1
|
He C. Activating Invasion and Metastasis in Small Cell Lung Cancer: Role of the Tumour Immune Microenvironment and Mechanisms of Vasculogenesis, Epithelial-Mesenchymal Transition, Cell Migration, and Organ Tropism. Cancer Rep (Hoboken) 2024; 7:e70018. [PMID: 39376011 PMCID: PMC11458887 DOI: 10.1002/cnr2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) harbours the most aggressive phenotype of all lung cancers to correlate with its bleak prognosis. The aggression of SCLC is partially attributable to its strong metastatic tendencies. The biological processes facilitating the metastasis in SCLC are still poorly understood and garnering a deeper understanding of these processes may enable the exploration of additional targets against this cancer hallmark in the treatment of SCLC. RECENT FINDINGS This narrative review will discuss the proposed molecular mechanisms by which the cancer hallmark of activating invasion and metastasis is featured in SCLC through important steps of the metastatic pathway, and address the various molecular targets that may be considered for therapeutic intervention. The tumour immune microenvironment plays an important role in facilitating immunotherapy resistance, whilst the poor infiltration of natural killer cells in particular fosters a pro-metastatic environment in SCLC. SCLC vasculogenesis is achieved through VEGF expression and vascular mimicry, and epithelial-mesenchymal transition is facilitated by the expression of the transcriptional repressors of E-cadherin, the suppression of the Notch signalling pathway and tumour heterogeneity. Nuclear factor I/B, selectin and B1 integrin hold important roles in SCLC migration, whilst various molecular markers are expressed by SCLC to assist organ-specific homing during metastasis. The review will also discuss a recent article observing miR-1 mRNA upregulation as a potential therapeutic option in targeting the metastatic activity of SCLC. CONCLUSION Treatment of SCLC remains a clinical challenge due to its recalcitrant and aggressive nature. Amongst the many hallmarks used by SCLC to enable its aggressive behaviour, that of its ability to invade surrounding tissue and metastasise is particularly notable and understanding the molecular mechanisms in SCLC metastasis can identify therapeutic targets to attenuate SCLC aggression and improve mortality.
Collapse
Affiliation(s)
- Carl He
- Department of Oncology, Eastern HealthUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
2
|
Peddio A, Pietroluongo E, Lamia MR, Luciano A, Caltavituro A, Buonaiuto R, Pecoraro G, De Placido P, Palmieri G, Bianco R, Giuliano M, Servetto A. DLL3 as a potential diagnostic and therapeutic target in neuroendocrine neoplasms: A narrative review. Crit Rev Oncol Hematol 2024; 204:104524. [PMID: 39326646 DOI: 10.1016/j.critrevonc.2024.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) represent a diagnostic and therapeutic challenge, due to their heterogeneity and limited treatment options. Conventional imaging techniques and therapeutic strategies may become unreliable during follow-up, due to the tendency of these neoplasms to dedifferentiate over time. Therefore, novel diagnostic and therapeutic options are required for the management of NEN patients. Delta-like ligand 3 (DLL3), an inhibitory ligand of Notch receptor, has emerged as a potential target for novel diagnostic and therapeutic strategies in NENs, since overexpression of DLL3 has been associated with tumor progression, poor prognosis and dedifferentiation in several NENs. This narrative review examines the current evidence about DLL3, its structure, function and association with tumorigenesis in NENs. Ongoing studies exploring the role of DLL3 as an emerging diagnostic marker are reviewed. Promising therapeutic options, such as antibody-conjugated drugs, CAR-T cells and radioimmunoconjugates, are also discussed.
Collapse
Affiliation(s)
- Annarita Peddio
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Erica Pietroluongo
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Maria Rosaria Lamia
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Angelo Luciano
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Aldo Caltavituro
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Roberto Buonaiuto
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Giovanna Pecoraro
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Giovannella Palmieri
- Rare Tumors Coordinating Center of Campania Region (CRCTR), University Federico II, Naples, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy.
| |
Collapse
|
3
|
Lin S, Zhang Y, Yao J, Yang J, Qiu Y, Zhu Z, Hua H. DB-1314, a novel DLL3-targeting ADC with DNA topoisomerase I inhibitor, exhibits promising safety profile and therapeutic efficacy in preclinical small cell lung cancer models. J Transl Med 2024; 22:766. [PMID: 39143619 PMCID: PMC11323672 DOI: 10.1186/s12967-024-05568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Delta-like ligand 3 (DLL3) is highly expressed on the cell surface of small cell lung cancer (SCLC), one of the most lethal malignancies, but minimally or not in normal tissues, making it an attractive target for SCLC. However, none of the DLL3-targeting antibody-drug conjugates (ADCs) have been approved for SCLC therapy yet. We developed DB-1314, the new anti-DLL3 ADC composed of a novel humanized anti-DLL3 monoclonal antibody (DB131401) conjugated with eight molecules of P1021 (topoisomerase I inhibitor), and described its preclinical profiles. METHODS The binding epitope for DB131401 and Rovalpituzumab was tested by biolayer interferometry. The binding affinity and specificity of DB-1314 to DLL3 and other homologous proteins were respectively measured by surface plasmon resonance and enzyme-linked immunosorbent assay. Internalization, bystander effects, and antibody-dependent cell-mediated cytotoxicity (ADCC) were assessed by respective assay. DLL3 was quantified by antibodies bound per cell assay and immunohistochemistry. In vitro and in vivo growth inhibition studies were evaluated in SCLC cell lines, and cell line/patient-derived xenograft models. The safety profile was measured in cynomolgus monkeys. RESULTS DB-1314 induces potent, durable, and dose-dependent antitumor effects in cells in vitro and in cell/patient-derived xenograft models in vivo. The killing activity of DB-1314 mechanically arises from P1021-induced DNA damage, whereby P1021 is delivered and released within tumor cells through DLL3-specific binding and efficient internalization. Bystander effects and ADCC also contribute to the antitumor activity of DB-1314. DB-1314 displays favorable pharmacokinetic and toxicokinetic profiles in rats and cynomolgus monkeys; besides, DB-1314 is well-tolerated at a dose of up to 60 mg/kg in monkeys. CONCLUSIONS These results suggest that DB-1314 may be a candidate ADC targeting DLL3 for the treatment of DLL3-positive SCLC, supporting further evaluation in the clinical setting.
Collapse
Affiliation(s)
- Shengchao Lin
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China.
| | - Yu Zhang
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Jun Yao
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Junjie Yang
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Yang Qiu
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Zhongyuan Zhu
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Haiqing Hua
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China.
| |
Collapse
|
4
|
Meng Y, Wang X, Yang J, Zhu M, Yu M, Li L, Liang Y, Kong F. Antibody-drug conjugates treatment of small cell lung cancer: advances in clinical research. Discov Oncol 2024; 15:327. [PMID: 39090431 PMCID: PMC11294301 DOI: 10.1007/s12672-024-01171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Small cell lung cancer (SCLC) is an extremely aggressive cancer with a relatively low median survival rate after diagnosis. Treatment options such as chemotherapy or combination immunotherapy have shown clinical benefits, but resistance and relapse can occur. Antibody-drug conjugates (ADCs), as a novel class of biopharmaceutical compounds, have broad application prospects in the treatment of SCLC. ADCs consist of monoclonal antibodies that specifically target cancer cells and are attached to cytotoxic drugs, allowing for targeted killing of cancer cells while sparing healthy tissues. Current clinical studies focus on Delta-like protein 3 (DLL3), CD56, Trophoblast cell surface antigen 2 (Trop-2), B7-H3, and SEZ6. Although toxicities exceeding expectations have been observed with Rova-T, drugs targeting TROP-2 (Sacituzumab Govitecan), B7-H3 (DS-7300), and SEZ6 (ABBV-011) have shown exciting clinical benefits. In this review, we collect the latest clinical evidence to describe the therapeutic efficacy and safety of ADCs in SCLC and discuss prospects and challenges.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Xuerui Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Jie Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Meiying Zhu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Minghui Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Longhui Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Yangyueying Liang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
5
|
He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e671. [PMID: 39070179 PMCID: PMC11283588 DOI: 10.1002/mco2.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University Jiande Zhejiang China
| | - Xianghua Zeng
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Chunmei Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Enwen Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Yongsheng Li
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| |
Collapse
|
6
|
Cheng W, Kang K, Zhao A, Wu Y. Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer. J Hematol Oncol 2024; 17:54. [PMID: 39068460 PMCID: PMC11283714 DOI: 10.1186/s13045-024-01581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer immunotherapies, represented by immune checkpoint inhibitors (ICIs), have reshaped the treatment paradigm for both advanced non-small cell lung cancer and small cell lung cancer. Programmed death receptor-1/programmed death receptor ligand-1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are some of the most common and promising targets in ICIs. Compared to ICI monotherapy, which occasionally demonstrates treatment resistance and limited efficacy, the dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 operates at different stages of T cell activation with synergistically enhancing immune responses against cancer cells. This emerging dual therapy heralds a new direction for cancer immunotherapy, which, however, may increase the risk of drug-related adverse reactions while improving efficacy. Previous clinical trials have explored combination therapy strategy of anti-PD-1/PD-L1 and anti-CTLA-4 agents in lung cancer, yet its efficacy remains to be unclear with the inevitable incidence of immune-related adverse events. The recent advent of bispecific antibodies has made this sort of dual targeting more feasible, aiming to alleviate toxicity without compromising efficacy. Thus, this review highlights the role of dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in treating lung cancer, and further elucidates its pre-clinical mechanisms and current advancements in clinical trials. Besides, we also provide novel insights into the potential combinations of dual blockade therapies with other strategies to optimize the future treatment mode for lung cancer.
Collapse
Affiliation(s)
- Weishi Cheng
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Noguera-Ortega E, Albelda SM. Small cell, big promises: targeting small cell lung cancer with CAR T cells. Transl Lung Cancer Res 2024; 13:956-960. [PMID: 38736504 PMCID: PMC11082704 DOI: 10.21037/tlcr-24-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/19/2024] [Indexed: 05/14/2024]
Affiliation(s)
- Estela Noguera-Ortega
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven M. Albelda
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Hu M, Xu J, Shi L, Shi L, Yang H, Wang Y. The p38 MAPK/snail signaling axis participates in cadmium-induced lung cancer cell migration and invasiveness. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24042-24050. [PMID: 38436850 DOI: 10.1007/s11356-024-32746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
To determine that p38 MAPK activation contributes to the migration and invasion of lung cancer cells caused by cadmium (Cd). A549 lung cancer cell migration and invasion were assessed using a transwell plate system, and the role of p38 was determined by knocking down p38 activity with two different inhibitors of p38. The activity of p38 was measured by western blot analysis using phospho-specific p38 antibodies and normalized to blots using antibodies directed to total p38 proteins. Snail transcripts were measured using qRT-PCR. The inhibition of p38 blocked Cd-induced migration and invasion, which correlated with an increased activation of p38 as a function of dose and time. Furthermore, Cd-induced activation of p38 MAPK controlled the increase of snail mRNA expression. The p38 MAPK/snail signaling axis was involved in Cd-induced lung cancer cell migration and invasion.
Collapse
Affiliation(s)
- Mengke Hu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Xu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Liqin Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, No. 105 of South Nongye Road, Zhengzhou, 450016, China.
| |
Collapse
|
9
|
Popper H, Brcic L, Eidenhammer S. Does subtyping of high-grade pulmonary neuroendocrine carcinomas have an impact on therapy selection? Transl Lung Cancer Res 2023; 12:2412-2426. [PMID: 38205203 PMCID: PMC10775006 DOI: 10.21037/tlcr-23-505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Background Small cell lung cancer (SCLC) and large cell neuroendocrine carcinomas (LCNEC) are characterized by a rapid progressive course. Therapy for SCLC has not much changed for decades, and in LCNEC controversies exist, favoring either SCLC-like or non-small cell lung cancer (NSCLC)-like therapy. Three subtypes of SCLC identified in cell cultures, namely ASCL1, NeuroD1, and POU2F3 have been confirmed by immunohistochemistry. The fourth type based on the expression of YAP1 was questioned, and another type, inflamed SCLC, was proposed. Methods SCLC and LCNEC samples were investigated by immunohistochemistry for different subtypes. Additionally, immunohistochemical markers as potential tools to identify patients who might respond to targeted treatment were investigated. For validation a biopsy set was added. Results ASCL1, NeuroD1, and POU2F3 were expressed in different percentages in SCLC and LCNEC. Similar percentages of expression were found in biopsies. ATOH was expressed in combination with one of the subtypes. YAP1 and TAZ were expressed in some SCLC and LCNEC cases. HES1 expression was seen in few cases. Predominantly stroma cells expressed programmed cell death ligand 1 (PD-L1). The dominant MYC protein was N-MYC. Aurora kinase A (AURKA) was expressed in the majority of both carcinomas, whereas fibroblast growth factor receptor 2 (FGFR2) in few. Conclusions SCLC and LCNEC can be subtyped into ASCL1-, NeuroD1-, and POU2F3-positive types. AURKA expression and positivity for N-MYC protein was not associated with subtypes. AURKA and FGFR2 are both possible targets for inhibition in SCLC and LCNEC, but patients' selection should be based on expression of the enzyme. Combined chemo- and immunotherapy might be decided by PD-L1 staining of stroma cells.
Collapse
Affiliation(s)
| | - Luka Brcic
- D&F Institute of Pathology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
10
|
Shirasawa M, Yoshida T, Shiraishi K, Goto N, Yagishita S, Imabayashi T, Matsumoto Y, Masuda K, Shinno Y, Okuma Y, Goto Y, Horinouchi H, Yotsukura M, Yoshida Y, Nakagawa K, Naoki K, Tsuchida T, Hamamoto R, Yamamoto N, Motoi N, Kohno T, Watanabe SI, Ohe Y. Tumor microenvironment-mediated immune profiles and efficacy of anti-PD-L1 antibody plus chemotherapy stratified by DLL3 expression in small-cell lung cancer. Br J Cancer 2023; 129:2003-2013. [PMID: 37731022 PMCID: PMC10703835 DOI: 10.1038/s41416-023-02427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Delta-like ligand 3 (DLL3) is a therapeutic target in small-cell lung cancer (SCLC). However, how DLL3 expression status affects the tumor microenvironment (TME) and clinical outcomes in SCLC remains unclear. METHODS This retrospective study included patients with postoperative limited-stage (LS)-SCLC and extensive-stage (ES)-SCLC treated with platinum and etoposide (PE) plus anti-programmed cell death ligand 1 (PD-L1) antibody. We investigated the relationship of DLL3 expression with TME, mutation status, tumor neoantigens, and immunochemotherapy. RESULTS In the LS-SCLC cohort (n = 59), whole-exome sequencing revealed that DLL3High cases had significantly more neoantigens (P = 0.004) and a significantly higher rate of the signature SBS4 associated with smoking (P = 0.02) than DLL3Low cases. Transcriptome analysis in the LS-SCLC cohort revealed that DLL3High cases had significantly suppressed immune-related pathways and dendritic cell (DC) function. SCLC with DLL3High had significantly lower proportions of T cells, macrophages, and DCs than those with DLL3Low. In the ES-SCLC cohort (n = 30), the progression-free survival associated with PE plus anti-PD-L1 antibody was significantly worse in DLL3High cases than in DLL3Low cases (4.7 vs. 7.4 months, P = 0.01). CONCLUSIONS Although SCLC with DLL3High had a higher neoantigen load, these tumors were resistant to immunochemotherapy due to suppressed tumor immunity by inhibiting antigen-presenting functions.
Collapse
Affiliation(s)
- Masayuki Shirasawa
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Respiratory Medicine, Kitasato University School of Medicine, 1-15-1, Kitasato, Minami-ku, Sagamihara city, Kanagawa, 252-0375, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoko Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tatsuya Imabayashi
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yuji Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Ken Masuda
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masaya Yotsukura
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazuo Nakagawa
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Katsuhiko Naoki
- Department of Respiratory Medicine, Kitasato University School of Medicine, 1-15-1, Kitasato, Minami-ku, Sagamihara city, Kanagawa, 252-0375, Japan
| | - Takaaki Tsuchida
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Noriko Motoi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Pathology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
11
|
Yang W, Wang W, Li Z, Wu J, Huang X, Li J, Zhang X, Ye X. Delta-like ligand 3 in small cell lung cancer: Potential mechanism and treatment progress. Crit Rev Oncol Hematol 2023; 191:104136. [PMID: 37716517 DOI: 10.1016/j.critrevonc.2023.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Small cell lung cancer (SCLC) is one of a pathological type of lung cancer, and it is characterized by invasiveness, high malignancy and refractoriness. The mortality rate of SCLC is significantly higher than other types of lung cancer, and the treatment options for SCLC patients are limited. Delta-like ligand 3 (DLL3) is a Notch signaling ligand that plays a role in regulating the proliferation, development and metastasis of SCLC cells. Mnay studies have shown that DLL3 is overexpressed on the surface of SCLC cells, suggesting that DLL3 is a potential target for SCLC patients. A series of drug trials targeting DLL3 are underway. The Phase III clinical trials of Rova-T, a drug targeting DLL3, have not yielded the expected results. However, other drugs that target DLL3, such as AMG119, AMG757 and DLL3-targeted NIR-PIT, bring new ideas for SCLC treatment. Overall, DLL3 remains a valuable target for SCLC.
Collapse
Affiliation(s)
- Weichang Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhouhua Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Juan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaotian Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinbo Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinyi Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoqun Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
12
|
Canova S, Trevisan B, Abbate MI, Colonese F, Sala L, Baggi A, Bianchi SP, D'Agostino A, Cortinovis DL. Novel Therapeutic Options for Small Cell Lung Cancer. Curr Oncol Rep 2023; 25:1277-1294. [PMID: 37870696 PMCID: PMC10640463 DOI: 10.1007/s11912-023-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to focus on the recent advances in the molecular knowledge of small cell lung cancer (SCLC) and potential promising new treatment strategies, like targeting the DNA damage pathway, epigenetics, angiogenesis, and oncogenic drivers. RECENT FINDINGS In the last few years, the addition of immunotherapy to chemotherapy has led to significant improvements in clinical outcomes in this complex neoplasia. Nevertheless, the prognosis remains dismal. Recently, numerous genomic alterations have been identified, and they may be useful to classify SCLC into different molecular subtypes (SCLC-A, SCLC-I, SCLC-Y, SCLC-P). SCLC accounts for 10-20% of all lung cancers, most patients have an extensive disease at the diagnosis, and it is characterized by poor prognosis. Despite the progresses in the knowledge of the disease, efficacious targeted treatments are still lacking. In the near future, the molecular characterisation of SCLC will be fundamental to find more effective treatment strategies.
Collapse
Affiliation(s)
- Stefania Canova
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Benedetta Trevisan
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Department of Medical-Surgical Specialties, University of Brescia, Radiological Sciences and Public Health, Brescia, Italy
| | - Maria Ida Abbate
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Francesca Colonese
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Luca Sala
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Alice Baggi
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Department of Medical-Surgical Specialties, University of Brescia, Radiological Sciences and Public Health, Brescia, Italy
| | - Sofia Paola Bianchi
- Radiation Oncology Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Anna D'Agostino
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Diego Luigi Cortinovis
- SC Medical Oncology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy.
- Medicine and Surgery Department, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
13
|
Patel SR, Das M. Small Cell Lung Cancer: Emerging Targets and Strategies for Precision Therapy. Cancers (Basel) 2023; 15:4016. [PMID: 37627044 PMCID: PMC10452729 DOI: 10.3390/cancers15164016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Small cell lung cancer is an aggressive subtype of lung cancer with limited treatment options. Precision medicine has revolutionized cancer treatment for many tumor types but progress in SCLC has been slower due to the lack of targetable biomarkers. This review article provides an overview of emerging strategies for precision therapy in SCLC. Targeted therapies include targeted kinase inhibitors, monoclonal antibodies, angiogenesis inhibitors, antibody-drug conjugates, PARP inhibitors, and epigenetic modulators. Angiogenesis inhibitors and DNA-damaging agents, such as PARP and ATR inhibitors, have been explored in SCLC with limited success to date although trials are ongoing. The potential of targeting DLL3, a NOTCH ligand, through antibody-drug conjugates, bispecific T-cell engagers, and CAR T-cell therapy, has opened up new therapeutic options moving forward. Additionally, new research in epigenetic therapeutics in reversing transcriptional repression, modulating anti-tumor immunity, and utilizing antibody-drug conjugates to target cell surface-specific targets in SCLC are also being investigated. While progress in precision therapy for SCLC has been challenging, recent advancements provide optimism for improved treatment outcomes. However, several challenges remain and will need to be addressed, including drug resistance and tumor heterogeneity. Further research and biomarker-selected clinical trials are necessary to develop effective precision therapies for SCLC patients.
Collapse
Affiliation(s)
- Shruti R. Patel
- Department of Medicine, Division of Medical Oncology, Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA;
| | - Millie Das
- Department of Medicine, Division of Medical Oncology, Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA;
- Department of Medicine, Oncology Section, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
14
|
Rudin CM, Reck M, Johnson ML, Blackhall F, Hann CL, Yang JCH, Bailis JM, Bebb G, Goldrick A, Umejiego J, Paz-Ares L. Emerging therapies targeting the delta-like ligand 3 (DLL3) in small cell lung cancer. J Hematol Oncol 2023; 16:66. [PMID: 37355629 PMCID: PMC10290806 DOI: 10.1186/s13045-023-01464-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma with a poor prognosis. Initial responses to standard-of-care chemo-immunotherapy are, unfortunately, followed by rapid disease recurrence in most patients. Current treatment options are limited, with no therapies specifically approved as third-line or beyond. Delta-like ligand 3 (DLL3), a Notch inhibitory ligand, is an attractive therapeutic target because it is overexpressed on the surface of SCLC cells with minimal to no expression on normal cells. Several DLL3-targeted therapies are being developed for the treatment of SCLC and other neuroendocrine carcinomas, including antibody-drug conjugates (ADCs), T-cell engager (TCE) molecules, and chimeric antigen receptor (CAR) therapies. First, we discuss the clinical experience with rovalpituzumab tesirine (Rova-T), a DLL3-targeting ADC, the development of which was halted due to a lack of efficacy in phase 3 studies, with a view to understanding the lessons that can be garnered for the rapidly evolving therapeutic landscape in SCLC. We then review preclinical and clinical data for several DLL3-targeting agents that are currently in development, including the TCE molecules-tarlatamab (formerly known as AMG 757), BI 764532, and HPN328-and the CAR T-cell therapy AMG 119. We conclude with a discussion of the future challenges and opportunities for DLL3-targeting therapies, including the utility of DLL3 as a biomarker for patient selection and disease progression, and the potential of rational combinatorial approaches that can enhance efficacy.
Collapse
Affiliation(s)
- Charles M Rudin
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Martin Reck
- Department of Thoracic Oncology, Airway Research Center North, German Center for Lung Research, LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | - Melissa L Johnson
- Department of Medical Oncology, Sarah Cannon Cancer Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA
| | - Fiona Blackhall
- Department of Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Christine L Hann
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| | - Julie M Bailis
- Oncology Research, Amgen Inc., South San Francisco, CA, USA
| | - Gwyn Bebb
- Oncology TA-US, Amgen Inc., Thousand Oaks, CA, USA
| | | | | | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, CNIO-H12o Lung Cancer Unit, Universidad Complutense and Ciberonc, Madrid, Spain
| |
Collapse
|
15
|
Paz-Ares L, Champiat S, Lai WV, Izumi H, Govindan R, Boyer M, Hummel HD, Borghaei H, Johnson ML, Steeghs N, Blackhall F, Dowlati A, Reguart N, Yoshida T, He K, Gadgeel SM, Felip E, Zhang Y, Pati A, Minocha M, Mukherjee S, Goldrick A, Nagorsen D, Hashemi Sadraei N, Owonikoko TK. Tarlatamab, a First-in-Class DLL3-Targeted Bispecific T-Cell Engager, in Recurrent Small-Cell Lung Cancer: An Open-Label, Phase I Study. J Clin Oncol 2023; 41:2893-2903. [PMID: 36689692 PMCID: PMC10414718 DOI: 10.1200/jco.22.02823] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Small-cell lung cancer (SCLC) is an aggressive malignancy with limited treatments. Delta-like ligand 3 (DLL3) is aberrantly expressed in most SCLC. Tarlatamab (AMG 757), a bispecific T-cell engager molecule, binds both DLL3 and CD3 leading to T-cellb-mediated tumor lysis. Herein, we report phase I results of tarlatamab in patients with SCLC. PATIENTS AND METHODS This study evaluated tarlatamab in patients with relapsed/refractory SCLC. The primary end point was safety. Secondary end points included antitumor activity by modified RECIST 1.1, overall survival, and pharmacokinetics. RESULTS By July 19, 2022, 107 patients received tarlatamab in dose exploration (0.003 to 100 mg; n = 73) and expansion (100 mg; n = 34) cohorts. Median prior lines of anticancer therapy were 2 (range, 1-6); 49.5% received antiprogrammed death-1/programmed death ligand-1 therapy. Any-grade treatment-related adverse events occurred in 97 patients (90.7%) and grade b % 3 in 33 patients (30.8%). One patient (1%) had grade 5 pneumonitis. Cytokine release syndrome was the most common treatment-related adverse event, occurring in 56 patients (52%) including grade 3 in one patient (1%). Maximum tolerated dose was not reached. Objective response rate was 23.4% (95% CI, 15.7 to 32.5) including two complete and 23 partial responses. The median duration of response was 12.3 months (95% CI, 6.6 to 14.9). The disease control rate was 51.4% (95% CI, 41.5 to 61.2). The median progression-free survival and overall survival were 3.7 months (95% CI, 2.1 to 5.4) and 13.2 months (95% CI, 10.5 to not reached), respectively. Exploratory analysis suggests that selecting for increased DLL3 expression can result in increased clinical benefit. CONCLUSION In patients with heavily pretreated SCLC, tarlatamab demonstrated manageable safety with encouraging response durability. Further evaluation of this promising molecule is ongoing.
Collapse
Affiliation(s)
- Luis Paz-Ares
- Hospital Universitario 12 de Octubre, CNIO-H120 Lung Cancer Unit, Ciberonc and Universidad Complutense, Madrid, Spain
| | - Stephane Champiat
- Gustave Roussy, DC(c)partement d'Innovation ThC(c)rapeutique et d'Essais PrC(c)coces (DITEP), Villejuif, France
| | - W. Victoria Lai
- Thoracic Oncology Service, Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Ramaswamy Govindan
- Divisions of Hematology and Oncology, Washington University Medical School, St Louis, MO
| | - Michael Boyer
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Horst-Dieter Hummel
- Translational Oncology/Early Clinical Trial Unit (ECTU), Comprehensive Cancer Center Mainfranken, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | | | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Fiona Blackhall
- Department of Medical Oncology, The Christie NHS Foundation Trust, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH
| | - Noemi Reguart
- Department of Medical Oncology, Thoracic Oncology Unit, IDIBAPS, Hospital Clinic, University of Barcelona School of Medicine, Barcelona, Spain
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kai He
- Division of Medical Oncology, James Thoracic Oncology Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Enriqueta Felip
- Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | | | | | | | | | | | | | | | - Taofeek K. Owonikoko
- UPMC Hillman Cancer Center, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
16
|
Apaydin AA, Sage J. Taking it up a notch: a promising immunotherapy against small cell lung cancer. Transl Lung Cancer Res 2023; 12:948-952. [PMID: 37323167 PMCID: PMC10261866 DOI: 10.21037/tlcr-23-230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Alanisse A. Apaydin
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Zhang H, Yang Y, Li X, Yuan X, Chu Q. Targeting the Notch signaling pathway and the Notch ligand, DLL3, in small cell lung cancer. Biomed Pharmacother 2023; 159:114248. [PMID: 36645960 DOI: 10.1016/j.biopha.2023.114248] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive and poorly differentiated cancer with high-grade neuroendocrine (NE) features, accounting for approximately 15 % of all lung cancers. For decades, chemotherapy and radiotherapy have predominated the treatment strategy for SCLC, but relapses ensue quickly and result in poor survival of patients. Immunotherapy has brought novel insights, yet the efficacy is still restricted to a limited population with SCLC. Notch signaling is identified to play a key role in the initiation and development of SCLC, and the Notch ligand, Delta-like ligand 3 (DLL3) is found broadly and specifically expressed in SCLC cells. Thus, Notch signaling is under active exploration as a potential therapeutic target in SCLC. Herein, we summarized and updated the functional relevance of Notch signaling in SCLC, discussed Notch signaling-targeted therapy for SCLC and the correspondent preclinical and clinical trials, and investigated the promising synergy effects of Notch signaling targeted therapy and immune checkpoint inhibitors (ICIs) treatment.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Yunkai Yang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Xuchang Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|
18
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Antibody Drug Conjugates in Lung Cancer. Cancer J 2022; 28:429-435. [DOI: 10.1097/ppo.0000000000000630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Yang L, Wang G, Shi H, Jia S, Ruan J, Cui R, Ge S. Methylation-driven gene DLL3 is a potential prognostic biomarker in ocular melanoma correlating with metastasis. Front Oncol 2022; 12:964902. [PMID: 36338696 PMCID: PMC9630341 DOI: 10.3389/fonc.2022.964902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022] Open
Abstract
Background Ocular melanoma is an aggressive malignancy with a high rate of metastasis and poor prognosis. Increasing evidence indicated that DNA methylation plays an important role in the occurrence and development of ocular melanoma. Hence, exploring new diagnostic and prognostic biomarkers at the genetic level may be beneficial to the prognosis of patients with ocular melanoma. Methods We collected DNA methylation and gene expression profiles of human UM (uveal melanoma) and CM (conjunctival melanoma) samples from various datasets. We conducted differential methylation and expression analyses to screen the potential biomarkers. Correlation analysis was performed to investigate the relationships between the expression level of DLL3 (delta-like protein 3) and the methylation level of its corresponding CpGs. We explored the prognostic and diagnostic value of DLL3 in UM and CM. Functional annotation and GSEA (gene set enrichment analysis) were applied to get insight into the possible biological roles of DLL3. A cohort of 60 ocular melanoma patients as well as UM and CM cell lines were used to validate our findings in bioinformatic analyses. Results We found that DLL3 was a methylation-driven gene correlating with UM metastasis. The CpGs of DLL3 are mainly located in the gene body and their methylation level positively correlated to DLL3 expression. Multivariate Cox regression analysis revealed that DLL3 was an independent protective factor for UM patients. High DLL3 expression significantly prolonged the overall survival and disease-free survival of UM patients. DLL3 also showed a promising power to distinguish CM from normal tissues. Functional annotation exhibited that DLL3 may suppress UM progression through modulating immune activities and down-regulating various signaling pathways. External datasets, biospecimens, and cell lines further validated the aberrant expression and prognostic role of DLL3 in ocular melanoma. Conclusion Methylation-driven gene DLL3 could serve as a new potential diagnostic and prognostic biomarker in ocular melanoma. Our findings may contribute to improving the clinical outcomes of patients with UM or CM.
Collapse
Affiliation(s)
- Ludi Yang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Gaoming Wang
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shichong Jia
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Tianjin Eye Institute, Tianjin, China
| | - Jing Ruan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- *Correspondence: Jing Ruan, ; Ran Cui, ; Shengfang Ge,
| | - Ran Cui
- Department of Hepatopancreatobiliary Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Jing Ruan, ; Ran Cui, ; Shengfang Ge,
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- *Correspondence: Jing Ruan, ; Ran Cui, ; Shengfang Ge,
| |
Collapse
|
21
|
Qi X, Li Y, Liu W, Wang Y, Chen Z, Lin L. Research Trend of Publications Concerning Antibody-Drug Conjugate in Solid Cancer: A Bibliometric Study. Front Pharmacol 2022; 13:921385. [PMID: 35795565 PMCID: PMC9252465 DOI: 10.3389/fphar.2022.921385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Antibody-drug conjugate (ADC) is a promising therapy for solid cancer that has raised global concern. Although several papers have reviewed the current state of ADCs in different solid cancers, a quantitative analysis of the publications in this field is scarce. Methods: Publications related to ADC in the field of solid cancer were obtained from the Web of Science Core Collection. Data analyses were performed with VOSviewer 1.6.9, HistCite 2.1, CiteSpace V and R package Bibliometrix. Results: A total of 3,482 records were obtained in the holistic field and 1,197 in the clinical field. Steady growth in the number of publications was observed. The United States was the leading contributor in this field. Krop IE was the most influential author. The most productive institution was Genentech Inc., while Mem Sloan Kettering Canc Ctr was the most cited one. The most impactful journal was the Journal of Clinical Oncology. A total of 37 burst references and five burst references were identified between 2017–2022 in the holistic and clinical fields, respectively. Keywords analysis indicated that ADCs research mainly involved breast cancer, triple-negative breast cancer, ovarian cancer, small cell lung cancer, prostate cancer, gastric cancer, and urothelial carcinoma. ADC agents including trastuzumab emtansine, trastuzumab deruxtecan, sacituzumab govitecan, enfortumab vedotin, and rovalpituzumab tesirine were highly studied. Targets including HER2, trophoblast cell-surface antigen, mesothelin, delta-like ligand 3, and nectin-4 were the major concerns. Conclusion: This study analyzed publications concerning ADCs in the field of solid cancer with bibliometric analysis. Further clinical trials of ADCs and designs of the next generation of ADCs are the current focuses of the field. Acquired resistance of ADCs and biomarkers for ADC therapy efficacy monitoring are future concerns.
Collapse
Affiliation(s)
- Xiangjun Qi
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanlong Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Wang
- School of Chinese Classics Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuangzhong Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Lizhu Lin,
| |
Collapse
|
22
|
Yuan M, Zhao Y, Arkenau HT, Lao T, Chu L, Xu Q. Signal pathways and precision therapy of small-cell lung cancer. Signal Transduct Target Ther 2022; 7:187. [PMID: 35705538 PMCID: PMC9200817 DOI: 10.1038/s41392-022-01013-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/05/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
Small-cell lung cancer (SCLC) encounters up 15% of all lung cancers, and is characterized by a high rate of proliferation, a tendency for early metastasis and generally poor prognosis. Most of the patients present with distant metastatic disease at the time of clinical diagnosis, and only one-third are eligible for potentially curative treatment. Recently, investigations into the genomic make-up of SCLC show extensive chromosomal rearrangements, high mutational burden and loss-of-function mutations of several tumor suppressor genes. Although the clinical development of new treatments for SCLC has been limited in recent years, a better understanding of oncogenic driver alterations has found potential novel targets that might be suitable for therapeutic approaches. Currently, there are six types of potential treatable signaling pathways in SCLC, including signaling pathways targeting the cell cycle and DNA repair, tumor development, cell metabolism, epigenetic regulation, tumor immunity and angiogenesis. At this point, however, there is still a lack of understanding of their role in SCLC tumor biology and the promotion of cancer growth. Importantly optimizing drug targets, improving drug pharmacology, and identifying potential biomarkers are the main focus and further efforts are required to recognize patients who benefit most from novel therapies in development. This review will focus on the current learning on the signaling pathways, the status of immunotherapy, and targeted therapy in SCLC.
Collapse
Affiliation(s)
- Min Yuan
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Yu Zhao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | | | - Tongnei Lao
- Department of Oncology, Centro Medico BO CHI, Macao, SAR, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China.
| |
Collapse
|
23
|
Shin HG, Yang HR, Yoon A, Lee S. Bispecific Antibody-Based Immune-Cell Engagers and Their Emerging Therapeutic Targets in Cancer Immunotherapy. Int J Mol Sci 2022; 23:5686. [PMID: 35628495 PMCID: PMC9146966 DOI: 10.3390/ijms23105686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second leading cause of death worldwide after cardiovascular diseases. Harnessing the power of immune cells is a promising strategy to improve the antitumor effect of cancer immunotherapy. Recent progress in recombinant DNA technology and antibody engineering has ushered in a new era of bispecific antibody (bsAb)-based immune-cell engagers (ICEs), including T- and natural-killer-cell engagers. Since the first approval of blinatumomab by the United States Food and Drug Administration (US FDA), various bsAb-based ICEs have been developed for the effective treatment of patients with cancer. Simultaneously, several potential therapeutic targets of bsAb-based ICEs have been identified in various cancers. Therefore, this review focused on not only highlighting the action mechanism, design and structure, and status of bsAb-based ICEs in clinical development and their approval by the US FDA for human malignancy treatment, but also on summarizing the currently known and emerging therapeutic targets in cancer. This review provides insights into practical considerations for developing next-generation ICEs.
Collapse
Affiliation(s)
- Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Aerin Yoon
- R&D Division, GC Biopharma, Yongin 16924, Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
24
|
Small cell lung cancer: novel treatments beyond immunotherapy. Semin Cancer Biol 2022; 86:376-385. [PMID: 35568295 DOI: 10.1016/j.semcancer.2022.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022]
Abstract
Small cell lung cancer (SCLC) arises in peribronchial locations and infiltrates the bronchial submucosa, including about 15% of lung cancer cases. Despite decades of research, the prognosis for SCLC patients remains poor because this tumor is characterized by an exceptionally high proliferative rate, strong tendency for early widespread metastasis and acquired chemoresistance. Omics profiling revealed that SCLC harbor extensive chromosomal rearrangements and a very high mutation burden. This led to the development of immune-checkpoint inhibitors as single agents or in combination with chemotherapy, which however resulted in a prolonged benefit only for a small subset of patients. Thus, the present review discusses the rationale and limitations of immunotherapeutic approaches, presenting the current biological understanding of aberrant signaling pathways that might be exploited with new potential treatments. In particular, new agents targeting DNA damage repair, cell cycle checkpoint, and apoptosis pathways showed several promising results in different preclinical models. Epigenetic alterations, gene amplifications and mutations can act as biomarkers in this context. Future research and improved clinical outcome for SCLC patients will depend on the integration between these omics and pharmacological studies with clinical translational research, in order to identify specific predictive biomarkers that will be hopefully validated using clinical trials with biomarker-selected targeted treatments.
Collapse
|
25
|
Batchu S, Hakim A, Henry OS, Madzo J, Atabek U, Spitz FR, Hong YK. Transcriptome-guided resolution of tumor microenvironment interactions in pheochromocytoma and paraganglioma subtypes. J Endocrinol Invest 2022; 45:989-998. [PMID: 35088383 DOI: 10.1007/s40618-021-01729-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/19/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Pheochromocytomas and paragangliomas (PCPG) are rare catecholamine-secreting endocrine tumors deriving from chromaffin cells of the embryonic neural crest. Although distinct molecular PCPG subtypes have been elucidated, certain characteristics of these tumors have yet to be fully examined, namely the tumor microenvironment (TME). To further understand tumor-stromal interactions in PCPG subtypes, the present study deconvoluted bulk tumor gene expression to examine ligand-receptor interactions. METHODS RNA-sequencing data primary solid PCPG tumors were derived from The Cancer Genome Atlas (TCGA). Tumor purity was estimated using two robust algorithms. The tumor purity estimates and bulk tumor expression values allowed for non-negative linear regression to predict the average expression of each gene in the stromal and tumor compartments for each PCPG molecular subtype. The predicted expression values were then used in conjunction with a previously curated ligand-receptor database and scoring system to evaluate top ligand-receptor interactions. RESULTS Across all PCPG subtypes compared to normal samples, tumor-to-tumor signaling between bone morphogenic proteins 7 (BMP7) and 15 (BMP15) and cognate receptors ACVR2B and BMPR1B was increased. In addition, tumor-to-stroma signaling was enriched for interactions between predicted tumor-originating delta-like ligand 3 (DLL3) and predicted stromal NOTCH receptors. Stroma-to-tumor signaling was enriched for interactions between ephrins A1 and A4 with ephrin receptors EphA5, EphA7, and EphA8. Pseudohypoxia subtype tumors displayed increased predicted stromal expression of genes related to immune-exhausted T-cell response, including those for inhibitory receptors HAVCR2 and CTLA4. CONCLUSION The current exploratory study predicted stromal and tumor through compartmental deconvolution and yielded previously unrecognized interactions and putative biomarkers in PCPG.
Collapse
Affiliation(s)
- S Batchu
- Cooper Medical School at Rowan University, 401 Broadway, Camden, NJ, 08103, USA.
| | - A Hakim
- Department of Surgery, Cooper University Hospital, Camden, NJ, USA
| | - O S Henry
- Cooper Medical School at Rowan University, 401 Broadway, Camden, NJ, 08103, USA
| | - J Madzo
- Coriell Institute, Camden, NJ, USA
| | - U Atabek
- Department of Surgery, Cooper University Hospital, Camden, NJ, USA
| | - F R Spitz
- Department of Surgery, Cooper University Hospital, Camden, NJ, USA
| | - Y K Hong
- Department of Surgery, Cooper University Hospital, Camden, NJ, USA
| |
Collapse
|
26
|
Ranallo N, Bocchini M, Menis J, Pilotto S, Severi S, Liverani C, Bongiovanni A. Delta-like ligand 3 (DLL3): an attractive actionable target in tumors with neuroendocrine origin. Expert Rev Anticancer Ther 2022; 22:597-603. [PMID: 35477310 DOI: 10.1080/14737140.2022.2071703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Neuroendocrine carcinomas are very aggressive tumors with few treatment options. DLL3 seems to be an optimal target for therapeutic intervention, as it is expressed mainly on the membrane of tumor cells with neuroendocrine origin. AREAS COVERED In this article, we outline the preclinical and clinical studies published in the last years on DLL3 in neuroendocrine neoplasm, above all of lung origin. Furthermore, we review the current literature on the interaction between DLL3 and the tumor microenvironment. EXPERT OPINION Several DLL3-targeting strategies have been proposed in the last years with mixed results. Understanding the influence of DLL3 on the tumor (immune) microenvironment and developing adoptive therapies directed against this optimal target might represent the key strategy. Building on the clinical data obtained so far, future trials on in vivo diagnostic tools for predictive purpose and new specific therapies are needed.
Collapse
Affiliation(s)
- Nicoletta Ranallo
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Martine Bocchini
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Jessica Menis
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Medical Oncology Department, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Sara Pilotto
- Medical Oncology, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Stefano Severi
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Liverani
- Bioscience Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
27
|
CAR-T Cells for the Treatment of Lung Cancer. Life (Basel) 2022; 12:life12040561. [PMID: 35455052 PMCID: PMC9028981 DOI: 10.3390/life12040561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Adoptive cell therapy with genetically modified T lymphocytes that express chimeric antigen receptors (CAR-T) is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in hematological malignancies. However, the efficacy of CAR-T cells in solid tumors is still very unsatisfactory, because of the strong immunosuppressive tumor microenvironment that hinders immune responses. The development of next-generation personalized CAR-T cells against solid tumors is a clinical necessity. The identification of therapeutic targets for new CAR-T therapies to increase the efficacy, survival, persistence, and safety in solid tumors remains a critical frontier in cancer immunotherapy. Here, we summarize basic, translational, and clinical results of CAR-T cell immunotherapies in lung cancer, from their molecular engineering and mechanistic studies to preclinical and clinical development.
Collapse
|
28
|
Tully KM, Tendler S, Carter LM, Sharma SK, Samuels ZV, Mandleywala K, Korsen JA, Delos Reyes AM, Piersigilli A, Travis WD, Sen T, Pillarsetty N, Poirier JT, Rudin CM, Lewis JS. Radioimmunotherapy Targeting Delta-like Ligand 3 in Small Cell Lung Cancer Exhibits Antitumor Efficacy with Low Toxicity. Clin Cancer Res 2022; 28:1391-1401. [PMID: 35046060 PMCID: PMC8976830 DOI: 10.1158/1078-0432.ccr-21-1533] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/18/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Small cell lung cancer (SCLC) is an exceptionally lethal form of lung cancer with limited treatment options. Delta-like ligand 3 (DLL3) is an attractive therapeutic target as surface expression is almost exclusive to tumor cells. EXPERIMENTAL DESIGN We radiolabeled the anti-DLL3 mAb SC16 with the therapeutic radioisotope, Lutetium-177. [177Lu]Lu-DTPA-CHX-A"-SC16 binds to DLL3 on SCLC cells and delivers targeted radiotherapy while minimizing radiation to healthy tissue. RESULTS [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated high tumor uptake with DLL3-target specificity in tumor xenografts. Dosimetry analyses of biodistribution studies suggested that the blood and liver were most at risk for toxicity from treatment with high doses of [177Lu]Lu-DTPA-CHX-A"-SC16. In the radioresistant NCI-H82 model, survival studies showed that 500 μCi and 750 μCi doses of [177Lu]Lu-DTPA-CHX-A"-SC16 led to prolonged survival over controls, and 3 of the 8 mice that received high doses of [177Lu]Lu-DTPA-CHX-A"-SC16 had pathologically confirmed complete responses (CR). In the patient-derived xenograft model Lu149, all doses of [177Lu]Lu-DTPA-CHX-A"-SC16 markedly prolonged survival. At the 250 μCi and 500 μCi doses, 5 of 10 and 7 of 9 mice demonstrated pathologically confirmed CRs, respectively. Four of 10 mice that received 750 μCi of [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated petechiae severe enough to warrant euthanasia, but the remaining 6 mice demonstrated pathologically confirmed CRs. IHC on residual tissues from partial responses confirmed retained DLL3 expression. Hematologic toxicity was dose-dependent and transient, with full recovery within 4 weeks. Hepatotoxicity was not observed. CONCLUSIONS Together, the compelling antitumor efficacy, pathologic CRs, and mild and transient toxicity profile demonstrate strong potential for clinical translation of [177Lu]Lu-DTPA-CHX-A"-SC16.
Collapse
Affiliation(s)
- Kathryn M. Tully
- Department of Pharmacology, Weill Cornell Medical School, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salomon Tendler
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Lukas M. Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary V. Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua A. Korsen
- Department of Pharmacology, Weill Cornell Medical School, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Alessandra Piersigilli
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY USA
| | - William D. Travis
- Department of Thoracic Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Triparna Sen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | | | - John T. Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY USA
| | - Charles M. Rudin
- Department of Pharmacology, Weill Cornell Medical School, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Jason S. Lewis
- Department of Pharmacology, Weill Cornell Medical School, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
29
|
Ceci C, Lacal PM, Graziani G. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol Ther 2022; 236:108106. [PMID: 34990642 DOI: 10.1016/j.pharmthera.2021.108106] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Antibody-drug conjugates (ADCs) constitute a relatively new group of anticancer agents, whose first appearance took place about two decades ago, but a renewed interest occurred in recent years, following the success of anti-cancer immunotherapy with monoclonal antibodies. Indeed, an ADC combines the selectivity of a monoclonal antibody with the cell killing properties of a chemotherapeutic agent (payload), joined together through an appropriate linker. The antibody moiety targets a specific cell surface antigen expressed by tumor cells and/or cells of the tumor microenvironment and acts as a carrier that delivers the cytotoxic payload within the tumor mass. Despite advantages in terms of selectivity and potency, the development of ADCs is not devoid of challenges, due to: i) low tumor selectivity when the target antigens are not exclusively expressed by cancer cells; ii) premature release of the cytotoxic drug into the bloodstream as a consequence of linker instability; iii) development of tumor resistance mechanisms to the payload. All these factors may result in lack of efficacy and/or in no safety improvement compared to unconjugated cytotoxic agents. Nevertheless, the development of antibodies engineered to remain inert until activated in the tumor (e.g., antibodies activated proteolytically after internalization or by the acidic conditions of the tumor microenvironment) together with the discovery of innovative targets and cytotoxic or immunomodulatory payloads, have allowed the design of next-generation ADCs that are expected to possess improved therapeutic properties. This review provides an overview of approved ADCs, with related advantages and limitations, and of novel targets exploited by ADCs that are presently under clinical investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
30
|
Guo L, Li S, Yan X, Shen L, Xia D, Xiong Y, Dou Y, Mi L, Ren Y, Xiang Y, Ren D, Wang J, Liang T. A comprehensive multi-omics analysis reveals molecular features associated with cancer via RNA cross-talks in the Notch signaling pathway. Comput Struct Biotechnol J 2022; 20:3972-3985. [PMID: 35950189 PMCID: PMC9340535 DOI: 10.1016/j.csbj.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022] Open
Abstract
Many Notch genes are identified as cancer-associated genes with an important role in tumorigenesis. Dynamic expression patterns are associated with the Notch activity that are largely regulated by multiple ncRNAs. Cross-talks among diverse RNAs are crucial in cancers via ceRNA network. The Notch pathway shows a robust prognostic ability via integrating multi-omics features as well as their targets. The Notch pathway is also correlated with immune infiltration and maybe available cancer treatment drug targets.
The Notch signaling has an important role in multiple cellular processes and is related to carcinogenic process. To understand the potential molecular features of the crucial Notch pathway, a comprehensive multi-omics analysis is performed to explore its contributions in cancer, mainly including analysis of somatic mutation landscape, pan-cancer expression, ncRNA regulation and potential prognostic power. The screened 22 Notch core genes are relative stable in DNA variation. Dynamic expression patterns are associated with the Notch activity, which are mainly regulated by multiple ncRNAs via interactions of ncRNA:mRNA and ceRNA networks. The Notch pathway shows a potential prognostic ability through integrating multi-omics features as well as their targets, and it is correlated with immune infiltration and maybe available drug targets, implying the potential role in individualized treatment. Collectively, all of these findings contribute to exploring crucial role of the key pathway in cancer pathophysiology and gaining mechanistic insights into cross-talks among RNAs and biological pathways, which indicates the possible application of the well-conserved Notch signaling pathway in precision medicine.
Collapse
|
31
|
Wang Z, Mai S, Lv P, Xu L, Wang Y. Etoposide plus cisplatin chemotherapy improves the efficacy and safety of small cell lung cancer. Am J Transl Res 2021; 13:12825-12833. [PMID: 34956497 PMCID: PMC8661205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND According to the statistical data of GLOBOCAN in 2020, the incidence of lung cancer ranks third worldwide. Approximately 60%-70% of newly diagnosed patients with small cell lung cancer (SCLC) has already progressed to extensive-stage SCLC (ES-SCLC). SCLC is sensitive to chemotherapy and radiotherapy, but prone to secondary drug resistance. At present, chemotherapy is the mainstay of treatment for ES-SCLC. This study is designed to evaluate the efficacy and safety of etoposide plus platinum in the treatment of SCLC. METHODS A retrospective analysis was performed on 112 patients with SCLC admitted to the China-Japan Union Hospital of Jilin University from 2016 to 2018. According to treatment methods, the patients were divided into an EL group (etoposide plus lobaplatin, n = 53) and an EP group (etoposide plus cisplatin, n = 59). The short-term efficacy (objective response rates and disease control rates) and 2-year survival rates were observed. The two groups were compared in terms of serum levels of pro-gastrin-releasing peptide (ProGRP), neuron-specific enolase (NSE), vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) before and after treatment. The incidence of adverse reactions was also compared. The quality of life (QOL) of patients was compared by measuring the Karnofsky Performance Status (KPS) scale. The risk factors affecting treatment efficacy were analyzed by multivariate Logistics analysis. RESULTS Patients in the EL group had similar objective response rate (ORR) and disease control rate (DCR) to those in the EP group. The 2-year survival prognosis (median survival time) between the two groups was not significantly different. After treatment, serum levels of ProGRP, NSE, VEGF and MMP-9 in both groups decreased remarkably, with no remarkable differences between the two groups. The EL group had a remarkably lower incidence of adverse reactions than the EP group. In the EP group, the KPS scores after 6 cycles of treatment were remarkably higher than those after 2 cycles of treatment. ProGRP, NSE, VEGF and MMP-9 were independent risk factors affecting the efficacy of patients with SCLC. CONCLUSION With equivalent efficacy, EP regimen is safer than EL regimen in the treatment of SCLC, which suggests that etoposide plus platinum has better clinical application value for SCLC.
Collapse
Affiliation(s)
- Zhenxing Wang
- Department of Thoracic Surgery, The China-Japan Union Hostial of Jilin University, Jilin University Changchun 130022, Jilin, People's Republic of China
| | - Shixiong Mai
- Department of Thoracic Surgery, The China-Japan Union Hostial of Jilin University, Jilin University Changchun 130022, Jilin, People's Republic of China
| | - Peiyun Lv
- Department of Thoracic Surgery, The China-Japan Union Hostial of Jilin University, Jilin University Changchun 130022, Jilin, People's Republic of China
| | - Li Xu
- Department of Thoracic Surgery, The China-Japan Union Hostial of Jilin University, Jilin University Changchun 130022, Jilin, People's Republic of China
| | - Yue Wang
- Department of Thoracic Surgery, The China-Japan Union Hostial of Jilin University, Jilin University Changchun 130022, Jilin, People's Republic of China
| |
Collapse
|
32
|
Chen W, Liu N, Shen S, Zhu W, Qiao J, Chang S, Dong J, Bai M, Ma L, Wang S, Jia W, Guo X, Li A, Xi J, Jiang C, Kang J. Fetal growth restriction impairs hippocampal neurogenesis and cognition via Tet1 in offspring. Cell Rep 2021; 37:109912. [PMID: 34731622 DOI: 10.1016/j.celrep.2021.109912] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/22/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
Fetal growth restriction (FGR) increases the risk for impaired cognitive function later in life. However, the precise mechanisms remain elusive. Using dexamethasone-induced FGR and protein restriction-influenced FGR mouse models, we observe learning and memory deficits in adult FGR offspring. FGR induces decreased hippocampal neurogenesis from the early post-natal period to adulthood by reducing the proliferation of neural stem cells (NSCs). We further find a persistent decrease of Tet1 expression in hippocampal NSCs of FGR mice. Mechanistically, Tet1 downregulation results in hypermethylation of the Dll3 and Notch1 promoters and inhibition of Notch signaling, leading to reduced NSC proliferation. Overexpression of Tet1 activates Notch signaling, offsets the decline in neurogenesis, and enhances learning and memory abilities in FGR offspring. Our data indicate that a long-term decrease in Tet1/Notch signaling in hippocampal NSCs contributes to impaired neurogenesis following FGR and could serve as potential targets for the intervention of FGR-related cognitive disorders.
Collapse
Affiliation(s)
- Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Nana Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shijun Shen
- Institute of Translational Research, Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jing Qiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shujuan Chang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jianfeng Dong
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingliang Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Li Ma
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shanshan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ang Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cizhong Jiang
- Institute of Translational Research, Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
33
|
Bian W, Tang M, Jiang H, Xu W, Hao W, Sui Y, Hou Y, Nie L, Zhang H, Wang C, Li N, Wang J, Qin J, Wu L, Ma X, Chen J, Wang W, Li X. Low-density-lipoprotein-receptor-related protein 1 mediates Notch pathway activation. Dev Cell 2021; 56:2902-2919.e8. [PMID: 34626540 DOI: 10.1016/j.devcel.2021.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/18/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
The Notch signaling pathway controls cell growth, differentiation, and fate decisions, and its dysregulation has been linked to various human genetic disorders and cancers. To comprehensively understand the global organization of the Notch pathway and identify potential drug targets for Notch-related diseases, we established a protein interaction landscape for the human Notch pathway. By combining and analyzing genetic and phenotypic data with bioinformatics analysis, we greatly expanded this pathway and identified many key regulators, including low-density-lipoprotein-receptor-related protein 1 (LRP1). We demonstrated that LRP1 mediates the ubiquitination chain linkage switching of Delta ligands, which further affects ligand recycling, membrane localization, and stability. LRP1 inhibition led to Notch signaling inhibition and decreased tumorigenesis in leukemia models. Our study provides a glimpse into the Notch pathway interaction network and uncovers LRP1 as one critical regulator of the Notch pathway, as well as a possible therapeutic target for Notch-related cancers.
Collapse
Affiliation(s)
- Weixiang Bian
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, the University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Jiang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wenyan Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Wanyu Hao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Science, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yue Sui
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yingnan Hou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Litong Nie
- Department of Experimental Radiation Oncology, the University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, the University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, the University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Nan Li
- Department of Experimental Radiation Oncology, the University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiadong Wang
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lianfeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Science, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Junjie Chen
- Department of Experimental Radiation Oncology, the University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA.
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
34
|
Alì G, Di Stefano I, Poma AM, Ricci S, Proietti A, Davini F, Lucchi M, Melfi F, Fontanini G. Prevalence of Delta-Like Protein 3 in a Consecutive Series of Surgically Resected Lung Neuroendocrine Neoplasms. Front Oncol 2021; 11:729765. [PMID: 34568063 PMCID: PMC8458735 DOI: 10.3389/fonc.2021.729765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Delta-like protein 3 (DLL3) is a protein of the Notch pathway, and it is a potential therapeutic target for high-grade lung neuroendocrine tumors (NETs), i.e., small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC). However, DLL3 prevalence in lung NETs and its association with clinicopathological characteristics and prognosis remained unclear. We analyzed the immunohistochemical expression of DLL3 and its prognostic role in a consecutive series of 155 surgically resected lung NETs, including typical carcinoid (TC), atypical carcinoid (AC), LCNEC, and SCLC patients. The DLL3 expression was categorized as high (>50% positive tumor cells) or low (<50%). In addition, tumors were categorized by H-score (i.e., percentage of positive cells by staining intensity, ≥150 vs. <150). DLL3 staining was positive in 99/155 (64%) samples, and high DLL3 expression was frequently observed in high-grade tumors. In detail, 46.9% and 75% of SCLC and 48.8% and 53.7% of LCNEC specimens showed a high DLL3 expression by using H-score and percentage of positive tumor cells, respectively. Regarding low-grade NETs, only 4.9% and 12.2% TCs and 19.5% and 24.4% ACs had high DLL3 expression considering H-score and percentage of positive tumor cells, respectively. High DLL3 expression was associated with advanced American Joint Committee on Cancer (AJCC) stage, peripheral location, and chromogranin A expression in high-grade tumors (p < 0.05). In low-grade NETs, high DLL3 expression was associated with female sex, peripheral location, a higher number of mitoses, higher Ki-67 index, presence of necrosis, and pleural infiltration (p < 0.05). No association was observed between high DLL3 expression and overall survival (OS) and disease-free survival (DFS) in high-grade NETs, whereas high DLL3 expression was associated with lower DFS in ACs (p = 0.01). In conclusion, our study demonstrated a high prevalence of DLL3 expression in high-grade lung NET patients and its association with aggressive clinicopathological features. These findings confirm that DLL3 could represent a useful biomarker for target therapy in high-grade tumors. Our results also suggest that the DLL3 expression could identify a subset of AC tumors with more aggressive behavior, thus providing the basis for new therapeutic options in this group of patients.
Collapse
Affiliation(s)
- Greta Alì
- Unit of Pathological Anatomy, University Hospital of Pisa, Pisa, Italy
| | - Iosè Di Stefano
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Stefano Ricci
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Agnese Proietti
- Unit of Pathological Anatomy, University Hospital of Pisa, Pisa, Italy
| | - Federico Davini
- Multispecialty Centre for Surgery, Minimally Invasive and Robotic Thoracic Surgery, University Hospital of Pisa, Pisa, Italy
| | - Marco Lucchi
- Unit of Thoracic Surgery, University Hospital of Pisa, Pisa, Italy
| | - Franca Melfi
- Multispecialty Centre for Surgery, Minimally Invasive and Robotic Thoracic Surgery, University Hospital of Pisa, Pisa, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Xue T, Zhao X, Zhao K, Lu Y, Yao J, Ji X. Immunotherapy for lung cancer: Focusing on chimeric antigen receptor (CAR)-T cell therapy. Curr Probl Cancer 2021; 46:100791. [PMID: 34538649 DOI: 10.1016/j.currproblcancer.2021.100791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022]
Abstract
Besides traditional treatment strategies, including surgery, radiotherapy, and chemotherapy for lung cancer as the leading cause of cancer incidence and death, immunotherapy has also emerged as a new treatment strategy. The goal of immunotherapy is to stimulate the immune system responses against cancer, using various approaches such as therapeutic vaccines, monoclonal antibodies, immune checkpoint inhibitors, and T-cell therapy. Chimeric antigen receptor (CAR)-T cells, one of the most popular cancer immunotherapy approaches in the last decade, are genetically engineered T-cells to redirect patients' immune responses to recognize and eliminate tumor-associated antigens (TAA)-expressing tumor cells. CAR-T cell therapy provides promising benefits in lung tumors. In this review, we summarize different immunotherapy approaches for lung cancer, the structure of CAR-T cells, currently undergoing CARs in clinical trials, and various TAAs are being investigated as potential targets in designing CAR-T cells for lung cancer.
Collapse
Affiliation(s)
- Tongqing Xue
- Department of Pain and Intervention Management, Huaian Hospital of Huaian City, Huaian 223200, Jiangsu, China
| | - Xiang Zhao
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian 223200, Huaian, Jiangsu, China
| | - Kun Zhao
- Department of oncology, Huaian Hospital of Huaian City, Huaian 223200, Huaian, Jiangsu, China
| | - Yan Lu
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian 223200, Huaian, Jiangsu, China
| | - Juan Yao
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian 223200, Huaian, Jiangsu, China.
| | - Xianguo Ji
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian 223200, Huaian, Jiangsu, China.
| |
Collapse
|
36
|
Matsuo K, Taniguchi K, Hamamoto H, Inomata Y, Komura K, Tanaka T, Lee SW, Uchiyama K. Delta-like canonical Notch ligand 3 as a potential therapeutic target in malignancies: A brief overview. Cancer Sci 2021; 112:2984-2992. [PMID: 34107132 PMCID: PMC8353941 DOI: 10.1111/cas.15017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/15/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Delta‐like canonical Notch ligand 3 (DLL3) is a member of the Delta/Serrate/Lag2 (DSL) Notch receptor ligand family and plays a crucial role in Notch signaling, which influences various cellular processes including differentiation, proliferation, survival, and apoptosis. DLL3 is expressed throughout the presomitic mesoderm and is localized to the rostral somatic compartments; mutations in DLL3 induce skeletal abnormalities such as spondylocostal dysostosis. Recently, DLL3 has attracted interest as a novel molecular target due to its high expression in neuroendocrine carcinoma of the lung. Moreover, a DLL3‐targeting Ab‐drug conjugate, rovalpituzumab tesirine (ROVA‐T), has been developed as a new treatment with proven antitumor activity. However, the development of ROVA‐T was suspended because of shorter overall survival compared to topotecan, the second‐line standard treatment. Thus, several studies on the mechanism and function of DLL3 in several malignancies are underway to find a new strategy for targeting DLL3. In this review, we discuss the roles of DLL3 in various malignancies and the future perspectives of DLL3‐related research, especially as a therapeutic target.
Collapse
Affiliation(s)
- Kentaro Matsuo
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan.,Translational Research Program, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hiroki Hamamoto
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kazumasa Komura
- Translational Research Program, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Tomohito Tanaka
- Translational Research Program, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
37
|
Huang Q, Cai WQ, Han ZW, Wang MY, Zhou Y, Cheng JT, Zhang Y, Wang YY, Xin Q, Wang XW, Peng XC, Xiang Y, Fang SX, Ma ZW, Xin HY, Cui SZ, Xin HW. Bispecific T cell engagers and their synergistic tumor immunotherapy with oncolytic viruses. Am J Cancer Res 2021; 11:2430-2455. [PMID: 34249409 PMCID: PMC8263669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/01/2021] [Indexed: 06/13/2023] Open
Abstract
Tumor immunotherapy, especially T cell based therapy, is becoming the main force in clinical tumor therapies. Bispecific T cell engager (BiTE) uses the single chain variable fragments (scFv) of two antibodies to redirect T cells to kill target cells. BiTEs for hematologic tumors has been approved for clinical use, and BiTEs for solid tumors showed therapeutic effects in clinical trials. Oncolytic viruses (OVs) of the adenovirus expressing p53 and herpes simplex virus expressing GM-CSF was approved for clinical use in 2003 and 2015, respectively, while other OVs showed therapeutic effects in clinical trials. However, BiTE and Oncolytic virus (OV) have their own limitations. We propose that OV-BiTE has a synergistic effect on tumor immunotherapy. Feng Yu et al. designed the first OV-BiTE in 2014, which remarkably eradicated tumors in mice. Here we review the latest development of the structure, function, preclinical studies and/or clinical trials of BiTE and OV-BiTE and provide perspective views for optimizing the design of OV-BiTE. There is no doubt that OV-BiTE is becoming an exciting new platform for tumor immunotherapy and will enter clinical trial soon. Exploring the therapeutic effects and safety of OV-BiTE for synergistic tumor immunotherapy will bring new hope to tumor patients.
Collapse
Affiliation(s)
- Qi Huang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Zi-Wen Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Mo-Yu Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Yang Zhou
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Jun-Ting Cheng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Ying Zhang
- Department of Gastroenterology, Chun’an County First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch)Hangzhou 311700, Zhejiang Province, China
| | - Ying-Ying Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical SchoolD30625, Hannover, Germany
| | - Qiang Xin
- Clinical Medicine Research Center, The Key Laboratory of Biological Cells of Inner Mongolia Autonomous Region, The Affiliated Hospital, Inner Mongolia Medical UniversityHohhot 010050, Inner Mongolia
| | - Xian-Wang Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Laboratory Medicine, School of Basic Medicine, Health Science Center, Yangtze University1 Nanhuan Road, Jingzhou 434023, Hubei, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Shu-Xian Fang
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou 510095, China
| | - Zhao-Wu Ma
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
| | - Hong-Yi Xin
- Department of Microbiology and Immunology, Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Center for Life Sciences28 Medical Drive, #03-09, 117456, Singapore
| | - Shu-Zhong Cui
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou 510095, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze UniversityJingzhou 434023, Hubei, China
- Lianjiang People’s HospitalGuangdong 524400, China
| |
Collapse
|
38
|
Nandi A, Chakrabarti R. The many facets of Notch signaling in breast cancer: toward overcoming therapeutic resistance. Genes Dev 2021; 34:1422-1438. [PMID: 33872192 PMCID: PMC7608750 DOI: 10.1101/gad.342287.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, Nandi et al. revisit the mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. The authors also discuss combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may improve prognosis in breast cancer patients. Breast cancer is the second leading cause of cancer-related death in women and is a complex disease with high intratumoral and intertumoral heterogeneity. Such heterogeneity is a major driving force behind failure of current therapies and development of resistance. Due to the limitations of conventional therapies and inevitable emergence of acquired drug resistance (chemo and endocrine) as well as radio resistance, it is essential to design novel therapeutic strategies to improve the prognosis for breast cancer patients. Deregulated Notch signaling within the breast tumor and its tumor microenvironment (TME) is linked to poor clinical outcomes in treatment of resistant breast cancer. Notch receptors and ligands are also important for normal mammary development, suggesting the potential for conserved signaling pathways between normal mammary gland development and breast cancer. In this review, we focus on mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. We also discuss how complex interactions between cancer cells and the TME may reduce treatment efficacy and ultimately lead to acquired drug or radio resistance. Potential combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may aid in achieving in an improved patient prognosis are also highlighted.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
39
|
Yuan C, Chang K, Xu C, Li Q, Du Z. High expression of DLL3 is associated with a poor prognosis and immune infiltration in invasive breast cancer patients. Transl Oncol 2021; 14:101080. [PMID: 33915517 PMCID: PMC8093948 DOI: 10.1016/j.tranon.2021.101080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Previous studies have shown the prognostic value of delta like canonical Notch ligand 3 (DLL3) in patients with different types of tumors, but the role and predictive value of DLL3 in invasive breast cancer (IBC) have not been reported. In this study, we explored the prognostic ability and potential ways of DLL3 in IBC patients. METHODS We retrospectively enrolled 130 IBC patients from a single institution from 2004 to 2019 for bioinformatics and statistical analysis. The Cancer Genome Atlas breast invasive carcinoma (TCGA-BRCA) cohort was used for verification. RESULTS High expression of DLL3 was associated with overall survival (OS) in IBC patients (P = 0.023). Multivariate analysis further showed that DLL3 expression was an independent prognostic factor (hazard ratio [HR]: 1.08; 95% confidence interval [CI]: 1.01-1.15; P = 0.017). Time-dependent receiver operating characteristic (ROC) with the area under the curve (0.786) demonstrated that DLL3 expression can predict the survival outcome of IBC patients. Furthermore, the expression of DLL3 was related to a variety of tumor infiltrating immune cells (TIICs), particularly T cells regulatory (Tregs). Gene set enrichment analysis (GSEA) and immunohistochemistry (IHC) results indicated that DLL3 was closely related to p53 signaling pathway. CONCLUSIONS High expression of DLL3 was associated with poor prognosis and immune cell infiltration in IBC patients. Moreover, P53 signaling pathway may be the key pathway.
Collapse
Affiliation(s)
- Chong Yuan
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Kaili Chang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenyue Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qingquan Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Zunguo Du
- Department of pathology, Huashan hospital, Fudan university, No.12 Middle Urumqi road, Shanghai 200032, China.
| |
Collapse
|
40
|
Neuroendocrine-Related Circulating Transcripts in Small-Cell Lung Cancers: Detection Methods and Future Perspectives. Cancers (Basel) 2021; 13:cancers13061339. [PMID: 33809582 PMCID: PMC8061767 DOI: 10.3390/cancers13061339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The recent implementation of techniques to study circulating tumor cells allowed a rapid increase in knowledge about the molecular basis of Small-Cell Lung Cancer (SCLC), which appears to be more heterogeneous and dynamic than expected. Here, we present a summary of current knowledge and new findings about some of the neuroendocrine-related transcripts expressed in SCLC patients that could offer a great opportunity in distinguishing and managing different SCLC phenotypes. Abstract No well-established prognostic or predictive molecular markers of small-cell lung cancer (SCLC) are currently available; therefore, all patients receive standard treatment. Adequate quantities and quality of tissue samples are frequently unavailable to perform a molecular analysis of SCLC, which appears more heterogeneous and dynamic than expected. The implementation of techniques to study circulating tumor cells could offer a suitable alternative to expand the knowledge of the molecular basis of a tumor. In this context, the advantage of SCLC circulating cells to express some specific markers to be explored in blood as circulating transcripts could offer a great opportunity in distinguishing and managing different SCLC phenotypes. Here, we present a summary of published data and new findings about the detection methods and potential application of a group of neuroendocrine related transcripts in the peripheral blood of SCLC patients. In the era of new treatments, easy and rapid detection of informative biomarkers in blood warrants further investigation, since it represents an important option to obtain essential information for disease monitoring and/or better treatment choices.
Collapse
|
41
|
Integrated Gene Expression and Methylation Analyses Identify DLL3 as a Biomarker for Prognosis of Malignant Glioma. J Mol Neurosci 2021; 71:1622-1635. [PMID: 33713320 DOI: 10.1007/s12031-021-01817-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
Glioma is one of the most common neurological malignancies worldwide. Delta-like ligand 3 (DLL3), an inhibitory ligand-driven activation of the Notch pathway, has been shown to be significantly associated with overall survival in patients with glioma. Therefore, the purpose of this study was to determine whether DLL3 as a biomarker in glioma is associated with patients' clinicopathological features and prognosis. We identified differences in transcriptome and promoter methylation in the Chinese Glioma Genome Atlas (CGGA) in patients with malignant glioma with shorter (less than 1 year) and longer (greater than 3 years) survival time. Further analysis of The Cancer Genome Atlas (TCGA) revealed that four genes (DLL3, TSPAN15, RTN1, PAK7) are highly associated with patient prognosis and play an indispensable role in evolution. We chose the expression level of DLL3 in glioma patients for our study. Patients were divided into groups with low and high expression of DLL3 according to the cutoff values obtained, and Kaplan-Meier and Cox analysis were used to examine the correlation between DLL3 gene expression and patient survival. We then performed a gene set enrichment analysis (GSEA) to identify significantly enriched signaling pathways. Our results confirmed that the overall survival of patients with low DLL3 expression was significantly shorter than that of patients with high DLL3 expression. GSEA showed that the signaling pathways of the immune process and immune response, among others, were enhanced with the DLL3 low-expression phenotype. Collectively, our findings signify that DLL3 is a potent prognostic factor for glioma, which can provide a viable approach for glioma prognostic assessment and valuable insights for anti-tumor immune-targeted therapies.
Collapse
|
42
|
Ingenwerth M, Brandenburg T, Führer-Sakel D, Goetz M, Weber F, Dralle H, Schildhaus HU, Schmid KW, Theurer S. DLL3 (delta-like protein 3) expression correlates with stromal desmoplasia and lymph node metastases in medullary thyroid carcinomas. Endocr Connect 2021; 10:283-289. [PMID: 33617464 PMCID: PMC8052580 DOI: 10.1530/ec-20-0611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
Medullary thyroid carcinomas (MTC) are rare and aggressive neuroendocrine tumors of the thyroid. About 70% of MTC are sporadic; approximately 50% of those harbor somatic RET mutation. DLL3 is widely expressed in many neuroendocrine tumors and has been evaluated as a potential therapeutic target. Since stromal desmoplasia in sporadic MTC has been identified as a reliable predictor of aggressive behavior and development of lymph node metastases, a possible correlation of DLL3 expression with the presence of stromal desmoplasia was of particular interest. 59 paraffin-embedded samples of sporadic MTC with (44 cases) and without (15 cases) stromal desmoplasia and known lymph node status were included. DLL3 expression was determined by immunohistochemistry; no expression (0%), low expression (1-49%) and high expression (≥50%) were correlated with clinicopathological data. The proportion of DLL3 positivity was significantly correlated with both stromal desmoplasia (P < 0.0001) and lymph node metastases (P < 0.0001). MTC without stromal desmoplasia consistently lack DLL3 expression. This is the first study to focus on MTC regarding DLL3 expression and the relationship to various factors. Our results demonstrate that expression of DLL3 in MTC represents a reliable surrogate marker for stromal desmoplasia and lymph node metastases and might be an indicator for aggressive clinical behavior. DLL3 expression in ≥50% of tumor cells virtually excludes MTC without stromal desmoplasia. DLL3 was discussed as a potential therapeutic target in malignant tumors of other locations with positive immunohistochemical reaction and might therefore be a new therapeutic option in MTC, as well.
Collapse
Affiliation(s)
- M Ingenwerth
- Institute of Pathology, University Hospital of Essen, University of Duisburg–Essen, Essen, Germany
| | - T Brandenburg
- Division of Laboratory Research, Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry, University Hospital Essen, University of Duisburg-Essen, Germany
| | - D Führer-Sakel
- Division of Laboratory Research, Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry, University Hospital Essen, University of Duisburg-Essen, Germany
| | - M Goetz
- Institute of Pathology, University Hospital of Essen, University of Duisburg–Essen, Essen, Germany
| | - F Weber
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - H Dralle
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - H-U Schildhaus
- Institute of Pathology, University Hospital of Essen, University of Duisburg–Essen, Essen, Germany
| | - K W Schmid
- Institute of Pathology, University Hospital of Essen, University of Duisburg–Essen, Essen, Germany
| | - S Theurer
- Institute of Pathology, University Hospital of Essen, University of Duisburg–Essen, Essen, Germany
| |
Collapse
|
43
|
Ko J, Winslow MM, Sage J. Mechanisms of small cell lung cancer metastasis. EMBO Mol Med 2021; 13:e13122. [PMID: 33296145 PMCID: PMC7799359 DOI: 10.15252/emmm.202013122] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Metastasis is a major cause of morbidity and mortality in cancer patients. However, the molecular and cellular mechanisms underlying the ability of cancer cells to metastasize remain relatively poorly understood. Among all solid tumors, small cell lung cancer (SCLC) has remarkable metastatic proclivity, with a majority of patients diagnosed with metastatic disease. Our understanding of SCLC metastasis has been hampered for many years by the paucity of material from primary tumors and metastases, as well as the lack of faithful pre-clinical models. Here, we review recent advances that are helping circumvent these limitations. These advances include methods that employ circulating tumor cells from the blood of SCLC patients and the development of diverse genetically engineered mouse models of metastatic SCLC. New insights into the cellular mechanisms of SCLC metastasis include observations of cell fate changes associated with increased metastatic ability. Ongoing studies on cell migration and organ tropism promise to expand our understanding of SCLC metastasis. Ultimately, a better molecular understanding of metastatic phenotypes may be translated into new therapeutic options to limit metastatic spread and treat metastatic SCLC.
Collapse
Affiliation(s)
- Julie Ko
- Department of PediatricsStanford UniversityStanfordCAUSA
- Department of GeneticsStanford UniversityStanfordCAUSA
| | - Monte M Winslow
- Department of GeneticsStanford UniversityStanfordCAUSA
- Department of PathologyStanford UniversityStanfordCAUSA
| | - Julien Sage
- Department of PediatricsStanford UniversityStanfordCAUSA
- Department of GeneticsStanford UniversityStanfordCAUSA
| |
Collapse
|
44
|
Huang W, Chen JJ, Xing R, Zeng YC. Combination therapy: Future directions of immunotherapy in small cell lung cancer. Transl Oncol 2021; 14:100889. [PMID: 33065386 PMCID: PMC7567053 DOI: 10.1016/j.tranon.2020.100889] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Small cell lung cancer (SCLC), an aggressive and devastating malignancy, is characterized by rapid growth and early metastasis. Although most patients respond to first-line chemotherapy, the majority of patients rapidly relapse and have a relatively poor prognosis. Fortunately, immunotherapy, mainly including antibodies that target the cytotoxic T lymphocyte antigen-4 (CTLA-4), checkpoints programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) to block immune regulatory checkpoints on tumor cells, immune cells, fibroblasts cells and endothelial cells, has achieved the milestone in several solid tumors, such as melanoma and non-small-cell lung carcinomas (NSCLC). In recent years, immunotherapy has made progress in the treatment of patients with SCLC, while its response rate is relatively low to monotherapy. Interestingly, the combination of immunotherapy with other therapy, such as chemotherapy, radiotherapy, and targeted therapy, preliminarily achieve greater therapeutic effects for treating SCLC. Combining different immunotherapy drugs may act synergistically because of the complementary effects of the two immune checkpoint pathways (CTLA-4 and PD-1/PD-L1 pathways). The incorporation of chemoradiotherapy in immunotherapy may augment antitumor immune responses because chemoradiotherapy can enhance tumor cell immunogenicity by rapidly inducing tumor lysis and releasing tumor antigens. In addition, since immunotherapy drugs and the molecular targets drugs act on different targets and cells, the combination of these drugs may achieve greater therapeutic effects in the treatment of SCLC. In this review, we focused on the completed and ongoing trials of the combination therapy for immunotherapy of SCLC to find out the rational combination strategies which may improve the outcomes for SCLC.
Collapse
Affiliation(s)
- Wei Huang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, China
| | - Jia-Jia Chen
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, China
| | - Rui Xing
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, China
| | - Yue-Can Zeng
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, China; Department of Medical Oncology, Cancer Center, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Road, Haikou 571199, China.
| |
Collapse
|
45
|
Rojo F, Corassa M, Mavroudis D, Öz AB, Biesma B, Brcic L, Pauwels P, Sailer V, Gosney J, Miljkovic D, Hader C, Wu M, Almarez T, Penault-Llorca F. International real-world study of DLL3 expression in patients with small cell lung cancer. Lung Cancer 2020; 147:237-243. [PMID: 32745892 DOI: 10.1016/j.lungcan.2020.07.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Expression of the Notch-family ligand delta-like protein 3 (DLL3), a potential therapeutic target in small cell lung cancer (SCLC), has not been assessed in the real-world setting. To identify the real-world utility of DLL3 as an SCLC therapeutic target, we performed the largest retrospective international noninterventional study to date to evaluate DLL3 prevalence in SCLC patients. MATERIALS AND METHODS DLL3 expression was assessed using immunohistochemistry in archived histological and cytological specimens (independent and paired) and correlated to patient demographics, clinical disease characteristics, and survival. The primary endpoint was the proportion of patients with DLL3 expression in ≥25 % of tumor cells. DLL3 expression concordance was assessed in paired specimens. RESULTS Independent tumor specimens were collected from 1073 patients. The mean age at biopsy was 66 years (SD, 10); 682 (64 %) patients were male. Paired specimens were collected from 36 patients. The mean age at biopsy was 62 years (SD, 11); 16 (44 %) patients were male. Most patients had ECOG performance status of 0-1, were smokers/ex-smokers, and received ≥1 prior therapy. Positive DLL3 expression (defined as ≥25 % of tumor cells) was identified in 895/1050 (85 %) patients with 1 specimen and evaluable DLL3 expression; 719/1050 (68 %) patients had high DLL3 expression (defined as ≥75 % of tumor cells). DLL3 expression concordance was 88 % between paired specimens (n = 17; Cohen's kappa P value, .9412). There was no significant difference in median overall survival from SCLC diagnosis for evaluable patients with nonmissing data based on DLL3 expression (negative DLL3 expression [n = 139], 9.5 months; positive DLL3 expression [n = 747], 9.5 months; all evaluable patients [n = 893, 9.5 months). CONCLUSION These real-world epidemiologic findings indicate that DLL3 is robustly expressed across SCLC disease stages and remains stable despite treatment, consistent with available clinical trial data. There was no prognostic role for DLL3 observed in this study for overall survival.
Collapse
Affiliation(s)
- Federico Rojo
- Hospital Universitario Fundación Jiménez Díaz CIBERONC, Madrid, Spain.
| | | | | | - Aysim Büge Öz
- Istanbul University Cerrahpaşa, Faculty of Medicine, Istanbul, Turkey
| | - Bonne Biesma
- Jeroen Bosch Ziekenhuis,' s-Hertogenbosch, Netherlands
| | - Luka Brcic
- Medical University of Graz, Graz, Austria
| | - Patrick Pauwels
- Centre for Oncological Research (CORE), University of Antwerp, and University Hospital Antwerp, Edegem, Belgium
| | - Verena Sailer
- University Hospital Schleswig-Holstein, Lübeck, Germany
| | - John Gosney
- Liverpool University Hospitals, Liverpool, United Kingdom
| | | | | | - Meijing Wu
- AbbVie Inc., North Chicago, IL, United States
| | | | | |
Collapse
|
46
|
Morgensztern D, Johnson M, Rudin CM, Rossi M, Lazarov M, Brickman D, Fong A. SC-002 in patients with relapsed or refractory small cell lung cancer and large cell neuroendocrine carcinoma: Phase 1 study. Lung Cancer 2020; 145:126-131. [PMID: 32438272 DOI: 10.1016/j.lungcan.2020.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This phase 1 study investigated safety/tolerability, pharmacokinetics, and preliminary efficacy of SC-002, a delta-like ligand 3-directed antibody-drug conjugate, in advanced small cell lung cancer and large cell neuroendocrine carcinoma. MATERIALS AND METHODS Eligible patients received SC-002 at 1 of 7 dose levels during the dose-escalation portion of the study. RESULTS Thirty-five enrolled patients received ≥1 dose of SC-002. Twenty-three (66%) patients experienced serious adverse events (AEs), 37% considered related to SC-002. Grade 3/4 AEs occurred in 21 (60%) and 2 (6%) patients; the most common were effusion and hypoalbuminemia. One grade 5 AE occurred in 1 patient. Five (14%) patients achieved a partial response and no patients achieved a complete response. CONCLUSION SC-002 treatment was associated with systemic toxicity and limited efficacy.
Collapse
|
47
|
Einsele H, Borghaei H, Orlowski RZ, Subklewe M, Roboz GJ, Zugmaier G, Kufer P, Iskander K, Kantarjian HM. The BiTE (bispecific T-cell engager) platform: Development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer 2020; 126:3192-3201. [PMID: 32401342 DOI: 10.1002/cncr.32909] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
Immuno-oncology therapies engage the immune system to treat cancer. BiTE (bispecific T-cell engager) technology is a targeted immuno-oncology platform that connects patients' own T cells to malignant cells. The modular nature of BiTE technology facilitates the generation of molecules against tumor-specific antigens, allowing off-the-shelf immuno-oncotherapy. Blinatumomab was the first approved canonical BiTE molecule and targets CD19 surface antigens on B cells, making blinatumomab largely independent of genetic alterations or intracellular escape mechanisms. Additional BiTE molecules in development target other hematologic malignancies (eg, multiple myeloma, acute myeloid leukemia, and B-cell non-Hodgkin lymphoma) and solid tumors (eg, prostate cancer, glioblastoma, gastric cancer, and small-cell lung cancer). BiTE molecules with an extended half-life relative to the canonical BiTE molecules are also being developed. Advances in immuno-oncology made with BiTE technology could substantially improve the treatment of hematologic and solid tumors and offer enhanced activity in combination with other treatments.
Collapse
Affiliation(s)
- Hermann Einsele
- Department of Internal Medicine II, Universität Würzburg, Würzburg, Germany
| | - Hossein Borghaei
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Gail J Roboz
- Weill Cornell Medicine, Division of Hematology and Oncology, The New York Presbyterian Hospital, New York, New York
| | | | - Peter Kufer
- Amgen Research (Munich) GmbH, Munich, Germany
| | | | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
48
|
Isobe Y, Sato K, Nishinaga Y, Takahashi K, Taki S, Yasui H, Shimizu M, Endo R, Koike C, Kuramoto N, Yukawa H, Nakamura S, Fukui T, Kawaguchi K, Chen-Yoshikawa TF, Baba Y, Hasegawa Y. Near infrared photoimmunotherapy targeting DLL3 for small cell lung cancer. EBioMedicine 2020; 52:102632. [PMID: 31981983 PMCID: PMC6992936 DOI: 10.1016/j.ebiom.2020.102632] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/25/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) has a poor prognosis, and its treatment options are limited. Delta-like protein 3 (DLL3) is expressed specifically in SCLC and is considered a promising therapeutic target for patients with this disease. Rovalpituzumab tesirine (Rova-T) was the first antibody-drug conjugate targeting DLL3. Although Rova-T development was unfortunately terminated, DLL3 remains an ideal target for SCLC. Near infrared photoimmunotherapy (NIR-PIT) is a new form of cancer treatment that employs an antibody-photosensitiser conjugate followed by NIR light exposure and damage target cells specifically. In this study, we demonstrate DLL3-targeted NIR-PIT to develop a novel molecularly targeted treatment for SCLC. METHODS The anti-DLL3 monoclonal antibody rovalpituzumab was conjugated to an IR700 photosensitiser (termed 'rova-IR700'). SCLC cells overexpressing DLL3 as well as non-DLL3-expressing controls were incubated with rova-IR700 and then exposed to NIR-light. Next, mice with SCLC xenografts were injected with rova-IR700 and irradiated with NIR-light. FINDINGS DLL3-overexpressing cells underwent immediate destruction upon NIR-light exposure, whereas the control cells remained intact. The xenograft in mice treated with rova-IR700 and NIR-light shrank markedly, whereas neither rova-IR700 injection nor NIR-light irradiation alone affected tumour size. INTERPRETATION Our data suggest that targeting of DLL3 using NIR-PIT could be a novel and promising treatment for SCLC. FUNDING Research supported by grants from the Program for Developing Next-generation Researchers (Japan Science and Technology Agency), KAKEN (18K15923, JSPS), Medical Research Encouragement Prize of The Japan Medical Association, The Nitto Foundation, Kanae Foundation for the Promotion of Medical Science.
Collapse
Affiliation(s)
- Yoshitaka Isobe
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kazuhide Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; S-YLC, Nagoya University Institute for Advanced Research, Japan; B3-Unit, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Japan.
| | - Yuko Nishinaga
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kazuomi Takahashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shunichi Taki
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hirotoshi Yasui
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Misae Shimizu
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; B3-Unit, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Japan
| | - Rena Endo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; B3-Unit, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Japan
| | - Chiaki Koike
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; B3-Unit, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Japan
| | - Noriko Kuramoto
- B3-Unit, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Japan
| | - Hiroshi Yukawa
- B3-Unit, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Japan; Nagoya University Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Japan; Department of Biomolecular Engineering, Nagoya University Graduate School of Engineering, Japan
| | - Shota Nakamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Japan
| | - Koji Kawaguchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Japan
| | | | - Yoshinobu Baba
- Nagoya University Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Japan; Department of Biomolecular Engineering, Nagoya University Graduate School of Engineering, Japan
| | | |
Collapse
|
49
|
Updates on the Role of Molecular Alterations and NOTCH Signalling in the Development of Neuroendocrine Neoplasms. J Clin Med 2019; 8:jcm8091277. [PMID: 31443481 PMCID: PMC6780206 DOI: 10.3390/jcm8091277] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) comprise a heterogeneous group of rare malignancies, mainly originating from hormone-secreting cells, which are widespread in human tissues. The identification of mutations in ATRX/DAXX genes in sporadic NENs, as well as the high burden of mutations scattered throughout the multiple endocrine neoplasia type 1 (MEN-1) gene in both sporadic and inherited syndromes, provided new insights into the molecular biology of tumour development. Other molecular mechanisms, such as the NOTCH signalling pathway, have shown to play an important role in the pathogenesis of NENs. NOTCH receptors are expressed on neuroendocrine cells and generally act as tumour suppressor proteins, but in some contexts can function as oncogenes. The biological heterogeneity of NENs suggests that to fully understand the role and the potential therapeutic implications of gene mutations and NOTCH signalling in NENs, a comprehensive analysis of genetic alterations, NOTCH expression patterns and their potential role across all NEN subtypes is required.
Collapse
|
50
|
Matsuo K, Taniguchi K, Hamamoto H, Ito Y, Futaki S, Inomata Y, Shima T, Asakuma M, Lee SW, Tanaka K, Okuda J, Kondo Y, Uchiyama K. Delta-like 3 localizes to neuroendocrine cells and plays a pivotal role in gastrointestinal neuroendocrine malignancy. Cancer Sci 2019; 110:3122-3131. [PMID: 31369178 PMCID: PMC6778628 DOI: 10.1111/cas.14157] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023] Open
Abstract
Delta‐like 3 (DLL3) is a member of the Delta/Serrate/Lag2 (DSL) group of Notch receptor ligands. Five DSL ligands are known in mammals, among which DLL3 has a unique structure. In the last few years, DLL3 has attracted attention as a novel molecular targeting gene in neuroendocrine carcinoma of the lung due to its high expression. However, the expression pattern and functions of DLL3 in the gastrointestinal tract and gastrointestinal neuroendocrine carcinoma remain unclear. In this study, we examined the expression and role of DLL3 in the gastrointestinal tract, as well as in gastrointestinal neuroendocrine carcinoma. Immunohistochemical staining of the human normal gastrointestinal tract revealed that DLL3 localized in neuroendocrine cells. DLL3 showed intense staining in chromogranin A‐positive gastric cancer specimens. Real‐time quantitative RT‐PCR and western blotting analyses showed considerable upregulation of DLL3 in gastrointestinal neuroendocrine carcinoma cell lines. Immuno‐electron microscopy demonstrated abundant expression of DLL3 in neurosecretory granules in these cells. Furthermore, gene silencing of DLL3 caused significant growth inhibition through the induction of intrinsic apoptosis. Our findings suggest that DLL3 is expressed in neuroendocrine cells of the gastrointestinal tract and that it has a pivotal role in gastrointestinal neuroendocrine carcinoma cells. Based on these findings, further investigations are required to achieve a breakthrough in developing therapeutic strategies for gastrointestinal neuroendocrine carcinoma.
Collapse
Affiliation(s)
- Kentaro Matsuo
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan.,Translational Research Program, Osaka Medical College, Takatsuki, Japan
| | - Hiroki Hamamoto
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Japan
| | - Sugiko Futaki
- Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Japan
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Takafumi Shima
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Mitsuhiro Asakuma
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Keitaro Tanaka
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Junji Okuda
- Osaka Medical College Hospital Cancer Center, Takatsuki, Japan
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|