1
|
Wu L, Hu Z, Song XF, Liao YJ, Xiahou JH, Li Y, Zhang ZH. Targeting Nrf2 signaling pathways in the role of bladder cancer: From signal network to targeted therapy. Biomed Pharmacother 2024; 176:116829. [PMID: 38820972 DOI: 10.1016/j.biopha.2024.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Bladder cancer (BC) is the most common malignancy of the urinary system and often recurs after tumor removal and/or is resistant to chemotherapy. In cancer cells, the activity of the signaling pathway changes significantly, affecting a wide range of cell activities from growth and proliferation to apoptosis, invasion and metastasis. Nrf2 is a transcription factor that plays an important role in cellular defense responses to a variety of cellular stresses. There is increasing evidence that Nrf2 acts as a tumor driver and that it is involved in the maintenance of malignant cell phenotypes. Abnormal expression of Nrf2 has been found to be common in a variety of tumors, including bladder cancer. Over-activation of Nrf2 can lead to DNA damage and the development of bladder cancer, and is also associated with various pathological phenomena of bladder cancer, such as metastasis, angiogenesis, and reduced toxicity and efficacy of therapeutic anticancer drugs to provide cell protection for cancer cells. However, the above process can be effectively inhibited or reversed by inhibiting Nrf2. Therefore, Nrf2 signaling may be a potential targeting pathway for bladder cancer. In this review, we will characterize this signaling pathway and summarize the effects of Nrf2 and crosstalk with other signaling pathways on bladder cancer progression. The focus will be on the impact of Nrf2 activation on bladder cancer progression and current therapeutic strategies aimed at blocking the effects of Nrf2. To better determine how to promote new chemotherapy agents, develop new therapeutic agents, and potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Wu
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China.
| | - Zhao Hu
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Xiao-Fen Song
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Yu-Jian Liao
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Jiang-Huan Xiahou
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Yuan Li
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Zhong-Hua Zhang
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China.
| |
Collapse
|
2
|
Ma MY, Wang Q, Wang SM, Feng XJ, Xian ZH, Zhang SH. Wogonin inhibits hepatoma cell proliferation by targeting miR-27b-5p/YWHAZ axis. J Biochem Mol Toxicol 2023; 37:e23508. [PMID: 37623816 DOI: 10.1002/jbt.23508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Wogonin (5,7-dihydroxy-8-methoxyflavone), a natural flavonoid compound in herbal plants, can suppress growth in hepatocellular carcinoma (HCC). However, the microRNA (miRNA) expression profiles that are influenced by wogonin have not been thoroughly described. To explore the novel miRNAs and the biological mechanism underlying the effect of wogonin on HCC cells. The effect of wogonin on Huh7 cell growth was assessed both in vitro and in vivo. The expression profiles of miRNAs were obtained by small RNA sequencing. Luciferase reporter experiment and bioinformatics analysis were conducted to determine whether tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) can bind to miR-27b-5p. Effects of the ectopic expression of YWHAZ and miR-27b-5p on Huh7 cells proliferation and apoptosis were evaluated. Furthermore, the cell cycle, apoptosis and multiple signaling pathway-related molecules were detected by Western blot analysis. Wogonin substantially inhibited the growth of Huh7 cells both in vitro and in vivo. Seventy miRNAs exhibited greater than twofold changes in wogonin-treated cells. Upregulation of miR-27b-5p inhibited Huh7 cell proliferation, and the anticancer effect of wogonin was reversed after miR-27b-5p knockdown. miR-27b-5p directly targeted YWHAZ in HCC cells. The proliferation-inhibiting effect of miR-27b-5p was revoked by YWHAZ overexpression. Meanwhile, inhibition of HCC growth was achieved by downregulating YWHAZ. Wogonin exerted antitumor activity through multiple signaling molecules, such as focal adhesion kinase, protein kinase B, mammalian target of rapamycin and molecules related to apoptosis and cell cycle by upregulating miR-27b-5p and downregulating YWHAZ. Our findings suggest that miR-27b-5p/YWHAZ axis contributes to the inhibitory effect of wogonin in HCC by targeting related genes and multiple signaling pathways.
Collapse
Affiliation(s)
- Ming-Yue Ma
- Department of Pathology, Yueyang integrated traditional Chinese and Western Medicine Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Department of Pathology, Yueyang integrated traditional Chinese and Western Medicine Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Shou-Mei Wang
- Department of Pathology, Yueyang integrated traditional Chinese and Western Medicine Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jun Feng
- Department of Pathology, Yueyang integrated traditional Chinese and Western Medicine Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Zhi-Hong Xian
- Department of Pathology, Yueyang integrated traditional Chinese and Western Medicine Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Shu-Hui Zhang
- Department of Pathology, Yueyang integrated traditional Chinese and Western Medicine Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhao X, Si S. Five genes as diagnostic biomarkers of dermatomyositis and their correlation with immune cell infiltration. Front Immunol 2023; 14:1053099. [PMID: 36742332 PMCID: PMC9889851 DOI: 10.3389/fimmu.2023.1053099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Background Dermatomyositis (DM) is a rare autoimmune disease characterized by severe muscle dysfunction, and the immune response of the muscles plays an important role in the development of DM. Currently, the diagnosis of DM relies on symptoms, physical examination, and biopsy techniques. Therefore, we used machine learning algorithm to screen key genes, and constructed and verified a diagnostic model composed of 5 key genes. In terms of immunity, The relationship between 5 genes and immune cell infiltration in muscle samples was analyzed. These diagnostic and immune-cell-related genes may contribute to the diagnosis and treatment of DM. Methods GSE5370 and GSE128470 datasets were utilised from the Gene Expression Omnibus database as DM test sets. And we also used R software to merge two datasets and to analyze the results of differentially expressed genes (DEGs) and functional correlation analysis. Then, we could detect diagnostic genes adopting least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine recursive feature elimination (SVM-RFE) analyses. The validity of putative biomarkers was assessed using the GSE1551 dataset, and we confirmed the area under the receiver operating characteristic curve (AUC) values. Finally, CIBERSORT was used to evaluate immune cell infiltration in DM muscles and the correlations between disease-related biomarkers and immune cells. Results In this study, a total of 414 DEGs were screened. ISG15, TNFRSF1A, GUSBP11, SERPINB1 and PTMA were identified as potential DM diagnostic biomarkers(AUC > 0.85),and the expressions of 5 genes in DM group were higher than that in healthy group (p < 0.05). Immune cell infiltration analyses indicated that identified DM diagnostic biomarkers may be associated with M1 macrophages, activated NK cells, Tfh cells, resting NK cells and Treg cells. Conclusion The study identified that ISG15, TNFRSF1A, GUSBP11, SERPINB1 and PTMA as potential diagnostic biomarkers of DM and these genes were closely correlated with immune cell infiltration.This will contribute to future studies in diagnosis and treatment of DM.
Collapse
|
4
|
Yu B, Huang Y, Yang Y, Hu H, Yang J. Effect of CTP-mediated PTEN on 5637 bladder cancer cells and the underlying molecular mechanism. BMC Urol 2022; 22:200. [PMID: 36496361 PMCID: PMC9741776 DOI: 10.1186/s12894-022-01152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The aim of the present study was to explore the effect of cytoplasmic transduction peptide (CTP)-phosphatase and tensin homolog (PTEN) on the proliferation, cell cycle, apoptosis, migration and invasion of bladder cancer cells and the underlying molecular mechanism. METHODS A eukaryotic expression vector, pTT5-CTP-PTEN, was constructed. The constructed vector was transfected into HEK 293-6E cells to express a fusion protein, CTP-PTEN. The fusion protein was purified. 5637 bladder cancer cells were cocultured with purified CTP-PTEN fusion protein. Target gene expression, protein expression, cell proliferation, cell cycle, apoptosis, cell invasion and cell migration were examined by reverse transcription polymerase chain reaction (RT-PCR), western blot, MTT assay, flow cytometry, Transwell assay, and cell scratch assay, respectively. RESULTS Both PTEN and CTP-PTEN fusion protein inhibited the proliferation, cell cycle, invasion and migration of bladder cancer cells and promoted the apoptosis of bladder cancer cells. The effect of CTP-PTEN was more significant. CONCLUSIONS The fused expression of CTP and PTEN significantly increased the penetrability of the tumor suppressor gene PTEN into cancer cells. The CTP-PTEN fusion protein exhibited a significant carcinostatic effect on 5637 bladder cancer cells.
Collapse
Affiliation(s)
- Bei Yu
- grid.411292.d0000 0004 1798 8975Urological Department, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan China
| | - Yuan Huang
- grid.411292.d0000 0004 1798 8975Department of Clinical Laboratory, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan China
| | - Yue Yang
- grid.411292.d0000 0004 1798 8975Urological Department, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan China
| | - Haifeng Hu
- grid.411292.d0000 0004 1798 8975Urological Department, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan China
| | - Jin Yang
- grid.411292.d0000 0004 1798 8975Urological Department, The Affiliated Hospital of Chengdu University, Chengdu, Sichuan China
| |
Collapse
|
5
|
Chen X, Cao M, Wang P, Chu S, Li M, Hou P, Zheng J, Li Z, Bai J. The emerging roles of TRIM21 in coordinating cancer metabolism, immunity and cancer treatment. Front Immunol 2022; 13:968755. [PMID: 36159815 PMCID: PMC9506679 DOI: 10.3389/fimmu.2022.968755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Tripartite motif containing-21 (TRIM21), an E3 ubiquitin ligase, was initially found to be involved in antiviral responses and autoimmune diseases. Recently studies have reported that TRIM21 plays a dual role in cancer promoting and suppressing in the occurrence and development of various cancers. Despite the fact that TRIM21 has effects on multiple metabolic processes, inflammatory responses and the efficacy of tumor therapy, there has been no systematic review of these topics. Herein, we discuss the emerging role and function of TRIM21 in cancer metabolism, immunity, especially the immune response to inflammation associated with tumorigenesis, and also the cancer treatment, hoping to shine a light on the great potential of targeting TRIM21 as a therapeutic target.
Collapse
Affiliation(s)
- Xintian Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Menghan Cao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Pengfei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| |
Collapse
|
6
|
Cannon AS, Holloman BL, Wilson K, Miranda K, Dopkins N, Nagarkatti P, Nagarkatti M. AhR Activation Leads to Attenuation of Murine Autoimmune Hepatitis: Single-Cell RNA-Seq Analysis Reveals Unique Immune Cell Phenotypes and Gene Expression Changes in the Liver. Front Immunol 2022; 13:899609. [PMID: 35720411 PMCID: PMC9204231 DOI: 10.3389/fimmu.2022.899609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ubiquitously expressed ligand-activated transcription factor. While initially identified as an environmental sensor, this receptor has been shown more recently to regulate a variety of immune functions. AhR ligands vary in structure and source from environmental chemicals such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and indoles found in cruciferous vegetables to endogenous ligands derived from tryptophan metabolism. In the current study, we used TCDD, a high affinity AhR ligand to study the impact of AhR activation in the murine model of autoimmune hepatitis (AIH). Primarily, we used single-cell RNA-sequencing (scRNA-seq) technology to study the nature of changes occurring in the immune cells in the liver at the cellular and molecular level. We found that AhR activation attenuated concanavalin A (ConA)-induced AIH by limiting chemotaxis of pro-inflammatory immune cell subsets, promoting anti-inflammatory cytokine production, and suppressing pro-inflammatory cytokine production. scRNA-seq analysis showed some unusual events upon ConA injection such as increased presence of mature B cells, natural killer (NK) T cells, CD4+ or CD8+ T cells, Kupffer cells, memory CD8+ T cells, and activated T cells while TCDD treatment led to the reversal of most of these events. Additionally, the immune cells showed significant alterations in the gene expression profiles. Specifically, we observed downregulation of inflammation-associated genes including Ptma, Hspe1, and CD52 in TCDD-treated AIH mice as well as alterations in the expression of migratory markers such as CXCR2. Together, the current study characterizes the nature of inflammatory changes occurring in the liver during AIH, and sheds light on how AhR activation during AIH attenuates liver inflammation by inducing phenotypic and genotypic changes in immune cells found in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
7
|
Isali I, McClellan P, Calaway A, Prunty M, Abbosh P, Mishra K, Ponsky L, Markt S, Psutka SP, Bukavina L. Gene network profiling in muscle-invasive bladder cancer: A systematic review and meta-analysis. Urol Oncol 2022; 40:197.e11-197.e23. [PMID: 35039218 PMCID: PMC10123538 DOI: 10.1016/j.urolonc.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/17/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Determining meta-analysis of transcriptional profiling of muscle-invasive bladder cancer (MIBC) through Gene Expression Omnibus (GEO) datasets has not been investigated. This study aims to define gene expression profiles in MIBC and to identify potential candidate genes and pathways. OBJECTIVES To review and evaluate gene expression studies in MIBC through publicly available RNA sequencing (RNA-Seq) and microarray data in order to identify potential prognostic and therapeutic targets for MIBC. METHODS A systematic literature search of the Ovid MEDLINE, PubMed, and Wiley Cochrane Central Register of Controlled Trials databases was performed using the terms "gene," "gene expression," and "bladder cancer" January 1, 1990 through March 2021 focused on populations with MIBC. RESULTS In the final analysis, GEO datasets were included. Fixed effect model was employed in the meta-analysis. Gene networking connections and gene-set functional analyses of the identified genes as differentially expressed in MIBC were performed using ImaGEO and GeneMANIA software. A heatmap for the upregulated and downregulated genes was generated along with the correlated pathways. CONCLUSION A total of 9 genes were reported in this analysis. Six genes were reported as upregulated (ProTα, SPINT1, UBE2E1, RAB25, KPNB1, HDAC1) and 3 genes as downregulated (NUP188, IPO13, NUP124). Genes were found to be involved in "ubiquitin mediated proteolysis," "protein processing in endoplasmic reticulum," "transcriptional misregulation in cancer," and "RNA transport" pathways.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Phillip McClellan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | - Adam Calaway
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH; Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH
| | - Megan Prunty
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Phillip Abbosh
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA
| | - Kirtishri Mishra
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA
| | - Lee Ponsky
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH; Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH
| | - Sarah Markt
- Department of Population and Quantitative Health Science, Case Western Reserve School of Medicine, Cleveland, OH
| | - Sarah P Psutka
- Department of Urology, University of Washington School of Medicine, Seattle, WA
| | - Laura Bukavina
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH; Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH.
| |
Collapse
|
8
|
Overexpression of prothymosin-alpha in glioma is associated with tumor aggressiveness and poor prognosis. Biosci Rep 2022; 42:231053. [PMID: 35297481 PMCID: PMC9069441 DOI: 10.1042/bsr20212685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/05/2022] Open
Abstract
Prothymosin-α (PTMA), a nuclear protein, is strikingly associated with unfavorable clinical outcomes in many cancers. However, no information about its clinical relevance in glioma was available. Therefore in the present study, we evaluated the prognostic utility of this protein in a cohort of 81 glioma patients. The PTMA expression was assessed by immunohistochemical analysis, quantitative PCR, and Western blotting. Furthermore, the association of PTMA with clinicopathological features and molecular alterations were assessed in the patient cohort and validated in multiomics datasets, The Cancer Genome Atlas (TCGA; n=667) and Chinese Glioma Genome Atlas (CGGA; n=1013). We observed an increase in PTMA expression with increasing histological grades of this malignancy. PTMA immunostaining also displayed a strong positive association with the MIB-1 index. Univariate analysis revealed a superior prognostic value of PTMA to predict overall survival (OS) as compared with the routinely used markers (p53, isocitrate dehydrogenase (IDH) 1 (IDH1), α-thalassemia/intellectual disability syndrome X-linked (ATRX), and Ki-67). Interestingly, in Cox regression analysis it emerged as an independent predictor of OS (hazard ratio (HR) = 13.71, 95% CI = 5.96–31.52, P<0.0001). Thus, our results demonstrate the potential prognostic utility of PTMA in glioma which may prove useful in the management of this deadly malignancy.
Collapse
|
9
|
Fu Y, Gao J, Li Y, Yang X, Zhang Y. RETRACTED: TRIM21 deficiency confers protection from OGD/R-induced oxidative and inflammatory damage in cultured hippocampal neurons through regulation of the Keap1/Nrf2 pathway. Int Immunopharmacol 2022; 103:108414. [PMID: 34929478 DOI: 10.1016/j.intimp.2021.108414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). The authors have requested that this paper be retracted as they were unable to repeat some results reported in this paper under the same conditions. In Figure 1D, they found that TRIM21 siRNA-1 could not silence the expression of TIRM21. Therefore, the subsequent results were no longer reliable. The authors apologize for any inconvenience this retraction may cause for readers.
Collapse
Affiliation(s)
- Yahong Fu
- Department of Neurology, Xi'an Ninth Hospital, No. 151 East Section of South Second Ring Road, Xi'an 710054, Shaanxi Province, China
| | - Junxian Gao
- Department of Neurology, Xi'an Ninth Hospital, No. 151 East Section of South Second Ring Road, Xi'an 710054, Shaanxi Province, China
| | - Yanqing Li
- Department of Neurology, Xi'an Ninth Hospital, No. 151 East Section of South Second Ring Road, Xi'an 710054, Shaanxi Province, China
| | - Xi Yang
- Department of Neurology, Xi'an Ninth Hospital, No. 151 East Section of South Second Ring Road, Xi'an 710054, Shaanxi Province, China
| | - Yun Zhang
- Department of Neurology, Xi'an Ninth Hospital, No. 151 East Section of South Second Ring Road, Xi'an 710054, Shaanxi Province, China.
| |
Collapse
|
10
|
Wang L, Gao J, Zhang Y, Kang S. Silencing miRNA-1297 suppresses the invasion and migration of prostate cancer cells via targeting modulation of PTEN and blocking of the AKT/ERK pathway. Exp Ther Med 2021; 22:768. [PMID: 34055067 PMCID: PMC8145438 DOI: 10.3892/etm.2021.10200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) loss is a major contributing factor of prostate cancer (PC). miRNA-1297 was reported to serve role in various cancer types; however, the potential roles of miRNA-1297 in PC had not been investigated. In the present study, tumor and adjacent tissues were collected from patients with PC. The gene expression level of miRNA-1297 was measured via polymerase chain reaction. Results indicated that the miRNA-1297 was overexpressed in tumor tissues from PC patients and in PC cell lines. miRNA-1297 also contributed toward the progression of PC. PTEN was confirmed as the direct target of miRNA-1297 and bound with miRNA-1297 via four binding sites. The miRNA-1297 level was negatively associated with the PTEN level. Silencing miRNA-1297 or overexpression of PTEN significantly inhibited the cell migration and invasion. In addition, the AKT/ERK pathway was also inhibited following silencing of miRNA-1297 or overexpression of PTEN. Taken together, the results indicated that silencing miRNA-1297 exerted inhibitory effects on the invasion and migration of PC cells via modulating PTEN and blocking of the AKT/ERK pathway. The results of the present study provided a novel strategy for treatment of prostate cancer cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jing Gao
- Department of Obstetrics and Gynecology, Tangshan Hongci Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yu Zhang
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Shaosan Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
11
|
Deng M, Wei W, Duan J, Chen R, Wang N, He L, Peng Y, Ma X, Wu Z, Liu J, Li Z, Zhang Z, Jiang L, Zhou F, Xie D. ZHX3 promotes the progression of urothelial carcinoma of the bladder via repressing of RGS2 and is a novel substrate of TRIM21. Cancer Sci 2021; 112:1758-1771. [PMID: 33440047 PMCID: PMC8088937 DOI: 10.1111/cas.14810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Clinically, patients with urothelial carcinoma of the bladder (UCB) with tumor metastasis are incurable. To find new therapeutic strategies, the mechanisms underlying UCB invasion and metastasis should be further investigated. In this study, zinc finger and homeobox 3 (ZHX3) was first screened as a critical oncogenic factor associated with poor prognosis in a UCB dataset from The Cancer Genome Atlas (TCGA). These results were also confirmed in a large cohort of clinical UCB clinical samples. Next, we found that ZHX3 could promote the migration and invasion capacities of UCB cells both in vitro and in vivo. Mechanistically, coimmunoprecipitation (coIP) and mass spectrometry (MS) analysis indicated that ZHX3 was a target of tripartite motif 21 (TRIM21), which mediates its ubiquitination, and subsequent degradation. Notably, RNA‐seq analysis showed that ZHX3 repressed the expression of regulator of G protein signaling 2 (RGS2). Generally, our results suggest that ZHX3 plays an oncogenic role in UCB pathogenesis and might serve as a novel therapeutic target for UCB.
Collapse
Affiliation(s)
- Minhua Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wensu Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinling Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rixin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Leye He
- Department of Urology, Xiangya Third Hospital, Changsha, China
| | - Yulu Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaodan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zeshen Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianye Liu
- Department of Urology, Xiangya Third Hospital, Changsha, China
| | - Zhiyong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhiling Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lijuan Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fangjian Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
12
|
Ashrafizadeh M, Zarrabi A, Samarghandian S, Najafi M. PTEN: What we know of the function and regulation of this onco-suppressor factor in bladder cancer? Eur J Pharmacol 2020; 881:173226. [PMID: 32485246 DOI: 10.1016/j.ejphar.2020.173226] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Bladder cancer accounts for high morbidity and mortality around the world and its incidence rate is suggested to be higher in following years. A number of factors involve in bladder cancer development such as lifestyle and drugs. However, it appears that genetic factors play a significant role in bladder cancer development and progression. Phosphatase and tensin homolog (PTEN) is a cancer-related transcription factor that is corelated with reduced proliferation and invasion of cancer cells by negatively targeting PI3K/Akt/mTOR signaling pathway. In the present review, we aimed to explore the role of PTEN in bladder cancer cells and how upstream modulators affect PTEN in this life-threatening disorder. Down-regulation of PTEN is associated with poor prognosis, chemoresistance and progression of cancer cells. Besides, microRNAs, long non-coding RNAs, circular RNAs and other molecular pathways such as NF-kB are able to target PTEN in bladder cancer cells. Notably, anti-tumor drugs such as kaempferol, β-elemene and sorafenib upregulate the expression of PTEN to exert their inhibitory effects on bladder cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Pecori Giraldi F, Cassarino MF, Sesta A, Terreni M, Lasio G, Losa M. Sexual Dimorphism in Cellular and Molecular Features in Human ACTH-Secreting Pituitary Adenomas. Cancers (Basel) 2020; 12:E669. [PMID: 32183012 PMCID: PMC7139870 DOI: 10.3390/cancers12030669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Background. Cushing's disease presents gender disparities in prevalence and clinical course. Little is known, however, about sexual dimorphism at the level of the corticotrope adenoma itself. The aim of the present study was to evaluate molecular features of ACTH-secreting pituitary adenomas collected from female and male patients with Cushing's disease. (2) Methods. We analyzed 153 ACTH-secreting adenomas collected from 31 men and 122 women. Adenomas were established in culture and ACTH synthesis and secretion assessed in basal conditions as well as during incubation with CRH or dexamethasone. Concurrently, microarray analysis was performed on formalin-fixed specimens and differences in the expression profiles between specimens from male and female patients identified. (3) Results. ACTH medium concentrations in adenomas obtained from male patients were significantly lower than those observed in adenomas from female patients. This could be observed for baseline as well as modulated secretion. Analysis of corticotrope transcriptomes revealed considerable similarities with few, selected differences in functional annotations. Differentially expressed genes comprised genes with known sexual dimorphism, genes involved in tumour development and genes relevant to pituitary pathophysiology. (4) Conclusions. Our study shows for the first time that human corticotrope adenomas present sexual dimorphism and underlines the need for a gender-dependent analysis of these tumours. Differentially expressed genes may represent the basis for gender-tailored target therapy.
Collapse
Affiliation(s)
- Francesca Pecori Giraldi
- Department of Clinical Sciences & Community Health, University of Milan; 20122 Milan, Italy
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano, Istituto di Ricerca e Cura a Carattere Scientifico, 20095 Milan, Italy
| | - Maria Francesca Cassarino
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano, Istituto di Ricerca e Cura a Carattere Scientifico, 20095 Milan, Italy
| | - Antonella Sesta
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano, Istituto di Ricerca e Cura a Carattere Scientifico, 20095 Milan, Italy
| | | | - Giovanni Lasio
- Deparment of Neurosurgery, Istituto Clinico Humanitas, 20089 Rozzano (Milan), Italy;
| | - Marco Losa
- Department of Neurosurgery, Ospedale San Raffaele, 20136 Milan, Italy;
| |
Collapse
|
14
|
Tsai YS, Jou YC, Tsai HT, Shiau AL, Wu CL, Tzai TS. Prothymosin-α enhances phosphatase and tensin homolog expression and binds with tripartite motif-containing protein 21 to regulate Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 signaling in human bladder cancer. Cancer Sci 2019; 110:1208-1219. [PMID: 30719818 PMCID: PMC6447842 DOI: 10.1111/cas.13963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 02/01/2023] Open
Abstract
Prothymosin‐α (PTMA) is a small, acidic protein that is usually transported into the nucleus and involves many cellular and immunological functions. Previous studies demonstrated that aberrant location of PTMA expression exists in human bladder cancer, but the role of PTMA protein expression remains elusive. In this study, we created ectopic nuclear or cytoplasmic PTMA expression in human bladder cancer cells by infecting lentiviruses carrying wild type or deleted nuclear localization signal of the PTMA gene. The in vivo tumorigenesis assay showed PTMA protein with deleted nuclear localization signal promotes J82 xenograft tumor growth in mice and shortens their survival more so than the wild type. Chromatin immunoprecipitation showed that wild‐type PTMA protein binds to the PTEN promoter and enhances phosphatase and tensin homolog (PTEN) expression. Through immunoblot proteomics and in vivo ubiquitination studies, PTMA protein can bind with tripartite motif‐containing protein 21 (TRIM21) and block its ubiquitination. Also, TRIM21 can downregulate both forms of PTMA protein. In human bladder tumors, loss of nuclear PTMA expression was an unfavorable prognostic indicator for shorter disease‐free survival (hazard ratio, 1.54; P = 0.009). Our data support that nuclear PTMA protein serves as a tumor suppressor in bladder cancer through upregulating PTEN and orchestrating TRIM21 for the regulation of Nrf2 signaling.
Collapse
Affiliation(s)
- Yuh-Shyan Tsai
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Hsin-Tzu Tsai
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shin Tzai
- Department of Urology, An-Nan Hospital, China Medical University, Tainan, Taiwan
| |
Collapse
|