1
|
Sugimoto T, Iwagami Y, Kobayashi S, Yamanaka C, Sasaki K, Yamada D, Tomimaru Y, Asaoka T, Noda T, Takahashi H, Shimizu J, Doki Y, Eguchi H. Skeletal Muscle-Derived Irisin Enhances Gemcitabine Sensitivity and Suppresses Migration Ability in Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 2024; 31:3718-3736. [PMID: 38502294 DOI: 10.1245/s10434-024-15118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND High skeletal muscle mass might be a prognostic factor for patients with pancreatic ductal adenocarcinoma (PDAC); however, the underlying reason is unclear. We hypothesized that myokines, which are cytokines secreted by the skeletal muscle, function as suppressors of PDAC. We specifically examined irisin, a myokine, which plays a critical role in the modulation of metabolism, to clarify the anticancer mechanisms. METHODS First, the effect of the conditioned medium (CM) from skeletal muscle cells and from irisin-knockdown skeletal muscle cells on PDAC cell lines was evaluated. We then investigated the effects and anticancer mechanism of irisin in PDAC cells, and evaluated the anticancer effect of recombinant irisin in a PDAC xenograft mouse model. Finally, patients undergoing pancreatic resection for PDAC were divided into two groups based on their serum irisin level, and the long-term outcomes were evaluated. RESULTS The CM enhanced gemcitabine sensitivity by inducing apoptosis and decreasing cell migration by inhibiting epithelial-mesenchymal transition (EMT) in PDAC cell lines. The CM derived from irisin-knockdown skeletal muscle cells did not affect the PDAC cell lines. The addition of recombinant irisin to PDAC cell lines facilitated sensitivity to gemcitabine by inhibiting the mitogen-activated protein kinase (MAPK) pathway, and decreased migration by inhibiting EMT via the transforming growth factor-β/SMAD pathway. Xenografts injected with gemcitabine and recombinant irisin grew slower than the xenografts injected with gemcitabine alone. The overall survival was prolonged in the high-irisin group compared with that in the low-irisin group. CONCLUSIONS Skeletal muscle-derived irisin may affect PDAC by enhancing its sensitivity to gemcitabine and suppressing EMT.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Cell Movement
- Cell Proliferation/drug effects
- Culture Media, Conditioned/pharmacology
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Epithelial-Mesenchymal Transition
- Fibronectins/metabolism
- Fibronectins/pharmacology
- Gemcitabine
- Mice, Nude
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Prognosis
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Aged
Collapse
Affiliation(s)
- Tomoki Sugimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Chihiro Yamanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junzo Shimizu
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Sun R, Xu H, Liu F, Zhou B, Li M, Sun X. Unveiling the intricate causal nexus between pancreatic cancer and peripheral metabolites through a comprehensive bidirectional two-sample Mendelian randomization analysis. Front Mol Biosci 2023; 10:1279157. [PMID: 37954977 PMCID: PMC10634252 DOI: 10.3389/fmolb.2023.1279157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Aim: Pancreatic cancer (PC) is a devastating malignancy characterized by its aggressive nature and poor prognosis. However, the relationship of PC with peripheral metabolites remains not fully investigated. The study aimed to explore the causal linkage between PC and peripheral metabolite profiles. Methods: Employing publicly accessible genome-wide association studies (GWAS) data, we conducted a bidirectional two-sample Mendelian randomization (MR) analysis. The primary analysis employed the inverse-variance weighted (IVW) method. To address potential concerns about horizontal pleiotropy, we also employed supplementary methods such as maximum likelihood, weighted median, MR-Egger regression, and MR pleiotropy residual sum and outlier (MR-PRESSO). Results: We ascertained 20 genetically determined peripheral metabolites with causal linkages to PC while high-density lipoprotein (HDL) and very low-density lipoprotein (VLDL) particles accounted for the vast majority. Specifically, HDL particles exhibited an elevated PC risk while VLDL particles displayed an opposing pattern. The converse MR analysis underscored a notable alteration in 17 peripheral metabolites due to PC, including branch chain amino acids and derivatives of glycerophospholipid. Cross-referencing the bidirectional MR results revealed a reciprocal causation of PC and X-02269 which might form a self-perpetuating loop in PC development. Additionally, 1-arachidonoylglycerophosphocholine indicated a reduced PC risk and an increase under PC influence, possibly serving as a negative feedback regulator. Conclusion: Our findings suggest a complex interplay between pancreatic cancer and peripheral metabolites, with potential implications for understanding the etiology of pancreatic cancer and identifying novel early diagnosis and therapeutic targets. Moreover, X-02269 may hold a pivotal role in PC onset and progression.
Collapse
Affiliation(s)
| | | | | | | | - Minli Li
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangdong Sun
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Zhang L, Xiao X, Hu X, Wang W, Peng L, Tang R. Expression of LRG-1 in mice with hypertensive renal damage and its significance. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:837-845. [PMID: 37587068 PMCID: PMC10930429 DOI: 10.11817/j.issn.1672-7347.2023.220516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 08/18/2023]
Abstract
OBJECTIVES Long-term elevated blood pressure may lead to kidney damage, yet the pathogenesis of hypertensive kidney damage is still unclear. This study aims to explore the role and significance of leucine-rich alpha-2-glycoprotein-1 (LRG-1) in hypertensive renal damage through detecting the levels of LRG-1 in the serum and kidney of mice with hypertensive renal damage and its relationship with related indexes. METHODS C57BL/6 mice were used in this study and randomly divided into a control group, an angiotensin II (Ang II) group, and an Ang II+irbesartan group. The control group was gavaged with physiological saline. The Ang II group was pumped subcutaneously at a rate of 1.5 mg/(kg·d) for 28 days to establish the hypertensive renal damage model in mice, and then gavaged with equivalent physiological saline. The Ang II+irbesartan group used the same method to establish the hypertensive renal damage model, and then was gavaged with irbesartan. Immunohistochemistry and Western blotting were used to detect the expression of LRG-1 and fibrosis-related indicators (collagen I and fibronectin) in renal tissues. ELISA was used to evaluate the level of serum LRG-1 and inflammatory cytokines in mice. The urinary protein-creatinine ratio and renal function were determined, and correlation analysis was conducted. RESULTS Compared with the control group, the levels of serum LRG-1, the expression of LRG-1 protein, collagen I, and fibronectin in kidney in the Ang II group were increased (all P<0.01). After treating with irbesartan, renal damage of hypertensive mice was alleviated, while the levels of LRG-1 in serum and kidney were decreased, and the expression of collagen I and fibronectin was down-regulated (all P<0.01). Correlation analysis showed that the level of serum LRG-1 was positively correlated with urinary protein-creatinine ratio, blood urea nitrogen, and blood creatinine level in hypertensive kidney damage mice. Serum level of LRG-1 was also positively correlated with serum inflammatory factors including TNF-α, IL-1β, and IL-6. CONCLUSIONS Hypertensive renal damage mice display elevated expression of LRG-1 in serum and kidney, and irbesartan can reduce the expression of LRG-1 while alleviating renal damage. The level of serum LRG-1 is positively correlated with the degree of hypertensive renal damage, suggesting that it may participate in the occurrence and development of hypertensive renal damage.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xueling Hu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ling Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
4
|
Cai D, Chen C, Su Y, Tan Y, Lin X, Xing R. LRG1 in pancreatic cancer cells promotes inflammatory factor synthesis and the angiogenesis of HUVECs by activating VEGFR signaling. J Gastrointest Oncol 2022; 13:400-412. [PMID: 35284128 PMCID: PMC8899736 DOI: 10.21037/jgo-21-910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/30/2022] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND This study aimed to investigate the roles of leucine-rich alpha-2-glycoprotein 1 (LRG1) in regulating angiogenesis during pancreatic cancer (PC) pathogenesis. METHODS LRG1 expression in tissues was detected by qRT-PCR and immunohistochemistry. LRG1 in BxPC-3 and Capan-2 cells was knocked down or overexpressed. Cell viability and the migration and invasion abilities of cells were analyzed using the Cell Counting Kit-8 (CCK-8) assay and Transwell system, respectively. Interleukin-1 beta (IL-1β), IL-18, and vascular endothelial growth factor A (VEGFA) contents in cell culture were measured by ELISA, and the angiogenesis of HUVECs was assessed by the in vitro tube formation assay. In vitro LRG1 expression in BxPC-3 and Capan-2 cells was determined using immunofluorescence. RESULTS The results showed that LRG1 expression was significantly increased in pancreatic cancer tissues and cell lines. LRG1 knockdown inhibited the viability, migration, invasion, and IL-1β and IL-18 synthesis of BxPC-3 and Capan-2 cells. VEGFA synthesis in BxPC-3 and Capan-2 cells was also inhibited by LRG1 knockdown, which caused impaired tube formation of co-cultured HUVECs. LRG1 overexpression enhanced the viability, migration, and invasion of BxPC-3 and Capan-2 cells, also causing elevated tube formation of HUVECs and IL-1β and IL-18 synthesis in co-cultures of HUVECs and BxPC-3 or Capan-2 cells. Silencing of VEGF receptor (VEGFR) abrogated the enhanced tube formation and IL-1β and IL-18 synthesis in HUVECs co-cultured with BxPC-3 or Capan-2 cells overexpressing LRG1. CONCLUSIONS In conclusion, LRG1, which is highly expressed in pancreatic cancer cells, promotes inflammatory factor synthesis and the angiogenesis of HUVECs though activating the VEGFR signaling pathway.
Collapse
Affiliation(s)
- Duxiong Cai
- Department of Gastroenterology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chunji Chen
- Department of Pathology, Hainan Provincial People’s Hospital, Haikou, China
| | - Yexiong Su
- Department of Gastroenterology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yan Tan
- Department of Gastroenterology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xuyue Lin
- Department of Gastroenterology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Rong Xing
- Department of Gastroenterology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
5
|
Principe DR, Timbers KE, Atia LG, Koch RM, Rana A. TGFβ Signaling in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2021; 13:5086. [PMID: 34680235 PMCID: PMC8533869 DOI: 10.3390/cancers13205086] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor clinical outcomes, largely attributed to incomplete responses to standard therapeutic approaches. Recently, selective inhibitors of the Transforming Growth Factor β (TGFβ) signaling pathway have shown early promise in the treatment of PDAC, particularly as a means of augmenting responses to chemo- and immunotherapies. However, TGFβ is a potent and pleiotropic cytokine with several seemingly paradoxical roles within the pancreatic tumor microenvironment (TME). Although TGFβ signaling can have potent tumor-suppressive effects in epithelial cells, TGFβ signaling also accelerates pancreatic tumorigenesis by enhancing epithelial-to-mesenchymal transition (EMT), fibrosis, and the evasion of the cytotoxic immune surveillance program. Here, we discuss the known roles of TGFβ signaling in pancreatic carcinogenesis, the biologic consequences of the genetic inactivation of select components of the TGFβ pathway, as well as past and present attempts to advance TGFβ inhibitors in the treatment of PDAC patients.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Kaytlin E. Timbers
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Luke G. Atia
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Regina M. Koch
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Ajay Rana
- Jesse Brown Veterans Affairs Hospital, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Sabbadini F, Bertolini M, De Matteis S, Mangiameli D, Contarelli S, Pietrobono S, Melisi D. The Multifaceted Role of TGF-β in Gastrointestinal Tumors. Cancers (Basel) 2021; 13:cancers13163960. [PMID: 34439114 PMCID: PMC8391793 DOI: 10.3390/cancers13163960] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The transforming growth factor β signaling pathway elicits a broad range of physiological re-sponses, and its misregulation has been related to cancer. The secreted cytokine TGFβ exerts a tumor-suppressive effect that counteracts malignant transformation. However, once tumor has developed, TGFβ can support tumor progression regulating epithelial to mesenchymal transition, invasion and metastasis, stimulating fibrosis, angiogenesis and immune suppression. Here we review the dichotomous role of TGF-β in the progression of gastrointestinal tumors, as well as its intricate crosstalk with other signaling pathways. We also discuss about the therapeutic strate-gies that are currently explored in clinical trials to counteract TGF-β functions. Abstract Transforming growth factor-beta (TGF-β) is a secreted cytokine that signals via serine/threonine kinase receptors and SMAD effectors. Although TGF-β acts as a tumor suppressor during the early stages of tumorigenesis, it supports tumor progression in advanced stages. Indeed, TGF-β can modulate the tumor microenvironment by modifying the extracellular matrix and by sustaining a paracrine interaction between neighboring cells. Due to its critical role in cancer development and progression, a wide range of molecules targeting the TGF-β signaling pathway are currently under active clinical development in different diseases. Here, we focused on the role of TGF-β in modulating different pathological processes with a particular emphasis on gastrointestinal tumors.
Collapse
Affiliation(s)
- Fabio Sabbadini
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Monica Bertolini
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Serena De Matteis
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Serena Contarelli
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
- Experimental Cancer Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
7
|
The Prognostic Value of Leucine-Rich α2 Glycoprotein 1 in Pediatric Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7365204. [PMID: 34307668 PMCID: PMC8285184 DOI: 10.1155/2021/7365204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
Objective Leucine-rich α2 glycoprotein 1 (LRG1) is a novel cytokine, which is believed to be involved in the inflammatory process of a series of diseases. However, the relationship between LRG1 and spinal cord injury (SCI) has not been reported. The purpose of our study is to determine the predictive value of LRG1 for the prognosis of pediatric SCI (PSCI). Methods This study recruited 64 patients with confirmed PSCI and 40 healthy controls at Foshan Traditional Chinese Medicine Hospital from January 2016 to December 2020. The clinical information of all participants at the time of admission was recorded. Peripheral blood was collected, and commercial reagents were used to detect the level of serum LRG1. At the same time, the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) was used to assess the severity of PSCI. Results All participants were divided into PSCI group (n = 64) and NC group (n = 40). There was no significant difference in clinical information (age, gender, heart rate, systolic blood pressure, diastolic blood pressure, sampling time from injury, white blood cells, and C-reactive protein) between the two groups (p > 0.05). According to the interquartile range of serum LRG1, we compared the motor and sensory scores of ISNCSCI and found that serum LRG1 levels were negatively correlated with the prognosis of PSCI patients (p < 0.001). The results of receiver operating curve (ROC) showed that the sensitivity, specificity, and AUC (Area Under the Curve) of serum LRG1 level in predicting the prognosis of PSCI were 68.4%, 69.1%, and 0.705, respectively. The cut-off value of serum LRG1 level predicting the prognosis of PSCI is 21.1 μg/ml. Conclusions Serum LRG1 level is significantly increased in PSCI patients, and the elevated LRG1 level is negatively correlated with the prognosis of PSCI patients. Serum LRG1 may be a potentially useful biomarker for predicting PSCI.
Collapse
|
8
|
Reale A, Carmichael I, Xu R, Mithraprabhu S, Khong T, Chen M, Fang H, Savvidou I, Ramachandran M, Bingham N, Simpson RJ, Greening DW, Spencer A. Human myeloma cell- and plasma-derived extracellular vesicles contribute to functional regulation of stromal cells. Proteomics 2021; 21:e2000119. [PMID: 33580572 DOI: 10.1002/pmic.202000119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Circulating small extracellular vesicles (sEV) represent promising non-invasive biomarkers that may aid in the diagnosis and risk-stratification of multiple myeloma (MM), an incurable blood cancer. Here, we comprehensively isolated and characterized sEV from human MM cell lines (HMCL) and patient-derived plasma (psEV) by specific EV-marker enrichment and morphology. Importantly, we demonstrate that HMCL-sEV are readily internalised by stromal cells to functionally modulate proliferation. psEV were isolated using various commercial approaches and pre-analytical conditions (collection tube types, storage conditions) assessed for sEV yield and marker enrichment. Functionally, MM-psEV was shown to regulate stromal cell proliferation and migration. In turn, pre-educated stromal cells favour HMCL adhesion. psEV isolated from patients with both pre-malignant plasma cell disorders (monoclonal gammopathy of undetermined significance [MGUS]; smouldering MM [SMM]) and MM have a similar ability to promote cell migration and adhesion, suggesting a role for both malignant and pre-malignant sEV in disease progression. Proteomic profiling of MM-psEV (305 proteins) revealed enrichment of oncogenic factors implicated in cell migration and adhesion, in comparison to non-disease psEV. This study describes a protocol to generate morphologically-intact and biologically functional sEV capable of mediating the regulation of stromal cells, and a model for the characterization of tumour-stromal cross-talk by sEV in MM.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Irena Carmichael
- Monash Micro Imaging-AMREP, Monash University, Melbourne, Victoria, Australia
| | - Rong Xu
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Nanobiotechnology Laboratory, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Maoshan Chen
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Ioanna Savvidou
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Malarmathy Ramachandran
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicholas Bingham
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David W Greening
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, and Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Horn LA, Fousek K, Hamilton DH, Hodge JW, Zebala JA, Maeda DY, Schlom J, Palena C. Vaccine Increases the Diversity and Activation of Intratumoral T Cells in the Context of Combination Immunotherapy. Cancers (Basel) 2021; 13:cancers13050968. [PMID: 33669155 PMCID: PMC7956439 DOI: 10.3390/cancers13050968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022] Open
Abstract
Resistance to immune checkpoint blockade therapy has spurred the development of novel combinations of drugs tailored to specific cancer types, including non-inflamed tumors with low T-cell infiltration. Cancer vaccines can potentially be utilized as part of these combination immunotherapies to enhance antitumor efficacy through the expansion of tumor-reactive T cells. Utilizing murine models of colon and mammary carcinoma, here we investigated the effect of adding a recombinant adenovirus-based vaccine targeting tumor-associated antigens with an IL-15 super agonist adjuvant to a multimodal regimen consisting of a bifunctional anti-PD-L1/TGF-βRII agent along with a CXCR1/2 inhibitor. We demonstrate that the addition of vaccine induced a greater tumor infiltration with T cells highly positive for markers of proliferation and cytotoxicity. In addition to this enhancement of cytotoxic T cells, combination therapy showed a restructured tumor microenvironment with reduced Tregs and CD11b+Ly6G+ myeloid cells. Tumor-infiltrating immune cells exhibited an upregulation of gene signatures characteristic of a Th1 response and presented with a more diverse T-cell receptor (TCR) repertoire. These results provide the rationale for the addition of vaccine-to-immune checkpoint blockade-based therapies being tested in the clinic.
Collapse
Affiliation(s)
- Lucas A. Horn
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - Kristen Fousek
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - Duane H. Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - John A. Zebala
- Syntrix Pharmaceuticals, Auburn, WA 98001, USA; (J.A.Z.); (D.Y.M.)
| | - Dean Y. Maeda
- Syntrix Pharmaceuticals, Auburn, WA 98001, USA; (J.A.Z.); (D.Y.M.)
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.A.H.); (K.F.); (D.H.H.); (J.W.H.); (J.S.)
- Correspondence: ; Tel.: +1-240-858-3475; Fax: +1-240-541-4558
| |
Collapse
|
10
|
Bradney MJ, Venis SM, Yang Y, Konieczny SF, Han B. A Biomimetic Tumor Model of Heterogeneous Invasion in Pancreatic Ductal Adenocarcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905500. [PMID: 31997571 PMCID: PMC7069790 DOI: 10.1002/smll.201905500] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/13/2019] [Indexed: 05/21/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a complex, heterogeneous, and genetically unstable disease. Its tumor microenvironment (TME) is complicated by heterogeneous cancer cell populations and strong desmoplastic stroma. This complex and heterogeneous environment makes it challenging to discover and validate unique therapeutic targets. Reliable and relevant in vitro PDAC tumor models can significantly advance the understanding of the PDAC TME and may enable the discovery and validation of novel drug targets. In this study, an engineered tumor model is developed to mimic the PDAC TME. This biomimetic model, named ductal tumor-microenvironment-on-chip (dT-MOC), permits analysis and experimentation on the epithelial-mesenchymal transition (EMT) and local invasion with intratumoral heterogeneity. This dT-MOC is a microfluidic platform where a duct of murine genetically engineered pancreatic cancer cells is embedded within a collagen matrix. The cancer cells used carry two of the three mutations of KRAS, CDKN2A, and TP53, which are key driver mutations of human PDAC. The intratumoral heterogeneity is mimicked by co-culturing these cancer cells. Using the dT-MOC model, heterogeneous invasion characteristics, and response to transforming growth factor-beta1 are studied. A mechanism of EMT and local invasion caused by the interaction between heterogeneous cancer cell populations is proposed.
Collapse
Affiliation(s)
- Michael J Bradney
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Stephanie M Venis
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yi Yang
- Department of Biological Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Stephen F Konieczny
- Department of Biological Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
11
|
Otsuru T, Kobayashi S, Wada H, Takahashi T, Gotoh K, Iwagami Y, Yamada D, Noda T, Asaoka T, Serada S, Fujimoto M, Eguchi H, Mori M, Doki Y, Naka T. Epithelial-mesenchymal transition via transforming growth factor beta in pancreatic cancer is potentiated by the inflammatory glycoprotein leucine-rich alpha-2 glycoprotein. Cancer Sci 2019; 110:985-996. [PMID: 30575211 PMCID: PMC6398893 DOI: 10.1111/cas.13918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
We previously showed that an inflammation‐related, molecule leucine‐rich alpha‐2 glycoprotein (LRG) enhances the transforming growth factor (TGF)‐β1‐induced phosphorylation of Smad proteins and is elevated in patients with pancreatic ductal adenocarcinoma (PDAC). As TGF‐β/Smad signaling is considered to play a key role in epithelial‐mesenchymal transition (EMT), we attempted to clarify the mechanism underlying LRG‐related EMT in relation to metastasis in PDAC. We cultured LRG‐overexpressing PDAC cells (Panc1/LRG) and evaluated the morphology, EMT‐related molecules and TGF‐β/Smad signaling pathway in these cells. We also assessed the LRG levels in plasma and resected specimens from patients with PDAC. Inflammatory cytokines induced LRG production in PDAC cells. A spindle‐like shape was visualized more frequently than other shapes in Panc1/LRG with TGF‐β1 exposure. The expression of E‐cadherin in Panc1/LRG was decreased with TGF‐β1 exposure. Invasion increased with TGF‐β1 stimulation of Panc1/LRG. The phosphorylation of smad2 in Panc1/LRG was increased in comparison with parental Panc1 under TGF‐β1 stimulation. In the plasma LRG‐high group, the recurrence rate tended to be higher and the recurrence‐free survival (RFS) tended to be worse in comparison with the plasma LRG‐low group. LRG enhanced EMT induced by TGF‐β signaling, thus indicating that LRG has a significant effect on the metastasis of PDAC.
Collapse
Affiliation(s)
- Toru Otsuru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi University, Kochi, Japan
| | - Minoru Fujimoto
- Center for Intractable Immune Disease, Kochi University, Kochi, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Testuji Naka
- Center for Intractable Immune Disease, Kochi University, Kochi, Japan
| |
Collapse
|