1
|
Zajac J, Liu A, Hassan S, Gibson A. Mechanisms of delayed indocyanine green fluorescence and applications to clinical disease processes. Surgery 2024; 176:386-395. [PMID: 38749795 PMCID: PMC11246809 DOI: 10.1016/j.surg.2024.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Delayed indocyanine green fluorescence imaging is under investigation in various clinical disease processes. Understanding the mechanisms of indocyanine green accumulation and retention is essential to correctly interpreting and analyzing imaging data. The purpose of this scoping review was to synthesize what is known about the mechanism of indocyanine green retention at the cellular level to better understand the clinical nuances of delayed indocyanine green imaging and identify critical gaps in our knowledge to guide future studies. METHODS We performed a scoping review of 7,087 citations after performing database searches of PubMed, Scopus, the Cochrane Library, and the Web of Science Core Collection electronic databases. Studies were eligible for inclusion if they were peer-reviewed original research discussing the mechanism of indocyanine green retention in the results section in disease processes involving inflammation and/or necrosis, including cancer, and were available in English. Data were extracted using Covidence software. RESULTS Eighty-nine studies were included in the final analysis. Several features of indocyanine green retention were identified. CONCLUSION We identified several mechanistic features involved in indocyanine green accumulation in diseased tissue that overall had distinct mechanisms of indocyanine green retention in tumors, nontumor inflammation, and necrosis. Our study also reveals new insights on how inflammatory infiltrate influences indocyanine green fluorescence imaging. These findings are noteworthy because they add to our understanding of how fluorescence-guided surgery may be optimized based on the pathology of interest via specific indocyanine green dosing and timing of image acquisition.
Collapse
Affiliation(s)
- Jocelyn Zajac
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Aiping Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sameeha Hassan
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Angela Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
2
|
Hardy NP, Mulligan N, Dalli J, Epperlein JP, Neary PM, Robertson W, Liddy R, Thorpe SD, Aird JJ, Cahill RA. Geotemporal Fluorophore Biodistribution Mapping of Colorectal Cancer: Micro and Macroscopic Insights. Curr Oncol 2024; 31:849-861. [PMID: 38392057 PMCID: PMC10887825 DOI: 10.3390/curroncol31020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Fluorescence-guided oncology promises to improve both the detection and treatment of malignancy. We sought to investigate the temporal distribution of indocyanine green (ICG), an exogenous fluorophore in human colorectal cancer. This analysis aims to enhance our understanding of ICG's effectiveness in current tumour detection and inform potential future diagnostic and therapeutic enhancements. METHODS Fifty consenting patients undergoing treatment for suspected/confirmed colorectal neoplasia provided near infrared (NIR) video and imagery of transanally recorded and ex vivo resected rectal lesions following intravenous ICG administration (0.25 mg/kg), with a subgroup providing tissue samples for microscopic (including near infrared) analysis. Computer vision techniques detailed macroscopic 'early' (<15 min post ICG administration) and 'late' (>2 h) tissue fluorescence appearances from surgical imagery with digital NIR scanning (Licor, Lincoln, NE, USA) and from microscopic analysis (Nikon, Tokyo, Japan) undertaken by a consultant pathologist detailing tissue-level fluorescence distribution over the same time. RESULTS Significant intra-tumoural fluorescence heterogeneity was seen 'early' in malignant versus benign lesions. In all 'early' samples, fluorescence was predominantly within the tissue stroma, with uptake within plasma cells, blood vessels and lymphatics, but not within malignant or healthy glands. At 'late' stage observation, fluorescence was visualised non-uniformly within the intracellular cytoplasm of malignant tissue but not retained in benign glands. Fluorescence also accumulated within any present peritumoural inflammatory tissue. CONCLUSION This study demonstrates the time course diffusion patterns of ICG through both benign and malignant tumours in vivo in human patients at both macroscopic and microscopic levels, demonstrating important cellular drivers and features of geolocalisation and how they differ longitudinally after exposure to ICG.
Collapse
Affiliation(s)
- Niall P. Hardy
- UCD Centre for Precision Surgery, School of Medicine, UCD, D07 Y9AW Dublin, Ireland; (N.P.H.); (J.D.)
| | - Niall Mulligan
- Department of Histopathology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland (W.R.); (R.L.); (J.J.A.)
| | - Jeffrey Dalli
- UCD Centre for Precision Surgery, School of Medicine, UCD, D07 Y9AW Dublin, Ireland; (N.P.H.); (J.D.)
| | | | - Peter M. Neary
- Department of General and Colorectal Surgery, University Hospital Waterford, University College Cork, X91 ER8E Waterford, Ireland;
| | - William Robertson
- Department of Histopathology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland (W.R.); (R.L.); (J.J.A.)
| | - Richard Liddy
- Department of Histopathology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland (W.R.); (R.L.); (J.J.A.)
| | - Stephen D. Thorpe
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
- UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - John J. Aird
- Department of Histopathology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland (W.R.); (R.L.); (J.J.A.)
| | - Ronan A. Cahill
- UCD Centre for Precision Surgery, School of Medicine, UCD, D07 Y9AW Dublin, Ireland; (N.P.H.); (J.D.)
- Department of General and Colorectal Surgery, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
3
|
Rahate NP, Kapse A, Rahate PV, Nimbhorkar SP. The Wonder Dye: Uses and Implications of Indigocyanine Green in Various Surgeries. Cureus 2023; 15:e46722. [PMID: 38021982 PMCID: PMC10630983 DOI: 10.7759/cureus.46722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Indigocyanine green (ICG) is a fluorophore dye that has been extensively used in recent modern times for bioimaging in numerous surgeries to aid in easier identification of occult and often tricky-to-find anatomical structures. Surgery becomes complex and challenging due to multiple anatomical anomalies, pathological fibrosis, obesity, or previous surgeries. To overcome these obstacles in surgery, the surgeon yearns to know the structures present beyond their white light vision so that while dissecting the organ, they can avoid injuring the critical systems in the vicinity of dissection. Near-infrared (NIR) imaging aids in visualising the tissues at depth/in the area of dissection, thereby preventing any possible surgical catastrophes due to them inadvertently damaging surrounding vital structures. Various advantages in surgeries like gastric sleeve surgery, lymph node and tumour detection, localisation of ureters and biliary tracts, and intraoperative tissue perfusion of flaps have been described in this study. This review article aims to compile a short list of utilities of ICG with NIR imaging in various surgical interventions. The merits and demerits of this imaging technique have been noted. The study points out the uses of ICG fluorescence imaging under different surgical fronts. This review article concludes by comparing the results of studies performed by various authors. Results have been compared to conventional surgical modalities.
Collapse
Affiliation(s)
- Nachiket P Rahate
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ankita Kapse
- Medicine, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, IND
| | | | - Sakshi P Nimbhorkar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Yadav PK, Saklani R, Tiwari AK, Verma S, Chauhan D, Yadav P, Rana R, Kalleti N, Gayen JR, Wahajuddin, Rath SK, Mugale MN, Mitra K, Chourasia MK. Ratiometric codelivery of Paclitaxel and Baicalein loaded nanoemulsion for enhancement of breast cancer treatment. Int J Pharm 2023; 643:123209. [PMID: 37422142 DOI: 10.1016/j.ijpharm.2023.123209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
The most prevalent clinical option for treating cancer is combination chemotherapy. In combination therapy, assessment and optimization for obtaining a synergistic ratio could be obtained by various preclinical setups. Currently, in vitro optimization is used to get synergistic cytotoxicity while constructing combinations. Herein, we co-encapsulated Paclitaxel (PTX) and Baicalein (BCLN) with TPP-TPGS1000 containing nanoemulsion (TPP-TPGS1000-PTX-BCLN-NE) for breast cancer treatment. The assessment of cytotoxicity of PTX and BCLN at different molar weight ratios provided an optimized synergistic ratio (1:5). Quality by Design (QbD) approach was later applied for the optimization as well as characterization of nanoformulation for its droplet size, zeta potential and drug content. TPP-TPGS1000-PTX-BCLN-NE significantly enhanced cellular ROS, cell cycle arrest, and depolarization of mitochondrial membrane potential in the 4T1 breast cancer cell line compared to other treatments. In the syngeneic 4T1 BALB/c tumor model, TPP-TPGS1000-PTX-BCLN-NE outperformed other nanoformulation treatments. The pharmacokinetic, biodistribution and live imaging studies pivoted TPP-TPGS1000-PTX-BCLN-NE enhanced bioavailability and PTX accumulation at tumor site. Later, histology studies confirmed nanoemulsion non-toxicity, expressing new opportunities and potential to treat breast cancer. These results suggested that current nanoformulation can be a potential therapeutic approach to effectively address breast cancer therapy.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Ravi Saklani
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Saurabh Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Navodayam Kalleti
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Wahajuddin
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Srikanta K Rath
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Madhav N Mugale
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Kalyan Mitra
- Electron Microscopy Division, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
5
|
Kim J, Kim H, Yoon YS, Kim CW, Hong SM, Kim S, Choi D, Chun J, Hong SW, Hwang SW, Park SH, Yang DH, Ye BD, Byeon JS, Yang SK, Kim SY, Myung SJ. Investigation of artificial intelligence integrated fluorescence endoscopy image analysis with indocyanine green for interpretation of precancerous lesions in colon cancer. PLoS One 2023; 18:e0286189. [PMID: 37228164 DOI: 10.1371/journal.pone.0286189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Indocyanine green (ICG) has been used in clinical practice for more than 40 years and its safety and preferential accumulation in tumors has been reported for various tumor types, including colon cancer. However, reports on clinical assessments of ICG-based molecular endoscopy imaging for precancerous lesions are scarce. We determined visualization ability of ICG fluorescence endoscopy in colitis-associated colon cancer using 30 lesions from an azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model and 16 colon cancer patient tissue-samples. With a total of 60 images (optical, fluorescence) obtained during endoscopy observation of mouse colon cancer, we used deep learning network to predict four classes (Normal, Dysplasia, Adenoma, and Carcinoma) of colorectal cancer development. ICG could detect 100% of carcinoma, 90% of adenoma, and 57% of dysplasia, with little background signal at 30 min after injection via real-time fluorescence endoscopy. Correlation analysis with immunohistochemistry revealed a positive correlation of ICG with inducible nitric oxide synthase (iNOS; r > 0.5). Increased expression of iNOS resulted in increased levels of cellular nitric oxide in cancer cells compared to that in normal cells, which was related to the inhibition of drug efflux via the ABCB1 transporter down-regulation resulting in delayed retention of intracellular ICG. With artificial intelligence training, the accuracy of image classification into four classes using data sets, such as fluorescence, optical, and fluorescence/optical images was assessed. Fluorescence images obtained the highest accuracy (AUC of 0.8125) than optical and fluorescence/optical images (AUC of 0.75 and 0.6667, respectively). These findings highlight the clinical feasibility of ICG as a detector of precancerous lesions in real-time fluorescence endoscopy with artificial intelligence training and suggest that the mechanism of ICG retention in cancer cells is related to intracellular nitric oxide concentration.
Collapse
Affiliation(s)
- Jinhyeon Kim
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hajung Kim
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Yong Sik Yoon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan Wook Kim
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Mo Hong
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Doowon Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Jihyun Chun
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Wook Hong
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Wook Hwang
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Hoon Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byong Duk Ye
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Young Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Jae Myung
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Edis Biotech, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
6
|
Yadav PK, Saklani R, Tiwari AK, Verma S, Rana R, Chauhan D, Yadav P, Mishra K, Kedar AS, Kalleti N, Gayen JR, Wahajuddin M, Rath SK, Mugale MN, Mitra K, Sharma D, Chourasia MK. Enhanced apoptosis and mitochondrial cell death by paclitaxel-loaded TPP-TPGS 1000-functionalized nanoemulsion. Nanomedicine (Lond) 2023; 18:343-366. [PMID: 37140535 DOI: 10.2217/nnm-2022-0268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Background: The present research was designed to develop a nanoemulsion (NE) of triphenylphosphine-D-α-tocopheryl-polyethylene glycol succinate (TPP-TPGS1000) and paclitaxel (PTX) to effectively deliver PTX to improve breast cancer therapy. Materials & methods: A quality-by-design approach was applied for optimization and in vitro and in vivo characterization were performed. Results: The TPP-TPGS1000-PTX-NE enhanced cellular uptake, mitochondrial membrane depolarization and G2M cell cycle arrest compared with free-PTX treatment. In addition, pharmacokinetics, biodistribution and in vivo live imaging studies in tumor-bearing mice showed that TPP-TPGS1000-PTX-NE had superior performance compared with free-PTX treatment. Histological and survival investigations ascertained the nontoxicity of the nanoformulation, suggesting new opportunities and potential to treat breast cancer. Conclusion: TPP-TPGS1000-PTX-NE improved the efficacy of breast cancer treatment by enhancing its effectiveness and decreasing drug toxicity.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Saklani
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rafquat Rana
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Divya Chauhan
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Mishra
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Ashwini S Kedar
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Navodayam Kalleti
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Muhammad Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Srikanta K Rath
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Madhav N Mugale
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Kalyan Mitra
- Electron Microscopy Division, Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Deepak Sharma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Manish K Chourasia
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Janardhanam LSL, Bandi SP, Venuganti VVK. Functionalized LbL Film for Localized Delivery of STAT3 siRNA and Oxaliplatin Combination to Treat Colon Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10030-10046. [PMID: 35170934 DOI: 10.1021/acsami.1c22166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of the study was to develop and evaluate the efficacy of a functionalized layer-by-layer (LbL) assembled film entrapped with oxaliplatin (OX) and signal transducer and activator of transcription 3 (STAT3) siRNA in the localized treatment of colon cancer. The LbL film was prepared by the sequential layering of chitosan (CS) and alginate to attain desired physical and mechanical properties. The film was functionalized by coating folic acid-conjugated CS on one side. On the other side, polycaprolactone was coated as a backing layer to provide directional drug release. OX was entrapped within the layers of the film, while STAT3 siRNA was complexed with CS to form nanoparticles before entrapment in the LbL film. The CS-siRNA nanoparticles were taken up by the colon carcinoma, Caco-2 cells within 3 h and provided concentration-dependent reduction in STAT3 protein expression. The functionalized LbL film (F-LbL film) selectively adhered to the colon cancer tissue in the mice model, whereas the nonfunctionalized film adhered to the normal colon tissue. The combination of OX and STAT3 siRNA provided significantly greater tumor regression, survival rate, and STAT3 protein suppression after localized delivery through oral administration compared with intravenous administration. Taken together, the F-LbL film can selectively bind to colon tumors for localized delivery of drugs to treat colon cancer.
Collapse
Affiliation(s)
- Leela Sai Lokesh Janardhanam
- Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana State, India
| | - Sony Priyanka Bandi
- Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana State, India
| | | |
Collapse
|
8
|
Li Y, You Q, Wang Z, Cao Y, Butch CJ, Guissi NEI, Cai H, Wang Y, Lu Q. A study on setting standards for near-infrared fluorescence-image guided surgery (NIRFGS) time lapse monitoring based on preoperative liver function assessment. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:96. [PMID: 35282106 PMCID: PMC8848407 DOI: 10.21037/atm-21-6975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/21/2022] [Indexed: 11/06/2022]
Abstract
Background This study aimed to explore the relationship between the fluorescence intensity of indocyanine green (ICG) in near-infrared fluorescence guided surgery (NIRFGS) and preoperative liver function indicators. Methods A total of 12 4T1 tumor-bearing mice were used for model establishment. Intraperitoneal injection (i.p.) of 20% carbon tetrachloride (CCl4) corn oil solution (50 µL) was given to mice in the liver injury model group, 24 hours after injection, the model was established, while the control group received 0% CCl4 corn oil solution (50 µL) (n=6 for each group). Additionally, doses of 8 mg/kg and 1 mg/kg of free ICG were injected intravenously (i.v.) (n=3 in each group). Fluorescence was imaged in vivo using an NIR fluorescence imaging system at different time points (1, 2, 4, 8, 12, 24, 48, and 72 h) after injection. Results The absolute fluorescence intensity of mice in the liver injury model group was stronger than that in the control group. Mice in the liver injury model group had the same clearance rate of ICG from the tumor as normal mice. However, the background clearance rate was slower than that of normal mice, which prolonged the optimal tumor to background ratio (TBR) time. Correlation analysis was also used to determine which preoperative liver function parameters were most correlated with hepatic ICG clearance. Conclusions Liver injury does not significantly affect the maximum TBR, but prolongs the optimal TBR time, and at the same time, a wider and more stable surgical window will appear. This study showed that a prolonged surgical start time is feasible according to preoperative liver function testing using NIR fluorescence imaging technology.
Collapse
Affiliation(s)
- Yunlong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Qi You
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Ziyang Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Ying Cao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Nida El Islem Guissi
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Huiming Cai
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.,Department of Research and Development Center, Nanjing Nuoyuan Medical Devices Co. Ltd., Nanjing, China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Qian Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.,Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| |
Collapse
|
9
|
Digital dynamic discrimination of primary colorectal cancer using systemic indocyanine green with near-infrared endoscopy. Sci Rep 2021; 11:11349. [PMID: 34059705 PMCID: PMC8167125 DOI: 10.1038/s41598-021-90089-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/29/2021] [Indexed: 02/03/2023] Open
Abstract
As indocyanine green (ICG) with near-infrared (NIR) endoscopy enhances real-time intraoperative tissue microperfusion appreciation, it may also dynamically reveal neoplasia distinctively from normal tissue especially with video software fluorescence analysis. Colorectal tumours of patients were imaged mucosally following ICG administration (0.25 mg/kg i.v.) using an endo-laparoscopic NIR system (PINPOINT Endoscopic Fluorescence System, Stryker) including immediate, continuous in situ visualization of rectal lesions transanally for up to 20 min. Spot and dynamic temporal fluorescence intensities (FI) were quantified using ImageJ (including videos at one frame/second, fps) and by a bespoke MATLAB® application that provided digitalized video tracking and signal logging at 30fps (Fluorescence Tracker App downloadable via MATLAB® file exchange). Statistical analysis of FI-time plots compared tumours (benign and malignant) against control during FI curve rise, peak and decline from apex. Early kinetic FI signal measurement delineated discriminative temporal signatures from tumours (n = 20, 9 cancers) offering rich data for analysis versus delayed spot measurement (n = 10 cancers). Malignant lesion dynamic curves peaked significantly later with a shallower gradient than normal tissue while benign lesions showed significantly greater and faster intensity drop from apex versus cancer. Automated tracker quantification efficiently expanded manual results and provided algorithmic KNN clustering. Photobleaching appeared clinically irrelevant. Analysis of a continuous stream of intraoperatively acquired early ICG fluorescence data can act as an in situ tumour-identifier with greater detail than later snapshot observation alone. Software quantification of such kinetic signatures may distinguish invasive from non-invasive neoplasia with potential for real-time in silico diagnosis.
Collapse
|
10
|
Hanley TM, Vankayala R, Mac JT, Lo DD, Anvari B. Acute Immune Response of Micro- and Nanosized Erythrocyte-Derived Optical Particles in Healthy Mice. Mol Pharm 2020; 17:3900-3914. [PMID: 32820927 PMCID: PMC9844151 DOI: 10.1021/acs.molpharmaceut.0c00641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Erythrocyte-derived particles activated by near-infrared (NIR) light present a platform for various phototheranostic applications. We have engineered such a platform with indocyanine green as the NIR-activated agent. A particular feature of these particles is that their diameters can be tuned from micro- to nanoscale, providing a potential capability for broad clinical utility ranging from vascular to cancer-related applications. An important issue related to clinical translation of these particles is their immunogenic effects. Herein, we have evaluated the early-induced innate immune response of these particles in healthy Swiss Webster mice following tail vein injection by measurements of specific cytokines in blood serum, the liver, and the spleen following euthanasia. In particular, we have investigated the effects of particle size and relative dose, time-dependent cytokine response for up to 6 h postinjection, functionalization of the nanosized particles with folate or Herceptin, and dual injections of the particles 1 week apart. Mean concentrations of interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1 in response to injection of microsized particles at the investigated relative doses were significantly lower than the corresponding mean concentrations induced by lipopolysaccharide (positive control) at 2 h. All investigated doses of the nanosized particles induced significantly higher concentrations of MCP-1 in the liver and the spleen as compared to phosphate buffer saline (PBS) (negative control) at 2 h. In response to micro- and nanosized particles at the highest investigated dose, there were significantly higher levels of TNF-α in blood serum at 2 and 6 h postinjection as compared to the levels associated with PBS treatment at these times. Whereas the mean concentration of TNF-α in the liver significantly increased between 2 and 6 h postinjection in response to the injection of the microsized particles, it was significantly reduced during this time interval in response to the injection of the nanosized particles. In general, functionalization of the nanosized particles was associated with a reduction of IL-6 and MCP-1 in blood serum, the liver, and the spleen, and TNF-α in blood serum. With the exception of IL-10 in the spleen in response to nanosized particles, the second injection of micro- or nanosized particles did not lead to significantly higher concentrations of other cytokines at the investigated dose as compared to a single injection.
Collapse
Affiliation(s)
- Taylor M. Hanley
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Jenny T. Mac
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - David D. Lo
- Department of Biomedical Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
11
|
Lin CM, Usama SM, Burgess K. Site-Specific Labeling of Proteins with Near-IR Heptamethine Cyanine Dyes. Molecules 2018; 23:E2900. [PMID: 30405016 PMCID: PMC6278338 DOI: 10.3390/molecules23112900] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/24/2022] Open
Abstract
Convenient labeling of proteins is important for observing its function under physiological conditions. In tissues particularly, heptamethine cyanine dyes (Cy-7) are valuable because they absorb in the near-infrared (NIR) region (750⁻900 nm) where light penetration is maximal. In this work, we found Cy-7 dyes with a meso-Cl functionality covalently binding to proteins with free Cys residues under physiological conditions (aqueous environments, at near neutral pH, and 37 °C). It transpired that the meso-Cl of the dye was displaced by free thiols in protein, while nucleophilic side-chains from amino acids like Tyr, Lys, and Ser did not react. This finding shows a new possibility for convenient and selective labeling of proteins with NIR fluorescent probes.
Collapse
Affiliation(s)
- Chen-Ming Lin
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA.
| | - Syed Muhammad Usama
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA.
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA.
| |
Collapse
|
12
|
Nagahara R, Onda N, Yamashita S, Kojima M, Inohana M, Eguchi A, Nakamura M, Matsumoto S, Yoshida T, Shibutani M. Fluorescence tumor imaging by i.v. administered indocyanine green in a mouse model of colitis-associated colon cancer. Cancer Sci 2018. [PMID: 29520973 PMCID: PMC5980401 DOI: 10.1111/cas.13564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fluorescence tumor imaging using exogenous fluorescent tumor‐targeting agents has potential to improve early tumor detection. The fluorescent contrast agent indocyanine green (ICG) is used in medical diagnostics. The aim of the present study is to investigate the tumor imaging capability and the imaging mechanism of i.v. administered ICG in a mouse model of colitis‐associated colon cancer. To do this, an azoxymethane/dextran sodium sulfate‐induced colon cancer mouse model was used. Ex vivo imaging experiments were carried out 1 hour after i.v. injection of ICG. The ICG fluorescence was observed in the colon tumor tissues, with sufficient tumor to normal tissue ratio, correlating with tumor malignancy. In the tumor tissues, ICG fluorescence was localized in the vascular interstitial tissue. Immunofluorescence microscopy revealed that tumor cells formed tight junctions normally, suggesting an inability of tumor cellular uptake of ICG. In contrast, tumor tissues increased the CD31‐immunoreactive endothelial cell area, and accumulated stromal cells immunoreactive for COX‐2 and tumor cell population immunoreactive for inducible nitric oxide synthase. In vivo vascular permeability assay revealed that prostaglandin E2 promoted the endothelial cell permeability of ICG. In conclusion, our data indicated that fluorescence contrast‐enhanced imaging following i.v. administered ICG can be applied to the detection of colon tumors in a mouse colitis‐associated colon cancer model. The tumor tissue preference of ICG in the present model can be attributed to the enhanced vascular leakage of ICG involving inflammatory mediators, such as COX‐2 and inducible nitric oxide synthase, in conjunction with increased tumor vascularity.
Collapse
Affiliation(s)
- Rei Nagahara
- Division of Animal Life Science, Laboratory of Veterinary Pathology, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Nobuhiko Onda
- Division of Animal Life Science, Laboratory of Veterinary Pathology, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Evaluation Technology Department 1, R&D Group, Olympus Corporation, Tokyo, Japan
| | - Susumu Yamashita
- Evaluation Technology Department 1, R&D Group, Olympus Corporation, Tokyo, Japan
| | - Miho Kojima
- Division of Animal Life Science, Laboratory of Veterinary Pathology, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Evaluation Technology Department 1, R&D Group, Olympus Corporation, Tokyo, Japan
| | - Mari Inohana
- Division of Animal Life Science, Laboratory of Veterinary Pathology, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ayumi Eguchi
- Division of Animal Life Science, Laboratory of Veterinary Pathology, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Misato Nakamura
- Division of Animal Life Science, Laboratory of Veterinary Pathology, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shinya Matsumoto
- Evaluation Technology Department 1, R&D Group, Olympus Corporation, Tokyo, Japan
| | - Toshinori Yoshida
- Division of Animal Life Science, Laboratory of Veterinary Pathology, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Shibutani
- Division of Animal Life Science, Laboratory of Veterinary Pathology, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|