARα-RXRα heterodimer, leading to the down-regulation of the ACSL4 gene and subsequently impacting the fatty acid metabolism of HCC cells, ultimately inhibiting HCC proliferation. Our research contributes to the identification of novel therapeutic agents and targets for the treatment of HCC.
Collapse
Affiliation(s)
- Xinyun Zhao
- College of Life Science, Sichuan Normal University, Chengdu 610101, Sichuan, China; Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
| | - Xinping Zhu
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
| | - Honglei Tao
- Anesthesiology Department, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
| | - Hongling Zou
- College of Life Science, Sichuan Normal University, Chengdu 610101, Sichuan, China; Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
| | - Jili Cao
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
| | - Yuxin Chen
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China; Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
| | - Ziru Zhang
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China; Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
| | - Yongqiang Zhu
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
| | - Qun Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, Sichuan, China.
| | - Mingqian Li
- Cancer Institute of Integrative Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China; Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
| |
Collapse
|
6
|
Jian J, Wang X, Zhang J, Zhou C, Hou X, Huang Y, Hou J, Lin Y, Wei X. Molecular landscape for risk prediction and personalized therapeutics of castration-resistant prostate cancer: at a glance. Front Endocrinol (Lausanne) 2024; 15:1360430. [PMID: 38887275 PMCID: PMC11180744 DOI: 10.3389/fendo.2024.1360430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Prostate cancer (PCa) is commonly occurred with high incidence in men worldwide, and many patients will be eventually suffered from the dilemma of castration-resistance with the time of disease progression. Castration-resistant PCa (CRPC) is an advanced subtype of PCa with heterogeneous carcinogenesis, resulting in poor prognosis and difficulties in therapy. Currently, disorders in androgen receptor (AR)-related signaling are widely acknowledged as the leading cause of CRPC development, and some non-AR-based strategies are also proposed for CRPC clinical analyses. The initiation of CRPC is a consequence of abnormal interaction and regulation among molecules and pathways at multi-biological levels. In this study, CRPC-associated genes, RNAs, proteins, and metabolites were manually collected and integrated by a comprehensive literature review, and they were functionally classified and compared based on the role during CRPC evolution, i.e., drivers, suppressors, and biomarkers, etc. Finally, translational perspectives for data-driven and artificial intelligence-powered CRPC systems biology analysis were discussed to highlight the significance of novel molecule-based approaches for CRPC precision medicine and holistic healthcare.
Collapse
Affiliation(s)
- Jingang Jian
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin’an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenchao Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaorui Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Obinata D, Takayama K, Inoue S, Takahashi S. Exploring androgen receptor signaling pathway in prostate cancer: A path to new discoveries. Int J Urol 2024; 31:590-597. [PMID: 38345202 DOI: 10.1111/iju.15424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
Androgen deprivation therapy has achieved significant success in treating prostate cancer through strategies centered on the androgen receptor. However, the emergence of castration-resistant prostate cancer highlights this therapy limitation, underscoring the need to elucidate the mechanisms of treatment resistance. This review aimed to focus on multifaceted resistance mechanisms, including androgen receptor overexpression, splice variants, missense mutations, the involvement of the glucocorticoid receptor, and alterations in coregulators and transcription factors, revealing their roles in castration-resistant prostate cancer progression. These mechanisms promote cell survival and proliferation, depending on the androgen receptor signaling pathway, leading to resistance to conventional therapies. Amplification and mutations in the androgen receptor gene facilitate selective adaptation in treatment-resistant cells, consequently diminishing therapeutic efficacy. Furthermore, the activation of glucocorticoid receptors and aberrant regulation of specific coregulators and transcription factors contribute to the activation of androgen receptor-independent signaling pathways, promoting cell survival and proliferation. These findings hold promise for identifying new targets for treating castration-resistant prostate cancer and developing personalized treatment strategies. The development of future therapies will hinge on precisely targeting the androgen receptor signaling pathway, necessitating a deeper understanding of the molecular targets unique to castration-resistant prostate cancer.
Collapse
MESH Headings
- Humans
- Male
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Signal Transduction
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/therapy
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation
- Androgen Antagonists/therapeutic use
- Gene Expression Regulation, Neoplastic
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/genetics
- Prostatic Neoplasms/therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Zhou H, Zhou X, Zhu R, Zhao Z, Yang K, Shen Z, Sun H. A ferroptosis-related signature predicts the clinical diagnosis and prognosis, and associates with the immune microenvironment of lung cancer. Discov Oncol 2024; 15:163. [PMID: 38743344 PMCID: PMC11093956 DOI: 10.1007/s12672-024-01032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Targeting ferroptosis-related pathway is a potential strategy for treatment of lung cancer (LC). Consequently, exploration of ferroptosis-related markers is important for treating LC. We collected LC clinical data and mRNA expression profiles from TCGA and GEO database. Ferroptosis-related genes (FRGs) were obtained through FerrDB database. Expression analysis was performed to obtain differentially expressed FRGs. Diagnostic and prognostic models were constructed based on FRGs by LASSO regression, univariate, and multivariate Cox regression analysis, respectively. External verification cohorts GSE72094 and GSE157011 were used for validation. The interrelationship between prognostic risk scores based on FRGs and the tumor immune microenvironment was analyzed. Immunocytochemistry, Western blotting, and RT-qPCR detected the FRGs level. Eighteen FRGs were used for diagnostic models, 8 FRGs were used for prognostic models. The diagnostic model distinguished well between LC and normal samples in training and validation cohorts of TCGA. The prognostic models for TCGA, GSE72094, and GSE157011 cohorts significantly confirmed lower overall survival (OS) in high-risk group, which demonstrated excellent predictive properties of the survival model. Multivariate Cox regression analysis further confirmed risk score was an independent risk factor related with OS. Immunoassays revealed that in high-risk group, a significantly higher proportion of Macrophages_M0, Neutrophils, resting Natural killer cells and activated Mast cells and the level of B7H3, CD112, CD155, B7H5, and ICOSL were increased. In conclusion, diagnostic and prognostic models provided superior diagnostic and predictive power for LC and revealed a potential link between ferroptosis and TIME.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Oncology Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xiaoting Zhou
- Medical School, Kunming University of Science and Technology, Kunming, 650031, Yunnan, China
| | - Runying Zhu
- Department of Oncology Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zhongquan Zhao
- Department of Oncology Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Kang Yang
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Zhenghai Shen
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, China
| | - Hongwen Sun
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, 650032, Yunnan, China.
| |
Collapse
|
9
|
Safi R, Menéndez P, Pol A. Lipid droplets provide metabolic flexibility for cancer progression. FEBS Lett 2024; 598:1301-1327. [PMID: 38325881 DOI: 10.1002/1873-3468.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
A hallmark of cancer cells is their remarkable ability to efficiently adapt to favorable and hostile environments. Due to a unique metabolic flexibility, tumor cells can grow even in the absence of extracellular nutrients or in stressful scenarios. To achieve this, cancer cells need large amounts of lipids to build membranes, synthesize lipid-derived molecules, and generate metabolic energy in the absence of other nutrients. Tumor cells potentiate strategies to obtain lipids from other cells, metabolic pathways to synthesize new lipids, and mechanisms for efficient storage, mobilization, and utilization of these lipids. Lipid droplets (LDs) are the organelles that collect and supply lipids in eukaryotes and it is increasingly recognized that the accumulation of LDs is a new hallmark of cancer cells. Furthermore, an active role of LD proteins in processes underlying tumorigenesis has been proposed. Here, by focusing on three major classes of LD-resident proteins (perilipins, lipases, and acyl-CoA synthetases), we provide an overview of the contribution of LDs to cancer progression and discuss the role of LD proteins during the proliferation, invasion, metastasis, apoptosis, and stemness of cancer cells.
Collapse
Affiliation(s)
- Rémi Safi
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
- Consorcio Investigación Biomédica en Red de Cancer, CIBER-ONC, ISCIII, Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
| |
Collapse
|
10
|
Wang Y, Wu N, Li J, Liang J, Zhou D, Cao Q, Li X, Jiang N. The interplay between autophagy and ferroptosis presents a novel conceptual therapeutic framework for neuroendocrine prostate cancer. Pharmacol Res 2024; 203:107162. [PMID: 38554788 DOI: 10.1016/j.phrs.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
In American men, the incidence of prostate cancer (PC) is the highest among all types of cancer, making it the second leading cause of mortality associated with cancer. For advanced or metastatic PC, antiandrogen therapies are standard treatment options. The administration of these treatments unfortunately carries the potential risk of inducing neuroendocrine prostate cancer (NEPC). Neuroendocrine differentiation (NED) serves as a crucial indicator of prostate cancer development, encompassing various factors such as phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), Yes-associated protein 1 (YAP1), AMP-activated protein kinase (AMPK), miRNA. The processes of autophagy and ferroptosis (an iron-dependent form of programmed cell death) play pivotal roles in the regulation of various types of cancers. Clinical trials and preclinical investigations have been conducted on many signaling pathways during the development of NEPC, with the deepening of research, autophagy and ferroptosis appear to be the potential target for regulating NEPC. Due to the dual nature of autophagy and ferroptosis in cancer, gaining a deeper understanding of the developmental programs associated with achieving autophagy and ferroptosis may enhance risk stratification and treatment efficacy for patients with NEPC.
Collapse
Affiliation(s)
- Youzhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ning Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junbo Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jiaming Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qian Cao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institution of Urology, Peking University, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China.
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
11
|
Din ZU, Cui B, Wang C, Zhang X, Mehmood A, Peng F, Liu Q. Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy. Mol Cell Biochem 2024:10.1007/s11010-024-04995-1. [PMID: 38622439 DOI: 10.1007/s11010-024-04995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Lipids are the key component of all membranes composed of a variety of molecules that transduce intracellular signaling and provide energy to the cells in the absence of nutrients. Alteration in lipid metabolism is a major factor for cancer heterogeneity and a newly identified cancer hallmark. Reprogramming of lipid metabolism affects the diverse cancer phenotypes, especially epithelial-mesenchymal transition (EMT). EMT activation is considered to be an essential step for tumor metastasis, which exhibits a crucial role in the biological processes including development, wound healing, and stem cell maintenance, and has been widely reported to contribute pathologically to cancer progression. Altered lipid metabolism triggers EMT and activates multiple EMT-associated oncogenic pathways. Although the role of lipid metabolism-induced EMT in tumorigenesis is an attractive field of research, there are still significant gaps in understanding the underlying mechanisms and the precise contributions of this interplay. Further study is needed to clarify the specific molecular mechanisms driving the crosstalk between lipid metabolism and EMT, as well as to determine the potential therapeutic implications. The increased dependency of tumor cells on lipid metabolism represents a novel therapeutic target, and targeting altered lipid metabolism holds promise as a strategy to suppress EMT and ultimately inhibit metastasis.
Collapse
Grants
- 2022YFA1104002 National Key R&D Program of China
- 2022YFA1104002 National Key R&D Program of China
- 2022YFA1104002 National Key R&D Program of China
- 2022YFA1104002 National Key R&D Program of China
- No. 82373096, No. 82273480, No. 82002960, No. 82003141 National Natural Science Foundation of China
- No. 82373096, No. 82273480, No. 82002960, No. 82003141 National Natural Science Foundation of China
- No. 82373096, No. 82273480, No. 82002960, No. 82003141 National Natural Science Foundation of China
- No. 82373096, No. 82273480, No. 82002960, No. 82003141 National Natural Science Foundation of China
- 2023JH2/101600019 to FP Applied Basic Research Planning Project of Liaoning
- 2023JH2/101600019 to FP Applied Basic Research Planning Project of Liaoning
- 2023JH2/101600019 to FP Applied Basic Research Planning Project of Liaoning
- 2023JH2/101600019 to FP Applied Basic Research Planning Project of Liaoning
- 2023RY013 Science and Technology Talent Innovation Support Policy Implementation Program of Dalian-Outstanding young scientific and technological talents
- 2023RY013 Science and Technology Talent Innovation Support Policy Implementation Program of Dalian-Outstanding young scientific and technological talents
- 2023RY013 Science and Technology Talent Innovation Support Policy Implementation Program of Dalian-Outstanding young scientific and technological talents
- 2023RY013 Science and Technology Talent Innovation Support Policy Implementation Program of Dalian-Outstanding young scientific and technological talents
- 2021RQ004 Dalian High-level Talents Innovation Support Program-Young Science and Technology Star
- 2021RQ004 Dalian High-level Talents Innovation Support Program-Young Science and Technology Star
- 2021RQ004 Dalian High-level Talents Innovation Support Program-Young Science and Technology Star
- 2021RQ004 Dalian High-level Talents Innovation Support Program-Young Science and Technology Star
Collapse
Affiliation(s)
- Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
12
|
Sugawara T, Nevedomskaya E, Heller S, Böhme A, Lesche R, von Ahsen O, Grünewald S, Nguyen HM, Corey E, Baumgart SJ, Georgi V, Pütter V, Fernández‐Montalván A, Vasta JD, Robers MB, Politz O, Mumberg D, Haendler B. Dual targeting of the androgen receptor and PI3K/AKT/mTOR pathways in prostate cancer models improves antitumor efficacy and promotes cell apoptosis. Mol Oncol 2024; 18:726-742. [PMID: 38225213 PMCID: PMC10920092 DOI: 10.1002/1878-0261.13577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024] Open
Abstract
Prostate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy. However, tumor progression due to AR-dependent and AR-independent mechanisms is often observed after some time, and novel treatment strategies are urgently needed. Dysregulation of the PI3K/AKT/mTOR pathway in advanced prostate cancer and its implication in treatment resistance has been reported. We compared the impact of PI3K/AKT/mTOR pathway inhibitors with different selectivity profiles on in vitro cell proliferation and on caspase 3/7 activation as a marker for apoptosis induction, and observed the strongest effects in the androgen-sensitive prostate cancer cell lines VCaP and LNCaP. Combination treatment with the AR inhibitor darolutamide led to enhanced apoptosis in these cell lines, the effects being most pronounced upon cotreatment with the pan-PI3K inhibitor copanlisib. A subsequent transcriptomic analysis performed in VCaP cells revealed that combining darolutamide with copanlisib impacted gene expression much more than individual treatment. A comprehensive reversal of the androgen response and the mTORC1 transcriptional programs as well as a marked induction of DNA damage was observed. Next, an in vivo efficacy study was performed using the androgen-sensitive patient-derived prostate cancer (PDX) model LuCaP 35 and a superior efficacy was observed after the combined treatment with copanlisib and darolutamide. Importantly, immunohistochemistry analysis of these treated tumors showed increased apoptosis, as revealed by elevated levels of cleaved caspase 3 and Bcl-2-binding component 3 (BBC3). In conclusion, these data demonstrate that concurrent blockade of the PI3K/AKT/mTOR and AR pathways has superior antitumor efficacy and induces apoptosis in androgen-sensitive prostate cancer cell lines and PDX models.
Collapse
Affiliation(s)
- Tatsuo Sugawara
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | | | | | | | | | | | | | | | - Eva Corey
- Department of UrologyUniversity of WashingtonSeattleWAUSA
| | - Simon J. Baumgart
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | - Victoria Georgi
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | - Vera Pütter
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | - Amaury Fernández‐Montalván
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
- Present address:
Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RißGermany
| | | | | | - Oliver Politz
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | - Dominik Mumberg
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
- Present address:
Adcento ApSCopenhagenDenmark
| | - Bernard Haendler
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| |
Collapse
|
13
|
Singh M, Kiyuna LA, Odendaal C, Bakker BM, Harms AC, Hankemeier T. Development of targeted hydrophilic interaction liquid chromatography-tandem mass spectrometry method for acyl-Coenzyme A covering short- to long-chain species in a single analytical run. J Chromatogr A 2024; 1714:464524. [PMID: 38056390 DOI: 10.1016/j.chroma.2023.464524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Acyl-CoAs play a significant role in numerous physiological and metabolic processes making it important to assess their concentration levels for evaluating metabolic health. Considering the important role of acyl-CoAs, it is crucial to develop an analytical method that can analyze these compounds. Due to the structural variations of acyl-CoAs, multiple analytical methods are often required for comprehensive analysis of these compounds, which increases complexity and the analysis time. In this study, we have developed a method using a zwitterionic HILIC column that enables the coverage of free CoA and short- to long-chain acyl-CoA species in one analytical run. Initially, we developed the method using an LC-QTOF instrument for the identification of acyl-CoA species and optimizing their chromatography. Later, a targeted HILIC-MS/MS method was created in scheduled multiple reaction monitoring mode using a QTRAP MS detector. The performance of the method was evaluated based on various parameters such as linearity, precision, recovery and matrix effect. This method was applied to identify the difference in acyl-CoA profiles in HepG2 cells cultured in different conditions. Our findings revealed an increase in levels of acetyl-CoA, medium- and long-chain acyl-CoA while a decrease in the profiles of free CoA in the starved state, indicating a clear alteration in the fatty acid oxidation process.
Collapse
Affiliation(s)
- Madhulika Singh
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Ligia Akemi Kiyuna
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, The Netherlands
| | - Christoff Odendaal
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, The Netherlands
| | - Amy C Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands.
| |
Collapse
|
14
|
Luo SH, Tian JM, Chu Y, Zhu HY, Ni JD, Huang J. The BRD4-SRPK2-SRSF2 signal modulates the splicing efficiency of ACSL3 pre-mRNA and influences erastin-induced ferroptosis in osteosarcoma cells. Cell Death Dis 2023; 14:760. [PMID: 37993451 PMCID: PMC10665344 DOI: 10.1038/s41419-023-06273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Lipid metabolism is the key to ferroptosis susceptibility. However, little is known about the underlying mechanisms in osteosarcoma cells. Functional restriction of bromodomain-containing protein 4 (BRD4) reduced the susceptibility to erastin-induced ferroptosis of osteosarcoma cells both in vitro and in vivo. Mechanically, BRD4 controls the splicing efficiency of the RNA precursor (pre-mACSL3) of ACSL3 (ACSL3) by recruiting serinerich/threonine protein kinase 2 (SRPK2) to assemble the splicing catalytic platform. Moreover, the AMP-binding domain of ACSL3 significantly influences arachidonic acid synthesis and thus determines the susceptibility to erastin-induced ferroptosis. Overall, we found a BRD4-mediated pre-mACSL3 splicing influences erastin-induced ferroptosis by affecting arachidonic acid synthesis in osteosarcoma cells. Data in this study fills some of the gap in understanding the post-transcriptional regulatory mechanisms of ACSL3 and provides new insights into the mechanisms of lipid metabolism regulation and its effect on susceptibility to ferroptosis in osteosarcoma cells.
Collapse
Affiliation(s)
- Shun-Hong Luo
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Ming Tian
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Chu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Yi Zhu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Dong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Mallick R, Bhowmik P, Duttaroy AK. Targeting fatty acid uptake and metabolism in cancer cells: A promising strategy for cancer treatment. Biomed Pharmacother 2023; 167:115591. [PMID: 37774669 DOI: 10.1016/j.biopha.2023.115591] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Despite scientific development, cancer is still a fatal disease. The development of cancer is thought to be significantly influenced by fatty acids. Several mechanisms that control fatty acid absorption and metabolism are reported to be altered in cancer cells to support their survival. Cancer cells can use de novo synthesis or uptake of extracellular fatty acid if one method is restricted. This factor makes it more difficult to target one pathway while failing to treat the disease properly. Side effects may also arise if several inhibitors simultaneously target many targets. If a viable inhibitor could work on several routes, the number of negative effects might be reduced. Comparative investigations against cell viability have found several potent natural and manmade substances. In this review, we discuss the complex roles that fatty acids play in the development of tumors and the progression of cancer, newly discovered and potentially effective natural and synthetic compounds that block the uptake and metabolism of fatty acids, the adverse side effects that can occur when multiple inhibitors are used to treat cancer, and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
16
|
Singh M, Elfrink HL, Harms AC, Hankemeier T. Recent developments in the analytical approaches of acyl-CoAs to assess their role in mitochondrial fatty acid oxidation disorders. Mol Genet Metab 2023; 140:107711. [PMID: 39492074 DOI: 10.1016/j.ymgme.2023.107711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Fatty acid oxidation disorders (FAOD) are inborn errors of metabolism that occur due to deficiency of specific enzyme activities and transporter proteins involved in the mitochondrial metabolism of fatty acids, causing a deficiency in ATP production. The identification of suitable biomarkers plays a crucial role in predicting the future risk of disease and monitoring responses to therapies. Acyl-CoAs are directly involved in the steps of fatty acid oxidation and are the primary biomarkers associated with FAOD. However, acyl-CoAs are not used as diagnostic biomarkers in hospitals and clinics as they are present intracellularly with low endogenous levels. Additionally, the analytical method development of acyl-CoAs is quite challenging due to diverse physicochemical properties and instability. Hence, secondary biomarkers such as acylcarnitines are used for the identification of FAOD. In this review, the focus is on the analytical techniques that have evolved over the years for the identification and quantitation of acyl-CoAs. Among these techniques, liquid chromatography-mass spectrometry clearly has an advantage in terms of sensitivity and selectivity. Stable isotope labeling by essential nutrients in cell culture (SILEC) enables the generation of labeled internal standards. Each acyl-CoA species has a distinct pattern of instability and degradation, and the use of appropriately matched internal standards can compensate for such issues. Although significant progress has been made in measuring acyl-CoAs, more efforts are needed for bringing these technical advancements to hospitals and clinics. This review also highlights the difficulties involved in the routine use of acyl-CoAs as a diagnostic biomarker and some of the measures that can be adopted by clinics and hospitals for overcoming these limitations.
Collapse
Affiliation(s)
- Madhulika Singh
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Hyung L Elfrink
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Amy C Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.
| |
Collapse
|
17
|
Liang J, Liao Y, Wang P, Yang K, Wang Y, Wang K, Zhong B, Zhou D, Cao Q, Li J, Zhao Y, Jiang N. Ferroptosis landscape in prostate cancer from molecular and metabolic perspective. Cell Death Discov 2023; 9:128. [PMID: 37061523 PMCID: PMC10105735 DOI: 10.1038/s41420-023-01430-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
Prostate cancer is a major disease that threatens men's health. Its rapid progression, easy metastasis, and late castration resistance have brought obstacles to treatment. It is necessary to find new effective anticancer methods. Ferroptosis is a novel iron-dependent programmed cell death that plays a role in various cancers. Understanding how ferroptosis is regulated in prostate cancer will help us to use it as a new way to kill cancer cells. In this review, we summarize the regulation and role of ferroptosis in prostate cancer and the relationship with AR from the perspective of metabolism and molecular pathways. We also discuss the feasibility of ferroptosis in prostate cancer treatment and describe current limitations and prospects, providing a reference for future research and clinical application of ferroptosis.
Collapse
Affiliation(s)
- Jiaming Liang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yihao Liao
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Pu Wang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Kun Yang
- School of Future Technology, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, China
| | - Youzhi Wang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Keke Wang
- Department of Urology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Boqiang Zhong
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Diansheng Zhou
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Qian Cao
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Junbo Li
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yang Zhao
- Department of Radiology, Tianjin Medical University Second Hospital, Tianjin, China
| | - Ning Jiang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
18
|
Ran M, Hu S, Ouyang Q, Xie H, Zhang X, Lin Y, Li X, Hu J, Li L, He H, Liu H, Wang J. miR-202-5p Inhibits Lipid Metabolism and Steroidogenesis of Goose Hierarchical Granulosa Cells by Targeting ACSL3. Animals (Basel) 2023; 13:ani13030325. [PMID: 36766213 PMCID: PMC9913746 DOI: 10.3390/ani13030325] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
miRNAs are critical for steroidogenesis in granulosa cells (GCs) during ovarian follicular development. We have previously shown that miR-202-5p displays a stage-dependent expression pattern in GCs from goose follicles of different sizes, suggesting that this miRNA could be involved in the regulation of the functions of goose GCs; therefore, in this study, the effects of miR-202-5p on lipid metabolism and steroidogenesis in goose hierarchical follicular GCs (hGCs), as well as its mechanisms of action, were evaluated. Oil Red O staining and analyses of intracellular cholesterol and triglyceride contents showed that the overexpression of miR-202-5p significantly inhibited lipid deposition in hGCs; additionally, miR-202-5p significantly inhibited progesterone secretion in hGCs. A bioinformatics analysis and luciferase reporter assay indicated that Acyl-CoA synthetase long-chain family member 3 (ACSL3), which activates long-chain fatty acids for the synthesis of cellular lipids, is a potential target of miR-202-5p. ACSL3 silencing inhibited lipid deposition and estrogen secretion in hGCs. These data suggest that miR-202-5p exerts inhibitory effects on lipid deposition and steroidogenesis in goose hGCs by targeting the ACSL3 gene.
Collapse
|
19
|
Qian L, Liu YF, Lu SM, Yang JJ, Miao HJ, He X, Huang H, Zhang JG. Construction of a fatty acid metabolism-related gene signature for predicting prognosis and immune response in breast cancer. Front Genet 2023; 14:1002157. [PMID: 36936412 PMCID: PMC10014556 DOI: 10.3389/fgene.2023.1002157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Background: Breast cancer has the highest incidence among malignant tumors in women, and its prevalence ranks first in global cancer morbidity. Aim: This study aimed to explore the feasibility of a prognostic model for patients with breast cancer based on the differential expression of genes related to fatty acid metabolism. Methods: The mRNA expression matrix of breast cancer and paracancer tissues was downloaded from The Cancer Genome Atlas database. The differentially expressed genes related to fatty acid metabolism were screened in R language. The TRRUST database was used to predict transcriptional regulators related to hub genes and construct an mRNA-transcription factor interaction network. A consensus clustering approach was used to identify different fatty acid regulatory patterns. In combination with patient survival data, Lasso and multivariate Cox proportional risk regression models were used to establish polygenic prognostic models based on fatty acid metabolism. The median risk score was used to categorize patients into high- and low-risk groups. Kaplan-Meier survival curves were used to analyze the survival differences between both groups. The Cox regression analysis included risk score and clinicopathological factors to determine whether risk score was an independent risk factor. Models based on genes associated with fatty acid metabolism were evaluated using receiver operating characteristic curves. A comparison was made between risk score levels and the fatty acid metabolism-associated genes in different subtypes of breast cancer. The differential gene sets of the Kyoto Encyclopedia of Genes and Genomes for screening high- and low-risk populations were compared using a gene set enrichment analysis. Furthermore, we utilized CIBERSORT to examine the abundance of immune cells in breast cancer in different clustering models. Results: High expression levels of ALDH1A1 and UBE2L6 prevented breast cancer, whereas high RDH16 expression levels increased its risk. Our comprehensive assessment of the association between prognostic risk scoring models and tumor microenvironment characteristics showed significant differences in the abundance of various immune cells between high- and low-risk breast cancer patients. Conclusions: By assessing fatty acid metabolism patterns, we gained a better understanding of the infiltration characteristics of the tumor microenvironment. Our findings are valuable for prognosis prediction and treatment of patients with breast cancer based on their clinicopathological characteristics.
Collapse
Affiliation(s)
- Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi-Fei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shu-Min Lu
- Department of Oncology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Juan-Juan Yang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua-Jie Miao
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin He
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Hua Huang, ; Jian-Guo Zhang,
| | - Jian-Guo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Hua Huang, ; Jian-Guo Zhang,
| |
Collapse
|
20
|
ACSL3 and ACSL4, Distinct Roles in Ferroptosis and Cancers. Cancers (Basel) 2022; 14:cancers14235896. [PMID: 36497375 PMCID: PMC9739553 DOI: 10.3390/cancers14235896] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The long-chain fatty acyl CoA synthetase (ACSLs) family of enzymes contributes significantly to lipid metabolism and produces acyl-coenzyme A by catalyzing fatty acid oxidation. The dysregulation of ACSL3 and ACSL4, which belong to the five isoforms of ACSLs, plays a key role in cancer initiation, development, metastasis, and tumor immunity and may provide several possible therapeutic strategies. Moreover, ACSL3 and ACSL4 are crucial for ferroptosis, a non-apoptotic cell death triggered by the accumulation of membrane lipid peroxides due to iron overload. Here, we present a summary of the current knowledge on ACSL3 and ACSL4 and their functions in various cancers. Research on the molecular mechanisms involved in the regulation of ferroptosis is critical to developing targeted therapies for cancer.
Collapse
|
21
|
Zhang C, Hu H, Huang R, Huang G, Xi X. ACSL3 is a potential prognostic biomarker for immune infiltration in clear cell renal cell carcinoma. Front Surg 2022; 9:909854. [PMID: 36338658 PMCID: PMC9632962 DOI: 10.3389/fsurg.2022.909854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Long-chain acyl-coenzyme A synthases (ACSLs) catalyze the activation of fatty acid and are often dysregulated in malignancies. The purpose of this research was to figure out the ACSL3's prognostic value and mechanism in clear cell renal cell carcinoma (ccRCC). Methods The expression of ACSL3 in ccRCC was investigated in this work using data from the GEO, TCGA, Oncomine and HPA databases. The expression differences of ACSL3 in the cell lines were further detected by qPCR and Western blot. GEPIA, MethSurv, cBioPortal, and the TIMER were used to perform survival and correlation analysis on ACSL3. GO and KEGG analyses were carried out in R using clusterProfiler and GOplot. Protein-protein interactions (PPI) are constructed from Strings website, and the results were visualized in Cytoscape software. Results The expression level of ACSL3 was significantly reduced in ccRCC tissues, and its mRNA and protein expression were also significantly lower in both renal cancer cell lines. ACSL3 is significantly related to clinical stage, OS, DFS, DNA methylation, and immune-cell infiltration. Conclusion Our findings demonstrated that data mining was capable of eliciting information on ACSL3 levels and its role in genetic regulatory pathways in ccRCC.
Collapse
|
22
|
Krause W. Resistance to prostate cancer treatments. IUBMB Life 2022; 75:390-410. [PMID: 35978491 DOI: 10.1002/iub.2665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022]
Abstract
A review of the current treatment options for prostate cancer and the formation of resistance to these regimens has been compiled including primary, acquired, and cross-resistance. The diversification of the pathways involved and the escape routes the tumor is utilizing have been addressed. Whereas early stages of tumor can be cured, there is no treatment available after a point of no return has been reached, leaving palliative treatment as the only option. The major reasons for this outcome are the heterogeneity of tumors, both inter- and intra-individually and the nearly endless number of escape routes, which the tumor can select to overcome the effects of treatment. This means that more focus should be applied to the individualization of both diagnosis and therapy of prostate cancer. In addition to current treatment options, novel drugs and ongoing clinical trials have been addressed in this review.
Collapse
|
23
|
Antitumor effects of pyrrole-imidazole polyamide modified with alkylating agent on prostate cancer cells. Biochem Biophys Res Commun 2022; 623:9-16. [PMID: 35868070 DOI: 10.1016/j.bbrc.2022.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
Androgens and androgen receptor (AR) have a central role in prostate cancer progression by regulating its downstream signaling. Although androgen depletion therapy (ADT) is the primary treatment for most prostate cancers, they acquires resistance to ADT and become castration resistant prostate cancers (CRPC). AR complex formation with multiple transcription factors is important for enhancer activity and transcriptional regulation, which can contribute to cancer progression and resistance to ADT. We previously demonstrated that OCT1 collaborates with AR in prostate cancer, and that a pyrrole-imidazole (PI) polyamide (PIP) targeting OCT1 inhibits cell and castration-resistant tumor growth (Obinata D et al. Oncogene 2016). PIP can bind to DNA non-covalently without a drug delivery system unlike most DNA targeted therapeutics. In the present study, we developed a PIP modified with a DNA alkylating agent, chlorambucil (ChB) (OCT1-PIP-ChB). Then its effect on the growth of prostate cancer LNCaP, 22Rv1, and PC3 cells, pancreatic cancer BxPC3 cells, and colon cancer HCT116 cells, as well as non-cancerous MCF-10A epithelial cells, were analyzed. It was shown that the IC50s of OCT1-PIP-ChB for 22Rv1 and LNCaP were markedly lower compared to other cells, including non-cancerous MCF-10A cells. Comprehensive gene expression analysis of CRPC model 22Rv1 cells treated with IC50 concentrations of OCT1-PIP-ChB revealed that the gene group involved in DNA double-strand break repair was the most enriched among gene sets repressed by OCT1-PIP-ChB treatment. Importantly, in vivo study using 22Rv1 xenografts, we showed that OCT1-PIP-ChB significantly reduced tumor growth compared to the control group without showing obvious adverse effects. Thus, the PIP combined with ChB can exert a significant inhibitory effect on prostate cancer cell proliferation and castration-resistant tumor growth, suggesting a potential role as a therapeutic agent.
Collapse
|
24
|
Zhang S, Zhong R, Tang S, Han H, Chen L, Zhang H. Baicalin Alleviates Short-Term Lincomycin-Induced Intestinal and Liver Injury and Inflammation in Infant Mice. Int J Mol Sci 2022; 23:ijms23116072. [PMID: 35682750 PMCID: PMC9181170 DOI: 10.3390/ijms23116072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
The adverse effects of short-term megadose of antibiotics exposure on the gastrointestinal and liver tissue reactions in young children have been reported. Antibiotic-induced intestinal and liver reactions are usually unpredictable and present a poorly understood pathogenesis. It is, therefore, necessary to develop strategies for reducing the adverse effects of antibiotics. Studies on the harm and rescue measures of antibiotics from the perspective of the gut–liver system are lacking. Here, we demonstrate that lincomycin exposure reduced body weight, disrupted the composition of gut microbiota and intestinal morphology, triggered immune-mediated injury and inflammation, caused liver dysfunction, and affected lipid metabolism. However, baicalin administration attenuated the lincomycin-induced changes. Transcriptome analysis showed that baicalin improved immunity in mice, as evidenced by the decreased levels of intestinal inflammatory cytokines and expression of genes that regulate Th1, Th2, and Th17 cell differentiation, and inhibited mucin type O-glycan biosynthesis pathways. In addition, baicalin improved liver function by upregulating the expression of genes involved in bile acid secretion and lipid degradation, and downregulating genes involved in lipid synthesis in lincomycin-treated mice. Bile acids can regulate intestinal immunity and strengthen hepatoenteric circulation. In addition, baicalin also improved anti-inflammatory bacteria abundance (Blautia and Coprobacillus) and reduced pathogenic bacteria abundance (Proteobacteria, Klebsiella, and Citrobacter) in lincomycin-treated mice. Thus, baicalin can ameliorate antibiotic-induced injury and its associated complications such as liver disease.
Collapse
Affiliation(s)
| | | | | | | | - Liang Chen
- Correspondence: (L.C.); (H.Z.); Tel.: +86-10-6281-8910 (L.C.); Fax: +86-10-6281-6013 (H.Z.)
| | - Hongfu Zhang
- Correspondence: (L.C.); (H.Z.); Tel.: +86-10-6281-8910 (L.C.); Fax: +86-10-6281-6013 (H.Z.)
| |
Collapse
|
25
|
Obinata D, Funakoshi D, Takayama K, Hara M, Niranjan B, Teng L, Lawrence MG, Taylor RA, Risbridger GP, Suzuki Y, Takahashi S, Inoue S. OCT1-target neural gene PFN2 promotes tumor growth in androgen receptor-negative prostate cancer. Sci Rep 2022; 12:6094. [PMID: 35413990 PMCID: PMC9005514 DOI: 10.1038/s41598-022-10099-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Androgen and androgen receptor (AR) targeted therapies are the main treatment for most prostate cancer (PC) patients. Although AR signaling inhibitors are effective, tumors can evade this treatment by transforming to an AR-negative PC via lineage plasticity. OCT1 is a transcription factor interacting with the AR to enhance signaling pathways involved in PC progression, but its role in the emergence of the AR-negative PC is unknown. We performed chromatin immunoprecipitation sequencing (ChIP-seq) in patient-derived castration-resistant AR-negative PC cells to identify genes that are regulated by OCT1. Interestingly, a group of genes associated with neural precursor cell proliferation was significantly enriched. Then, we focused on neural genes STNB1 and PFN2 as OCT1-targets among them. Immunohistochemistry revealed that both STNB1 and PFN2 are highly expressed in human AR-negative PC tissues. Knockdown of SNTB1 and PFN2 by siRNAs significantly inhibited migration of AR-negative PC cells. Notably, knockdown of PFN2 showed a marked inhibitory effect on tumor growth in vivo. Thus, we identified OCT1-target genes in AR-negative PC using a patient-derived model, clinicopathologial analysis and an animal model.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan.,Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Daigo Funakoshi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Birunthi Niranjan
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Linda Teng
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Mitchell G Lawrence
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.,Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.,Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia.,Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Physiology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Gail P Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.,Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences Graduate School of Frontier Sciences, University of Tokyo, 5-1-5, Kashiwanoha, Chiba, Chiba, 277-8562, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan. .,Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan.
| |
Collapse
|
26
|
Urbanek KA, Kowalska K, Habrowska-Górczyńska DE, Domińska K, Sakowicz A, Piastowska-Ciesielska AW. In Vitro Analysis of Deoxynivalenol Influence on Steroidogenesis in Prostate. Toxins (Basel) 2021; 13:toxins13100685. [PMID: 34678978 PMCID: PMC8539121 DOI: 10.3390/toxins13100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Deoxynivalenol (DON) is a type-B trichothecene mycotoxin produced by Fusarium species, reported to be the most common mycotoxin present in food and feed products. DON is known to affect the production of testosterone, follicle stimulating hormone (FSH) and luteinizing hormone (LH) in male rats, consequently affecting reproductive endpoints. Our previous study showed that DON induces oxidative stress in prostate cancer (PCa) cells, however the effect of DON on the intratumor steroidogenesis in PCa and normal prostate cells was not investigated. In this study human normal (PNT1A) and prostate cancer cell lines with different hormonal sensitivity (PC-3, DU-145, LNCaP) were exposed to DON treatment alone or in combination with dehydroepiandrosterone (DHEA) for 48 h. The results of the study demonstrated that exposure to DON alone or in combination with DHEA had a stimulatory effect on the release of estradiol and testosterone and also affected progesterone secretion. Moreover, significant changes were observed in the expression of genes related to steroidogenesis. Taken together, these results indicate that DON might affect the process of steroidogenesis in the prostate, demonstrating potential reproductive effects in humans.
Collapse
Affiliation(s)
- Kinga Anna Urbanek
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (K.A.U.); (K.K.); (D.E.H.-G.)
| | - Karolina Kowalska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (K.A.U.); (K.K.); (D.E.H.-G.)
| | - Dominika Ewa Habrowska-Górczyńska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (K.A.U.); (K.K.); (D.E.H.-G.)
| | - Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (K.A.U.); (K.K.); (D.E.H.-G.)
- Correspondence:
| |
Collapse
|
27
|
Quan J, Bode AM, Luo X. ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur J Pharmacol 2021; 909:174397. [PMID: 34332918 DOI: 10.1016/j.ejphar.2021.174397] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022]
Abstract
Accumulating evidence shows that deregulation of fatty acid (FA) metabolism is associated with the development of cancer. Long-chain acyl-coenzyme A synthases (ACSLs) are responsible for activating long-chain FAs and are frequently deregulated in cancers. Among the five mammalian ACSL family members, ACSL1 is involved in the TNFα-mediated pro-inflammatory phenotype and mainly facilitates cancer progression. ACSL3 is an androgen-responsive gene. High ACSL3 expression has been detected in a variety of cancers, including melanoma, triple-negative breast cancer (TNBC) and high-grade non-small cell lung carcinoma (NSCLC), and correlates with worse prognosis of patients with these diseases. ACSL4 can exert opposing roles acting as a tumor suppressor or as an oncogene depending on the specific cancer type and tissue environment. Moreover, ACSL4 behaves as a crucial regulator in ferroptosis that is defined as a cell death process caused by iron-dependent peroxidation of lipids. ACSL5 is nuclear-coded and expressed in the mitochondria and physiologically participates in the pro-apoptotic sensing of cells. ACSL5 mainly acts as a tumor suppressor in cancers. ACSL6 downregulation has been observed in many forms of cancers, except in colorectal cancer (CRC). Here, we address the differential regulatory mechanisms of the ACSL family members as well as their functions in carcinogenesis. Moreover, we enumerate the clinical therapeutic implications of ACSLs, which might serve as valuable biomarkers and therapeutic targets for precision cancer treatment.
Collapse
Affiliation(s)
- Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, 410078, China; Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
28
|
Ghasemishahrestani Z, Melo Mattos LM, Tilli TM, Santos ALSD, Pereira MD. Pieces of the Complex Puzzle of Cancer Cell Energy Metabolism: An Overview of Energy Metabolism and Alternatives for Targeted Cancer Therapy. Curr Med Chem 2021; 28:3514-3534. [PMID: 32814521 DOI: 10.2174/0929867327999200819123357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
Over the past decades, several advances in cancer cell biology have led to relevant details about a phenomenon called the 'Warburg effect'. Currently, it has been accepted that the Warburg effect is not compatible with all cancer cells, and thus the process of aerobic glycolysis is now challenged by the knowledge of a large number of cells presenting mitochondrial function. The energy metabolism of cancer cells is focused on the bioenergetic and biosynthetic pathways in order to meet the requirements of rapid proliferation. Changes in the metabolism of carbohydrates, amino acids and lipids have already been reported for cancer cells and this might play an important role in cancer progression. To the best of our knowledge, these changes are mainly attributed to genetic reprogramming which leads to the transformation of a healthy into a cancerous cell. Indeed, several enzymes that are highly relevant for cellular energy are targets of oncogenes (e.g. PI3K, HIF1, and Myc) and tumor suppressor proteins (e.g. p53). As a consequence of extensive studies on cancer cell metabolism, some new therapeutic strategies have appeared that aim to interrupt the aberrant metabolism, in addition to influencing genetic reprogramming in cancer cells. In this review, we present an overview of cancer cell metabolism (carbohydrate, amino acid, and lipid), and also describe oncogenes and tumor suppressors that directly affect the metabolism. We also discuss some of the potential therapeutic candidates which have been designed to target and disrupt the main driving forces associated with cancer cell metabolism and proliferation.
Collapse
Affiliation(s)
- Zeinab Ghasemishahrestani
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Maura Melo Mattos
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Martins Tilli
- Centro de Desenvolvimento Tecnologico em Saude, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Dias Pereira
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Ferroptosis-Related Gene Model to Predict Overall Survival of Ovarian Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:6687391. [PMID: 33519933 PMCID: PMC7817275 DOI: 10.1155/2021/6687391] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
Abstract
Background Ovarian cancer (OC) is the eighth most common cause of cancer death and the second cause of gynecologic cancer death in women around the world. Ferroptosis, an iron-dependent regulated cell death, plays a vital role in the development of many cancers. Applying expression of ferroptosis-related gene to forecast the cancer progression is helpful for cancer treatment. However, the relationship between ferroptosis-related genes and OC patient prognosis is still vastly unknown, making it still a challenge for developing ferroptosis therapy for OC. Methods The Cancer Genome Atlas (TCGA) data of OC were obtained and the datasets were randomly divided into training and test datasets. A novel ferroptosis-related gene signature associated with overall survival (OS) was constructed according to the training cohort. The test dataset and ICGC dataset were used to validate this signature. Results We constructed a model containing nine ferroptosis-related genes, namely, LPCAT3, ACSL3, CRYAB, PTGS2, ALOX12, HSBP1, SLC1A5, SLC7A11, and ZEB1, and predicted the OS of OC in TCGA. At a suitable cutoff, patients were divided into low risk and high risk groups. The OS curves of the two groups of patients had significant differences, and the time-dependent receiver operating characteristics (ROCs) were as high as 0.664, respectively. Then, the test dataset and the ICGC dataset were used to evaluate our model, and the ROCs of test dataset were 0.667 and 0.777, respectively. In addition, functional analysis and correlation analysis showed that immune-related pathways were significantly enriched. Meanwhile, we also integrated with other clinical factors and we found the synthesized clinical factors and ferroptosis-related gene signature improved prognostic accuracy relative to the ferroptosis-related gene signature alone. Conclusion The ferroptosis-related gene signature could predict the OS of OC patients and improve therapeutic decision-making.
Collapse
|
30
|
Siddappa M, Wani SA, Long MD, Leach DA, Mathé EA, Bevan CL, Campbell MJ. Identification of transcription factor co-regulators that drive prostate cancer progression. Sci Rep 2020; 10:20332. [PMID: 33230156 PMCID: PMC7683598 DOI: 10.1038/s41598-020-77055-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
In prostate cancer (PCa), and many other hormone-dependent cancers, there is clear evidence for distorted transcriptional control as disease driver mechanisms. Defining which transcription factor (TF) and coregulators are altered and combine to become oncogenic drivers remains a challenge, in part because of the multitude of TFs and coregulators and the diverse genomic space on which they function. The current study was undertaken to identify which TFs and coregulators are commonly altered in PCa. We generated unique lists of TFs (n = 2662), coactivators (COA; n = 766); corepressors (COR; n = 599); mixed function coregulators (MIXED; n = 511), and to address the challenge of defining how these genes are altered we tested how expression, copy number alterations and mutation status varied across seven prostate cancer (PCa) cohorts (three of localized and four advanced disease). Testing of significant changes was undertaken by bootstrapping approaches and the most significant changes were identified. For one commonly and significantly altered gene were stably knocked-down expression and undertook cell biology experiments and RNA-Seq to identify differentially altered gene networks and their association with PCa progression risks. COAS, CORS, MIXED and TFs all displayed significant down-regulated expression (q.value < 0.1) and correlated with protein expression (r 0.4-0.55). In localized PCa, stringent expression filtering identified commonly altered TFs and coregulator genes, including well-established (e.g. ERG) and underexplored (e.g. PPARGC1A, encodes PGC1α). Reduced PPARGC1A expression significantly associated with worse disease-free survival in two cohorts of localized PCa. Stable PGC1α knockdown in LNCaP cells increased growth rates and invasiveness and RNA-Seq revealed a profound basal impact on gene expression (~ 2300 genes; FDR < 0.05, logFC > 1.5), but only modestly impacted PPARγ responses. GSEA analyses of the PGC1α transcriptome revealed that it significantly altered the AR-dependent transcriptome, and was enriched for epigenetic modifiers. PGC1α-dependent genes were overlapped with PGC1α-ChIP-Seq genes and significantly associated in TCGA with higher grade tumors and worse disease-free survival. These methods and data demonstrate an approach to identify cancer-driver coregulators in cancer, and that PGC1α expression is clinically significant yet underexplored coregulator in aggressive early stage PCa.
Collapse
Affiliation(s)
- Manjunath Siddappa
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, 536 Parks Hall, 500 West 12th Ave, Columbus, OH, 43210, USA
| | - Sajad A Wani
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, 536 Parks Hall, 500 West 12th Ave, Columbus, OH, 43210, USA
| | - Mark D Long
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
| | - Damien A Leach
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Ewy A Mathé
- Biomedical Informatics Department, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr, Rockville, MD, 20892, USA
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Moray J Campbell
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, 536 Parks Hall, 500 West 12th Ave, Columbus, OH, 43210, USA. .,The James, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Biomedical Informatics Shared Resource, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
31
|
Fernández LP, Merino M, Colmenarejo G, Moreno-Rubio J, Sánchez-Martínez R, Quijada-Freire A, Gómez de Cedrón M, Reglero G, Casado E, Sereno M, Ramírez de Molina A. Metabolic enzyme ACSL3 is a prognostic biomarker and correlates with anticancer effectiveness of statins in non-small cell lung cancer. Mol Oncol 2020; 14:3135-3152. [PMID: 33030783 PMCID: PMC7718959 DOI: 10.1002/1878-0261.12816] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common cancers, still characterized by high mortality rates. As lipid metabolism contributes to cancer metabolic reprogramming, several lipid metabolism genes are considered prognostic biomarkers of cancer. Statins are a class of lipid-lowering compounds used in treatment of cardiovascular disease that are currently studied for their antitumor effects. However, their exact mechanism of action and specific conditions in which they should be administered remains unclear. Here, we found that simvastatin treatment effectively promoted antiproliferative effects and modulated lipid metabolism-related pathways in non-small cell lung cancer (NSCLC) cells and that the antiproliferative effects of statins were potentiated by overexpression of acyl-CoA synthetase long-chain family member 3 (ACSL3). Moreover, ACSL3 overexpression was associated with worse clinical outcome in patients with high-grade NSCLC. Finally, we found that patients with high expression levels of ACSL3 displayed a clinical benefit of statins treatment. Therefore, our study highlights ACSL3 as a prognostic biomarker for NSCLC, useful to select patients who would obtain a clinical benefit from statin administration.
Collapse
Affiliation(s)
| | - María Merino
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Juan Moreno-Rubio
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | | | | | | | - Guillermo Reglero
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - María Sereno
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | | |
Collapse
|
32
|
Ma Y, Zhang X, Alsaidan OA, Yang X, Sulejmani E, Zha J, Beharry Z, Huang H, Bartlett M, Lewis Z, Cai H. Long-Chain Acyl-CoA Synthetase 4-Mediated Fatty Acid Metabolism Sustains Androgen Receptor Pathway-Independent Prostate Cancer. Mol Cancer Res 2020; 19:124-135. [PMID: 33077484 DOI: 10.1158/1541-7786.mcr-20-0379] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
Androgen deprivation therapy has led to elevated cases of androgen receptor (AR) pathway-independent prostate cancer with dysregulated fatty acid metabolism. However, it is unclear how prostate cancer cells sustain dysregulated fatty acid metabolism to drive AR-independent prostate cancer. Long-chain acyl-CoA synthetases (ACSL) catalyze the conversion of fatty acids into fatty acyl-CoAs that are required for fatty acid metabolism. In this study, we demonstrate that expression levels of ACSL3 and 4 were oppositely regulated by androgen-AR signaling in prostate cancer cells. AR served as a transcription suppressor to bind at the ACSL4 promoter region and inhibited its transcription. Inhibition of androgen-AR signaling significantly downregulated ACSL3 and PSA, but elevated ACSL4 levels. ACSL4 regulated a broad spectrum of fatty acyl-CoA levels, and its catalytic efficiency in fatty acyl-CoAs biosynthesis was about 1.9- to 4.3-fold higher than ACSL3. In addition, in contrast to ACSL3, ACSL4 significantly regulated global protein myristoylation or myristoylation of Src kinase in prostate cancer cells. Knockdown of ACSL4 inhibited the proliferation, migration, invasion, and xenograft growth of AR-independent prostate cancer cells. Our results suggest that the surge of ACSL4 levels by targeting AR signaling increases fatty acyl-CoAs biosynthesis and protein myristoylation, indicating the opposite, yet complementary or Yin-Yang regulation of ACSL3 and 4 levels in sustaining fatty acid metabolism when targeting androgen-AR signaling. This study reveals a mechanistic understanding of ACSL4 as a potential therapeutic target for treatment of AR-independent prostate cancer. IMPLICATIONS: AR coordinately regulates the expression of ACSL3 and ACSL4, such that AR pathway-independent prostate tumors become dependent on ACSL4-mediated fatty acid metabolism.
Collapse
Affiliation(s)
- Yongjie Ma
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Xiaohan Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Essilvo Sulejmani
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Junyi Zha
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Zanna Beharry
- Department of Chemical and Physical Sciences, University of the Virgin Islands, St. Thomas, Virgin Islands
| | - Hanwen Huang
- Department of Epidemiology & Biostatistics, University of Georgia Athens, Athens, Georgia
| | - Michael Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Zachary Lewis
- Department of Microbiology, University of Georgia Athens, Athens, Georgia
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia.
| |
Collapse
|
33
|
Obinata D, Lawrence MG, Takayama K, Choo N, Risbridger GP, Takahashi S, Inoue S. Recent Discoveries in the Androgen Receptor Pathway in Castration-Resistant Prostate Cancer. Front Oncol 2020; 10:581515. [PMID: 33134178 PMCID: PMC7578370 DOI: 10.3389/fonc.2020.581515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
The androgen receptor (AR) is the main therapeutic target in advanced prostate cancer, because it regulates the growth and progression of prostate cancer cells. Patients may undergo multiple lines of AR-directed treatments, including androgen-deprivation therapy, AR signaling inhibitors (abiraterone acetate, enzalutamide, apalutamide, or darolutamide), or combinations of these therapies. Yet, tumors inevitably develop resistance to the successive lines of treatment. The diverse mechanisms of resistance include reactivation of the AR and dysregulation of AR cofactors and collaborative transcription factors (TFs). Further elucidating the nexus between the AR and collaborative TFs may reveal new strategies targeting the AR directly or indirectly, such as targeting BET proteins or OCT1. However, appropriate preclinical models will be required to test the efficacy of these approaches. Fortunately, an increasing variety of patient-derived models, such as xenografts and organoids, are being developed for discovery-based research and preclinical drug screening. Here we review the mechanisms of drug resistance in the AR signaling pathway, the intersection with collaborative TFs, and the use of patient-derived models for novel drug discovery.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Mitchell G. Lawrence
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Nicholas Choo
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Gail P. Risbridger
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
34
|
Kamada S, Takeiwa T, Ikeda K, Horie-Inoue K, Inoue S. Long Non-coding RNAs Involved in Metabolic Alterations in Breast and Prostate Cancers. Front Oncol 2020; 10:593200. [PMID: 33123488 PMCID: PMC7573247 DOI: 10.3389/fonc.2020.593200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Breast and prostate cancers are the most prevalent cancers in females and males, respectively. These cancers exhibit sex hormone dependence and thus, hormonal therapies are used to treat these cancers. However, acquired resistance to hormone therapies is a major clinical problem. In addition, certain portions of these cancers initially exhibit hormone-independence due to the absence of sex hormone receptors. Therefore, precise and profound understanding of the cancer pathophysiology is required to develop novel clinical strategies against breast and prostate cancers. Metabolic reprogramming is currently recognized as one of the hallmarks of cancer, as exemplified by the alteration of glucose metabolism, oxidative phosphorylation, and lipid metabolism. Dysregulation of metabolic enzymes and their regulators such as kinases, transcription factors, and other signaling molecules contributes to metabolic alteration in cancer. Moreover, accumulating lines of evidence reveal that long non-coding RNAs (lncRNAs) regulate cancer development and progression by modulating metabolism. Understanding the mechanism and function of lncRNAs associated with cancer-specific metabolic alteration will therefore provide new knowledge for cancer diagnosis and treatment. This review provides an overview of recent studies regarding the role of lncRNAs in metabolism in breast and prostate cancers, with a focus on both sex hormone-dependent and -independent pathways.
Collapse
Affiliation(s)
- Shuhei Kamada
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihiko Takeiwa
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
35
|
Shafiee-Kermani F, Carney ST, Jima D, Utin UC, Farrar LB, Oputa MO, Hines MR, Kinyamu HK, Trotter KW, Archer TK, Hoyo C, Koller BH, Freedland SJ, Grant DJ. Expression of UDP Glucuronosyltransferases 2B15 and 2B17 is associated with methylation status in prostate cancer cells. Epigenetics 2020; 16:289-299. [PMID: 32660355 DOI: 10.1080/15592294.2020.1795601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies have suggested that abrogated expression of detoxification enzymes, UGT2B15 and UGT2B17, are associated with prostate tumour risk and progression. We investigated the role of EGF on the expression of these enzymes since it interacts with signalling pathways to also affect prostate tumour progression and is additionally associated with decreased DNA methylation. The expression of UGT2B15, UGT2B17, de novo methyltransferases, DNMT3A and DNMT3B was assessed in prostate cancer cells (LNCaP) treated with EGF, an EGFR inhibitor PD16893, and the methyltransferase inhibitor, 5-azacytidine, respectively. The results showed that EGF treatment decreased levels of expression of all four genes and that their expression was reversed by PD16893. Treatment with 5-azacytidine, markedly decreased expression of UGT2B15 and UGT2B17 over 85% as well as significantly decreased expression of DNMT3B, but not the expression of DNMT3A. DNMT3B siRNA treated LNCaP cells had decreased expression of UGT2B15 and UGT2B17, while DNMT3A siRNA treated cells had only moderately decreased UGT2B15 expression. Treatment with DNMT methyltransferase inhibitor, RG108, significantly decreased UGT2B17 expression. Additionally, methylation differences between prostate cancer samples and benign prostate samples from an Illumina 450K Methylation Array study were assessed. The results taken together suggest that hypomethylation of the UGT2B15 and UGT2B17 genes contributes to increased risk of prostate cancer and may provide a putative biomarker or epigenetic target for chemotherapeutics. Mechanistic studies are warranted to determine the role of the methylation marks in prostate cancer.
Collapse
Affiliation(s)
- Farideh Shafiee-Kermani
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| | - Skyla T Carney
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| | - Dereje Jima
- Bioinformatics Research Center, Ricks Hall, 1 Lampe Dr, North Carolina State University , Raleigh, NC, USA.,Center of Human Health and the Environment, North Carolina State University , Raleigh, NC, USA
| | - Utibe C Utin
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| | - LaNeisha B Farrar
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| | - Melvin O Oputa
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| | - Marcono R Hines
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| | - H Karimi Kinyamu
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park , NC, USA
| | - Kevin W Trotter
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park , NC, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park , NC, USA
| | - Cathrine Hoyo
- Center of Human Health and the Environment, North Carolina State University , Raleigh, NC, USA.,Epidemiology and Environmental Epigenomics Laboratory, Department of Biological Sciences, Center of Human Health and the Environment, North Carolina State University , Raleigh, NC, USA
| | - Beverly H Koller
- Department of Genetics UNC School of Medicine, University of North Carolina at Chapel Hill , NC, USA
| | - Stephen J Freedland
- Cedars-Sinai Health System Center for Integrated Research on Cancer and Lifestyles , Cancer Genetics and Prevention Program, Surgery, Los Angeles, CA, USA
| | - Delores J Grant
- Center of Human Health and the Environment, North Carolina State University , Raleigh, NC, USA.,Department of Biological and Biomedical Sciences, Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University , Durham, NC, USA
| |
Collapse
|
36
|
Crumbaker M, Chan EKF, Gong T, Corcoran N, Jaratlerdsiri W, Lyons RJ, Haynes AM, Kulidjian AA, Kalsbeek AMF, Petersen DC, Stricker PD, Jamieson CAM, Croucher PI, Hovens CM, Joshua AM, Hayes VM. The Impact of Whole Genome Data on Therapeutic Decision-Making in Metastatic Prostate Cancer: A Retrospective Analysis. Cancers (Basel) 2020; 12:E1178. [PMID: 32392735 PMCID: PMC7280976 DOI: 10.3390/cancers12051178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND While critical insights have been gained from evaluating the genomic landscape of metastatic prostate cancer, utilizing this information to inform personalized treatment is in its infancy. We performed a retrospective pilot study to assess the current impact of precision medicine for locally advanced and metastatic prostate adenocarcinoma and evaluate how genomic data could be harnessed to individualize treatment. METHODS Deep whole genome-sequencing was performed on 16 tumour-blood pairs from 13 prostate cancer patients; whole genome optical mapping was performed in a subset of 9 patients to further identify large structural variants. Tumour samples were derived from prostate, lymph nodes, bone and brain. RESULTS Most samples had acquired genomic alterations in multiple therapeutically relevant pathways, including DNA damage response (11/13 cases), PI3K (7/13), MAPK (10/13) and Wnt (9/13). Five patients had somatic copy number losses in genes that may indicate sensitivity to immunotherapy (LRP1B, CDK12, MLH1) and one patient had germline and somatic BRCA2 alterations. CONCLUSIONS Most cases, whether primary or metastatic, harboured therapeutically relevant alterations, including those associated with PARP inhibitor sensitivity, immunotherapy sensitivity and resistance to androgen pathway targeting agents. The observed intra-patient heterogeneity and presence of genomic alterations in multiple growth pathways in individual cases suggests that a precision medicine model in prostate cancer needs to simultaneously incorporate multiple pathway-targeting agents. Our whole genome approach allowed for structural variant assessment in addition to the ability to rapidly reassess an individual's molecular landscape as knowledge of relevant biomarkers evolve. This retrospective oncological assessment highlights the genomic complexity of prostate cancer and the potential impact of assessing genomic data for an individual at any stage of the disease.
Collapse
Affiliation(s)
- Megan Crumbaker
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
- Kinghorn Cancer Centre, Department of Medical Oncology, St. Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Eva K. F. Chan
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
| | - Tingting Gong
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- Central Clinical School, University of Sydney, Sydney, Camperdown, NSW 2050, Australia
| | - Niall Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, VIC 3121, Australia;
- Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
- Division of Urology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Weerachai Jaratlerdsiri
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
| | - Ruth J. Lyons
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
| | - Anne-Maree Haynes
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
| | - Anna A. Kulidjian
- Department of Orthopedic Surgery, Scripps Clinic, La Jolla, CA 92037, USA.;
- Orthopedic Oncology Program, Scripps MD Anderson Cancer Center, La Jolla, CA 92037, USA
| | - Anton M. F. Kalsbeek
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
| | - Desiree C. Petersen
- The Centre for Proteomic and Genomic Research, Cape Town 7925, South Africa;
| | - Phillip D. Stricker
- Department of Urology, St. Vincent’s Hospital, Darlinghurst, NSW 2010, Australia;
| | - Christina A. M. Jamieson
- Department of Urology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA;
| | - Peter I. Croucher
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
| | - Christopher M. Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, VIC 3121, Australia;
- Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony M. Joshua
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
- Kinghorn Cancer Centre, Department of Medical Oncology, St. Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Vanessa M. Hayes
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
- Central Clinical School, University of Sydney, Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
37
|
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT Factors and Metabolic Pathways in Cancer. Front Oncol 2020; 10:499. [PMID: 32318352 PMCID: PMC7154126 DOI: 10.3389/fonc.2020.00499] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) represents a biological program during which epithelial cells lose their cell identity and acquire a mesenchymal phenotype. EMT is normally observed during organismal development, wound healing and tissue fibrosis. However, this process can be hijacked by cancer cells and is often associated with resistance to apoptosis, acquisition of tissue invasiveness, cancer stem cell characteristics, and cancer treatment resistance. It is becoming evident that EMT is a complex, multifactorial spectrum, often involving episodic, transient or partial events. Multiple factors have been causally implicated in EMT including transcription factors (e.g., SNAIL, TWIST, ZEB), epigenetic modifications, microRNAs (e.g., miR-200 family) and more recently, long non-coding RNAs. However, the relevance of metabolic pathways in EMT is only recently being recognized. Importantly, alterations in key metabolic pathways affect cancer development and progression. In this review, we report the roles of key EMT factors and describe their interactions and interconnectedness. We introduce metabolic pathways that are involved in EMT, including glycolysis, the TCA cycle, lipid and amino acid metabolism, and characterize the relationship between EMT factors and cancer metabolism. Finally, we present therapeutic opportunities involving EMT, with particular focus on cancer metabolic pathways.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Venetsana Kyriazopoulou
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Apostolos Zaravinos
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar.,Department of Life Sciences European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
38
|
Sun X, Yang S, Feng X, Zheng Y, Zhou J, Wang H, Zhang Y, Sun H, He C. The modification of ferroptosis and abnormal lipometabolism through overexpression and knockdown of potential prognostic biomarker perilipin2 in gastric carcinoma. Gastric Cancer 2020; 23:241-259. [PMID: 31520166 DOI: 10.1007/s10120-019-01004-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND To investigate the biological relationship, mechanism between perilipin2 and the occurrence, advancement of gastric carcinoma, and explore the mechanism of lipid metabolism disorder leading to gastric neoplasm, and propose that perilipin2 is presumably considered as a potential molecular biomarker of gastric carcinoma. METHODS RNA-seq was applied to analyze perilipin2 and differentially expressed genes modulated by perilipin2 in neoplastic tissues of both perilipin2 overexpression and knockdown groups in vivo. The mechanism was discovered and confirmed by Rt-qPCR, immunoblotting, immunohistochemistry, staining and microassay, respectively. Cellular function experiments were performed by flow cytometry, CCK8, clonogenic assay, etc. RESULTS: Overexpression and knockdown of perilipin2 augmented the proliferation and apoptosis of gastric carcinoma cell lines SGC7901 and MGC803, respectively. The neoplastic cells with perilipin2-overexpression obtained more conspicuously rapid growth than knockdown group in vivo, and perilipin2 affected the proliferation and apoptosis of gastric carcinoma cells by modulating the related genes:acyl-coa synthetase long-chain family member 3, arachidonate 15-lipoxygenase, microtubule associated protein 1 light chain 3 alpha, pr/set domain 11 and importin 7 that were participated in Ferroptosis pathway. Moreover, RNA-seq indicated perilipin2 was an indispensable gene and protein in the suppression of Ferroptosis caused by abnormal lipometabolism in gastric carcinoma. CONCLUSION Our study expounded the facilitation of perilipin2 in regulating the proliferation and apoptosis of gastric carcinoma cells by modification in Ferroptosis pathway, and we interpreted that the mechanism of gastric neoplasm caused by obesity, we also discovered that pr/set domain 11 and importin 7 are novel transcription factors relevant to gastric carcinoma. Furthermore, perilipin2 probably serves not only as a diagnostic biomarker, but also a new therapeutic target.
Collapse
Affiliation(s)
- Xiaoying Sun
- Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China.
| | - Shaojuan Yang
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xuechao Feng
- College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yaowu Zheng
- College of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Institute of Cardiovascular Research, University of California, San Francisco, CA, 94101, USA
| | - Jinsong Zhou
- Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China
| | - Hai Wang
- Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China
| | - Yucheng Zhang
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China
- Department of Science Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Hongyan Sun
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China
- Department of Tissue Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chengyan He
- Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China.
| |
Collapse
|
39
|
A Role of the Heme Degradation Pathway in Shaping Prostate Inflammatory Responses and Lipid Metabolism. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:830-843. [PMID: 32035059 DOI: 10.1016/j.ajpath.2019.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms of prostate inflammation are unclear. We hypothesized that heme oxygenase 1 (HMOX1; HO-1), an enzyme responsible for degradation of heme to carbon monoxide, bilirubin, and iron, is an important regulator of inflammation and epithelial responses in the prostate. Injection of non-uropathogenic Escherichia coli (MG1655 strain) or phosphate-buffered saline into the urethra of mice led to increased numbers of CD45+ leukocytes and mitotic markers (phosphorylated histone H3 and phosphorylated ERK1/2) in the prostate glands. Leukocyte infiltration was elevated in the prostates harvested from mice lacking HO-1 in myeloid compartment. Conversely, exogenous carbon monoxide (250 ppm) increased IL-1β levels and suppressed cell proliferation in the prostates. Carbon monoxide did not affect the number of infiltrating CD45+ cells in the prostates of E. coli- or phosphate-buffered saline-treated mice. Interestingly, immunomodulatory effects of HO-1 and/or carbon monoxide correlated with early induction of the long-chain acyl-CoA synthetase 1 (ACSL1). ACSL1 levels were elevated in response to E. coli treatment, and macrophage-expressed ACSL1 was in part required for controlling of IL-1β expression and prostate cancer cell colony growth in soft agar. These results suggest that HO-1 and/or carbon monoxide might play a distinctive role in modulating prostate inflammation, cell proliferation, and IL-1β levels in part via an ACSL1-mediated pathway.
Collapse
|
40
|
Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer 2020; 122:4-22. [PMID: 31819192 PMCID: PMC6964678 DOI: 10.1038/s41416-019-0650-z] [Citation(s) in RCA: 845] [Impact Index Per Article: 211.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023] Open
Abstract
A common feature of cancer cells is their ability to rewire their metabolism to sustain the production of ATP and macromolecules needed for cell growth, division and survival. In particular, the importance of altered fatty acid metabolism in cancer has received renewed interest as, aside their principal role as structural components of the membrane matrix, they are important secondary messengers, and can also serve as fuel sources for energy production. In this review, we will examine the mechanisms through which cancer cells rewire their fatty acid metabolism with a focus on four main areas of research. (1) The role of de novo synthesis and exogenous uptake in the cellular pool of fatty acids. (2) The mechanisms through which molecular heterogeneity and oncogenic signal transduction pathways, such as PI3K-AKT-mTOR signalling, regulate fatty acid metabolism. (3) The role of fatty acids as essential mediators of cancer progression and metastasis, through remodelling of the tumour microenvironment. (4) Therapeutic strategies and considerations for successfully targeting fatty acid metabolism in cancer. Further research focusing on the complex interplay between oncogenic signalling and dysregulated fatty acid metabolism holds great promise to uncover novel metabolic vulnerabilities and improve the efficacy of targeted therapies.
Collapse
Affiliation(s)
- Nikos Koundouros
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - George Poulogiannis
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
41
|
Yamamoto S, Takayama KI, Obinata D, Fujiwara K, Ashikari D, Takahashi S, Inoue S. Identification of new octamer transcription factor 1-target genes upregulated in castration-resistant prostate cancer. Cancer Sci 2019; 110:3476-3485. [PMID: 31454442 PMCID: PMC6825001 DOI: 10.1111/cas.14183] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/18/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022] Open
Abstract
Octamer transcription factor 1 (OCT1) is an androgen receptor (AR)‐interacting partner and regulates the expression of target genes in prostate cancer cells. However, the function of OCT1 in castration‐resistant prostate cancer (CRPC) is not fully understood. In the present study, we used 22Rv1 cells as AR‐positive CRPC model cells to analyze the role of OCT1 in CRPC. We showed that OCT1 knockdown suppressed cell proliferation and migration of 22Rv1 cells. Using microarray analysis, we identified four AR and OCT1‐target genes, disks large‐associated protein 5 (DLGAP5), kinesin family member 15 (KIF15), non‐SMC condensin I complex subunit G (NCAPG), and NDC80 kinetochore complex component (NUF2) in 22Rv1 cells. We observed that knockdown of DLGAP5 and NUF2 suppresses growth and migration of 22Rv1 cells. Furthermore, immunohistochemical analysis showed that positive expression of DLGAP5 in prostate cancer specimens is related to poor cancer‐specific survival rates of patients. Notably, enhanced expression of DLGAP5 was observed in CRPC tissues of patients. Thus, our findings suggest that these four genes regulated by the AR/OCT1 complex could have an important role in CRPC progression.
Collapse
Affiliation(s)
- Shinichiro Yamamoto
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Kyoko Fujiwara
- Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.,Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | - Daisaku Ashikari
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Tokyo, Japan
| |
Collapse
|
42
|
Rossi Sebastiano M, Konstantinidou G. Targeting Long Chain Acyl-CoA Synthetases for Cancer Therapy. Int J Mol Sci 2019; 20:E3624. [PMID: 31344914 PMCID: PMC6696099 DOI: 10.3390/ijms20153624] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
The deregulation of cancer cell metabolic networks is now recognized as one of the hallmarks of cancer. Abnormal lipid synthesis and extracellular lipid uptake are advantageous modifications fueling the needs of uncontrolled cancer cell proliferation. Fatty acids are placed at the crossroads of anabolic and catabolic pathways, as they are implicated in the synthesis of phospholipids and triacylglycerols, or they can undergo β-oxidation. Key players to these decisions are the long-chain acyl-CoA synthetases, which are enzymes that catalyze the activation of long-chain fatty acids of 12-22 carbons. Importantly, the long-chain acyl-CoA synthetases are deregulated in many types of tumors, providing a rationale for anti-tumor therapeutic opportunities. The purpose of this review is to summarize the last up-to-date findings regarding their role in cancer, and to discuss the related emerging tumor targeting opportunities.
Collapse
|
43
|
Takayama KI, Inoue S. Response to Letter to the Editor: "Integrative Genomic Analysis of OCT1 Reveals Coordinated Regulation of Androgen Receptor in Advanced Prostate Cancer". Endocrinology 2019; 160:1066. [PMID: 30942848 DOI: 10.1210/en.2019-00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Ken-Ichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo Japan
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo Japan
- Division of Gene Regulation and Signal Transduction, Research Center of Genomic Medicine, Saitama Medical University, Saitama Japan
| |
Collapse
|
44
|
Zhang G, Wang Q, Lu J, Ma G, Ge Y, Chu H, Du M, Wang M, Zhang Z. Long non-coding RNA FLJ22763 is involved in the progression and prognosis of gastric cancer. Gene 2019; 693:84-91. [PMID: 30716442 DOI: 10.1016/j.gene.2019.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 12/27/2018] [Accepted: 01/11/2019] [Indexed: 01/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in carcinogenesis. It is necessary to uncover the detailed pattern of comprehensive lncRNA expression in the genome during the development of gastric cancer (GC). We implemented lncRNA microarray analysis in 5 paired GC tissues to detect the lncRNA expression profile. Moreover, we set out to explore the biological function, clinical application and molecular basis of the aberrant lncRNA in GC. In addition, we used the high-throughput microarray to identify the target gene of the aberrant lncRNA. We found that FLJ22763, a novel lncRNA, had significantly lower expression in GC tissues. Decreased expression of FLJ22763 was positively correlated with a lower-level histological grade and the depth of invasion. The ectopic expression of lncRNA FLJ22763 significantly suppressed the biological malignant behavior of GC cells and inhibited xenograft tumor growth (both P < 0.001). Notably, FLJ22763 displayed a considerable predictive effect in the prognosis of GC (log-rank, P = 0.003). Furthermore, we found that FLJ22763 was negatively associated with ACLY, regulating the mRNA and protein levels of ACLY. Our findings suggested that FLJ22763 may act as a suppressor gene to regulate the expression of ACLY, and its down-expression may be an independent prognostic factor in patients with GC.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiaoyan Wang
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiafei Lu
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Takayama KI, Suzuki Y, Yamamoto S, Obinata D, Takahashi S, Inoue S. Integrative Genomic Analysis of OCT1 Reveals Coordinated Regulation of Androgen Receptor in Advanced Prostate Cancer. Endocrinology 2019; 160:463-472. [PMID: 30649323 DOI: 10.1210/en.2018-00923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 01/04/2023]
Abstract
The ligand-dependent transcription factor androgen receptor (AR) plays a critical role in prostate cancer progression. We previously reported that Octamer transcription factor 1 (OCT1), an AR collaborative factor, facilitated the AR genomic bindings to regulate diverse programs of gene expression in AR-dependent prostate cancer cells. Repression of OCT1 binding can serve as a potential treatment strategy for advanced prostate cancer. However, the precise mechanism underlying the functions of OCT1 in advanced prostate cancer, especially lethal castration-resistant prostate cancer (CRPC), is still unclear. To uncover specific OCT1 functions in disease progression, we explored global OCT1-binding regions by performing chromatin immunoprecipitation sequencing in CRPC model 22Rv1 cells. We found that the OCT1 expression level and the obtained OCT1-binding regions increased in 22Rv1 cells compared with AR-dependent prostate cancer LNCaP cells. Interestingly, microarray analysis revealed that OCT1 regulates CRPC-specific target genes in addition to representative AR-regulated genes such as ACSL3. Pathway analysis showed the importance of OCT1 in regulating cell cycle‒related genes. By performing the chromatin immunoprecipitation assay, we validated anillin actin-binding protein (ANLN), which is highly expressed in CRPC and robustly regulated with OCT1 recruitment to the intron and promoter regions in 22Rv1 cells in comparison with LNCaP cells. Furthermore, knockdown of ANLN exhibited impaired cell growth and cell cycle progression, suggesting an important function of ANLN in CRPC cells. In conclusion, these findings raise the possibility that OCT1 coordinates AR signaling in a specific manner that is dependent on disease stage and promotes progression to CRPC.
Collapse
Affiliation(s)
- Ken-Ichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shinichiro Yamamoto
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Daisuke Obinata
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
- Division of Gene Regulation and Signal Transduction, Research Center of Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
46
|
Storbeck KH, Mostaghel EA. Canonical and Noncanonical Androgen Metabolism and Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:239-277. [PMID: 31900912 DOI: 10.1007/978-3-030-32656-2_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Androgens are critical drivers of prostate cancer. In this chapter we first discuss the canonical pathways of androgen metabolism and their alterations in prostate cancer progression, including the classical, backdoor and 5α-dione pathways, the role of pre-receptor DHT metabolism, and recent findings on oncogenic splicing of steroidogenic enzymes. Next, we discuss the activity and metabolism of non-canonical 11-oxygenated androgens that can activate wild-type AR and are less susceptible to glucuronidation and inactivation than the canonical androgens, thereby serving as an under-recognized reservoir of active ligands. We then discuss an emerging literature on the potential non-canonical role of androgen metabolizing enzymes in driving prostate cancer. We conclude by discussing the potential implications of these findings for prostate cancer progression, particularly in context of new agents such as abiraterone and enzalutamide, which target the AR-axis for prostate cancer therapy, including mechanisms of response and resistance and implications of these findings for future therapy.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Geriatric Research, Education and Clinical Center S-182, VA Puget Sound Health Care System, Seattle, WA, USA.
| |
Collapse
|
47
|
Acyl-CoA synthetase long-chain 3 regulates AKT phosphorylation and the functional activity of human prostate cancer cells. JOURNAL OF BIO-X RESEARCH 2018. [DOI: 10.1097/jbr.0000000000000009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
48
|
Tang Y, Zhou J, Hooi SC, Jiang YM, Lu GD. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long-chain acyl-CoA synthetases. Oncol Lett 2018; 16:1390-1396. [PMID: 30008815 DOI: 10.3892/ol.2018.8843] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
The significance of fatty acid metabolism in cancer initiation and development is increasingly accepted by scientists and the public due to the high prevalence of overweight and obese individuals. Fatty acids have different turnovers in the body: Either breakdown into acetyl-CoA to aid ATP generation through catabolic metabolism or incorporation into triacylglycerol and phospholipid through anabolic metabolism. However, these two distinct pathways require a common initial step known as fatty acid activation. Long-chain acyl-CoA synthetases (ACSLs), which are responsible for activation of the most abundant long-chain fatty acids, are commonly deregulated in cancer. This deregulation is also associated with poor survival in patients with cancer. Fatty acids physiologically regulate ACSL expression, but cancer cells could hijack certain involved regulatory mechanisms to deregulate ACSLs. Among the five family isoforms, ACSL1 and ACSL4 are able to promote ungoverned cell growth, facilitate tumor invasion and evade programmed cell death, while ACSL3 may have relatively complex functions in different types of cancer. Notably, ACSL4 is also essential for the induction of ferroptosis (another form of programmed cell death) by facilitating arachidonic acid oxidation, which makes the enzyme a desirable cancer target. The present review thus evaluates the functions of deregulated ACSLs in cancer, the possible molecular mechanisms involved and the chemotherapeutic potentials to target ACSLs. A better understanding of the pathological effects of ACSLs in cancer and the involved molecular mechanisms will aid in delineating the exact role of fatty acid metabolism in cancer and designing precise cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Yue Tang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lim School of Medicine, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education of China, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
49
|
Kankeu C, Clarke K, Van Haver D, Gevaert K, Impens F, Dittrich A, Roderick HL, Passante E, Huber HJ. Quantitative proteomics and systems analysis of cultured H9C2 cardiomyoblasts during differentiation over time supports a 'function follows form' model of differentiation. Mol Omics 2018; 14:181-196. [PMID: 29770421 DOI: 10.1039/c8mo00036k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rat cardiomyoblast cell line H9C2 has emerged as a valuable tool for studying cardiac development, mechanisms of disease and toxicology. We present here a rigorous proteomic analysis that monitored the changes in protein expression during differentiation of H9C2 cells into cardiomyocyte-like cells over time. Quantitative mass spectrometry followed by gene ontology (GO) enrichment analysis revealed that early changes in H9C2 differentiation are related to protein pathways of cardiac muscle morphogenesis and sphingolipid synthesis. These changes in the proteome were followed later in the differentiation time-course by alterations in the expression of proteins involved in cation transport and beta-oxidation. Studying the temporal profile of the H9C2 proteome during differentiation in further detail revealed eight clusters of co-regulated proteins that can be associated with early, late, continuous and transient up- and downregulation. Subsequent reactome pathway analysis based on these eight clusters further corroborated and detailed the results of the GO analysis. Specifically, this analysis confirmed that proteins related to pathways in muscle contraction are upregulated early and transiently, and proteins relevant to extracellular matrix organization are downregulated early. In contrast, upregulation of proteins related to cardiac metabolism occurs at later time points. Finally, independent validation of the proteomics results by immunoblotting confirmed hereto unknown regulators of cardiac structure and ionic metabolism. Our results are consistent with a 'function follows form' model of differentiation, whereby early and transient alterations of structural proteins enable subsequent changes that are relevant to the characteristic physiology of cardiomyocytes.
Collapse
Affiliation(s)
- Cynthia Kankeu
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Migita T, Takayama KI, Urano T, Obinata D, Ikeda K, Soga T, Takahashi S, Inoue S. ACSL3 promotes intratumoral steroidogenesis in prostate cancer cells. Cancer Sci 2017; 108:2011-2021. [PMID: 28771887 PMCID: PMC5623750 DOI: 10.1111/cas.13339] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/06/2017] [Accepted: 07/30/2017] [Indexed: 01/12/2023] Open
Abstract
Long‐chain acyl‐coenzyme A (CoA) synthetase 3 (ACSL3) is an androgen‐responsive gene involved in the generation of fatty acyl‐CoA esters. ACSL3 is expressed in both androgen‐sensitive and castration‐resistant prostate cancer (CRPC). However, its role in prostate cancer remains elusive. We overexpressed ACSL3 in androgen‐dependent LNCaP cells and examined the downstream effectors of ACSL3. Furthermore, we examined the role of ACSL3 in the androgen metabolism of prostate cancer. ACSL3 overexpression led to upregulation of several genes such as aldo‐keto reductase 1C3 (AKR1C3) involved in steroidogenesis, which utilizes adrenal androgen dehydroepiandrosterone sulfate (DHEAS) as substrate, and downregulated androgen‐inactivating enzyme UDP‐glucuronosyltransferase 2 (UGT2B). Exposure to DHEAS significantly increased testosterone levels and cell proliferative response in ACSL3‐overexpressing cells when compared to that in control cells. A public database showed that ACSL3 level was higher in CRPC than in hormone‐sensitive prostate cancer. CRPC cells showed an increased expression of ACSL3 and an expression pattern of AKR1C3 and UGT2B similar to ACSL3‐overexpressing cells. DHEAS stimulation significantly promoted the proliferation of CRPC cells when compared to that of LNCaP cells. These findings suggest that ACSL3 contributes to the growth of CRPC through intratumoral steroidogenesis (i.e. promoting androgen synthesis from DHEAS and preventing the catabolism of active androgens).
Collapse
Affiliation(s)
- Toshiro Migita
- Departments of Anti-Aging Medicine and Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ken-Ichi Takayama
- Departments of Anti-Aging Medicine and Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tomohiko Urano
- Departments of Anti-Aging Medicine and Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Daisuke Obinata
- Departments of Anti-Aging Medicine and Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazutaka Ikeda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan.,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Departments of Anti-Aging Medicine and Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|