1
|
Brockmueller A, Ruiz de Porras V, Shakibaei M. Curcumin and its anti-colorectal cancer potential: From mechanisms of action to autophagy. Phytother Res 2024; 38:3525-3551. [PMID: 38699926 DOI: 10.1002/ptr.8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Colorectal cancer (CRC) development and progression, one of the most common cancers globally, is supported by specific mechanisms to escape cell death despite chemotherapy, including cellular autophagy. Autophagy is an evolutionarily highly conserved degradation pathway involved in a variety of cellular processes, such as the maintenance of cellular homeostasis and clearance of foreign bodies, and its imbalance is associated with many diseases. However, the role of autophagy in CRC progression remains controversial, as it has a dual function, affecting either cell death or survival, and is associated with cellular senescence in tumor therapy. Indeed, numerous data have been presented that autophagy in cancers serves as an alternative to cell apoptosis when the latter is ineffective or in apoptosis-resistant cells, which is why it is also referred to as programmed cell death type II. Curcumin, one of the active constituents of Curcuma longa, has great potential to combat CRC by influencing various cellular signaling pathways and epigenetic regulation in a safe and cost-effective approach. This review discusses the efficacy of curcumin against CRC in vitro and in vivo, particularly its modulation of autophagy and apoptosis in various cellular pathways. While clinical studies have assessed the potential of curcumin in cancer prevention and treatment, none have specifically examined its role in autophagy. Nonetheless, we offer an overview of potential correlations to support the use of this polyphenol as a prophylactic or co-therapeutic agent in CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
2
|
Hamoya T, Tomono S, Miyamoto S, Fujii G, Wakabayashi K, Mutoh M. Theoretical basis validation and oxidative stress markers for cancer prevention clinical trials of aspirin. Sci Rep 2023; 13:21883. [PMID: 38072949 PMCID: PMC10711014 DOI: 10.1038/s41598-023-49254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Aspirin, a nonsteroidal anti-inflammatory drug, has been proven effective in a clinical trial of carcinogenesis blockade. However, various modes of action have been reported for these effects. Thus, in this study, we aimed to present reasonable mode of actions as a proof of concept for human trials, especially trials for patients with familial adenomatous polyposis (FAP). Aspirin treatment at 1000 ppm inhibited intestinal tumorigenesis in FAP model Min mice. As a mode of action, aspirin regulated β-catenin signaling, inflammation, and oxidative stress both in vivo and in vitro. Furthermore, we examined novel markers predictive of aspirin treatment based on liquid biopsy. Here, we demonstrated that aspirin reduced the levels of reactive carbonyl species in the serum of Min mice. These data are expected to be of use for proof of concept of aspirin human trials and implied for the prediction of aspirin efficacy.
Collapse
Affiliation(s)
- Takahiro Hamoya
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Shingo Miyamoto
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Gen Fujii
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Epidemiology and Prevention Division, Center for Public Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan.
| |
Collapse
|
3
|
Kuwabara Y, Hirose A, Lee H, Kakinuma T, Baba A, Takara T. Effects of Highly Bioavailable Curcumin Supplementation on Common Cold Symptoms and Immune and Inflammatory Functions in Healthy Japanese Subjects: A Randomized Controlled Study. J Diet Suppl 2023; 21:71-98. [PMID: 36927282 DOI: 10.1080/19390211.2023.2185723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
This study aimed to investigate the effects of 12-week consumption of highly bioavailable curcumin (150 mg/day of Theracurmin Super [TS-P1] or Theracurmin [CR-033P]) on common cold symptoms, immune function, and inflammatory markers. A randomized, double-blind, placebo-controlled study was conducted from November 2021 to May 2022 on 99 healthy Japanese adults. Using a computerized random number generator, each subject was randomly assigned to one of the following three groups: TS-P1, CR-033P, or placebo (n = 33 per group). For 12 weeks, each group consumed the four capsules that were given to them daily. The cumulative number of days for which common cold symptoms persisted was set as the primary outcome. Immunity parameters, inflammatory parameters, liver function parameters, and physical examination results were additional outcomes. A safety assessment was also performed. Ninety-four subjects completed the study, and the per protocol set included 30 subjects in the placebo group, 32 subjects in the TS-P1 group, and 33 subjects in the CR-033P group. The cumulative number of days for which common cold symptoms persisted was significantly lower in the TS-P1 and CR-033P groups than that in the placebo group. No adverse effects were observed. Consumption of highly bioavailable curcumin, TS-P1 or CR-033P (150 mg/day), for 12 weeks reduced the number of days for which common cold symptoms persisted in healthy Japanese adults.
Collapse
|
4
|
Wang M, Liu X, Chen T, Cheng X, Xiao H, Meng X, Jiang Y. Inhibition and potential treatment of colorectal cancer by natural compounds via various signaling pathways. Front Oncol 2022; 12:956793. [PMID: 36158694 PMCID: PMC9496650 DOI: 10.3389/fonc.2022.956793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is a common type of malignant digestive tract tumor with a high incidence rate worldwide. Currently, the clinical treatment of CRC predominantly include surgical resection, postoperative chemotherapy, and radiotherapy. However, these treatments contain severe limitations such as drug side effects, the risk of recurrence and drug resistance. Some natural compounds found in plants, fungi, marine animals, and bacteria have been shown to inhibit the occurrence and development of CRC. Although the explicit molecular mechanisms underlying the therapeutic effects of these compounds on CRC are not clear, classical signaling transduction pathways such as NF-kB and Wnt/β-catenin are extensively regulated. In this review, we have summarized the specific mechanisms regulating the inhibition and development of CRC by various types of natural compounds through nine signaling pathways, and explored the potential therapeutic values of these natural compounds in the clinical treatment of CRC.
Collapse
Affiliation(s)
- Mingchuan Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianjun Liu
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tong Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianbin Cheng
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianglong Meng
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yang Jiang,
| |
Collapse
|
5
|
Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, Hu C, Xu R. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4503-4525. [PMID: 34754179 PMCID: PMC8572027 DOI: 10.2147/dddt.s327378] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023]
Abstract
Curcumin is a natural compound with great potential for disease treatment. A large number of studies have proved that curcumin has a variety of biological activities, among which anti-inflammatory effect is a significant feature of it. Inflammation is a complex and pervasive physiological and pathological process. The physiological and pathological mechanisms of inflammatory bowel disease, psoriasis, atherosclerosis, COVID-19 and other research focus diseases are not clear yet, and they are considered to be related to inflammation. The anti-inflammatory effect of curcumin can effectively improve the symptoms of these diseases and is expected to be a candidate drug for the treatment of related diseases. This paper mainly reviews the anti-inflammatory effect of curcumin, the inflammatory pathological mechanism of related diseases, the regulatory effect of curcumin on these, and the latest research results on the improvement of curcumin pharmacokinetics. It is beneficial to the further study of curcumin and provides new ideas and insights for the development of curcumin anti-inflammatory preparations.
Collapse
Affiliation(s)
- Ying Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Mingyue Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Baohua Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yunxiu Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingying Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Changjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,Neo-Green Pharmaceutical Co., Ltd., Chengdu, People's Republic of China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Synergistic effects of curcumin and its analogs with other bioactive compounds: A comprehensive review. Eur J Med Chem 2020; 210:113072. [PMID: 33310285 DOI: 10.1016/j.ejmech.2020.113072] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
Curcumin, as a natural compound, extracted from plant Curcuma longa, is abundant in the Indian subcontinent and Southeast Asia, and have been used in a diverse array of pharmacological activities. Although curcumin has some limitations like low stability and low bioavailability, it has been proved that this compound induced apoptosis signaling and is also known to block cell proliferation signaling pathway. Recently, extensive research has been carried out to study the application of curcumin as a health improving agent, and devise new methods to overcome to the curcumin limitations and incorporate this functional ingredient into foods. Combinational chemotherapy is one of the basic strategies is using for 60 years for the treatment of various health problems like cancer, malaria, inflammation, diabetes and etc. Molecular hybridization is another strategy to make multi-pharmacophore or conjugated drugs with more synergistic effect than the parent compounds. The aim of this review is to provide an overview of the pharmacological activity of curcumin and its analogs in combination with other bioactive compounds and cover more recent reports of anti-cancer, anti-malarial, and anti-inflammatory activities of these analogs.
Collapse
|
7
|
Luo X, Yu Z, Yue B, Ren J, Zhang J, Mani S, Wang Z, Dou W. Obacunone reduces inflammatory signalling and tumour occurrence in mice with chronic inflammation-induced colorectal cancer. PHARMACEUTICAL BIOLOGY 2020; 58:886-897. [PMID: 32878512 PMCID: PMC8202763 DOI: 10.1080/13880209.2020.1812673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Obacunone, a limonoid abundantly found in Citrus fruits, exhibits a variety of bioactivities. OBJECTIVE To investigate the effects of obacunone on a colorectal cancer (CRC) mouse model, and clarify its potential molecular mechanisms. MATERIALS AND METHODS The male Balb/c mice were induced with azoxymethane and dextran sulfate sodium for 12 weeks. Obacunone (50 mg/kg) was administered via oral gavage three times every week until the end of the experiment. Disease indexes including body weight, spleen weight, bloody diarrhea, colon length, histopathological score, and tumor size were measured. The anti-proliferation activities of obacunone were analyzed by MTT or flow cytometry. The expression of protein and mRNA related to cell proliferation or inflammatory cytokines was determined by Western blot, q-PCR and IHC. RESULTS Obacunone significantly alleviated bloody diarrhea, colon shortening (7.35 ± 0.2128 vs. 8.275 ± 0.2169 cm), splenomegaly, histological score (9 ± 0.5774 vs. 6 ± 0.5774) and reduced tumor size (4.25 ± 0.6196 vs. 2 ± 0.5669). Meanwhile, the expression of protein and mRNA related to cell proliferation or inflammatory cytokines was remarkably decreased in tumor tissue. Obacunone inhibited the proliferation activities of colorectal cancer cells. Moreover, obacunone induced colorectal cancer cells G1 and G2 phases arrest, and suppressed the expression of cell cycle genes. CONCLUSIONS Obacunone could alleviate CRC via inhibiting inflammatory response and tumor cells proliferation. The results may contribute to the effective utilization of obacunone or its derivatives in the treatment of human CRC.
Collapse
Affiliation(s)
- Xiaoping Luo
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Zhilun Yu
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Bei Yue
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Junyu Ren
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Jing Zhang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhengtao Wang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Wei Dou
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| |
Collapse
|
8
|
Zhang M, Chen X, Radacsi N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J Control Release 2020; 329:96-120. [PMID: 33259852 DOI: 10.1016/j.jconrel.2020.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Combination therapy has long been applied to enhance therapeutic effect and deal with the occurrence of multi-drug resistance in cancer treatment. However, the overlapping toxicity of multiple anticancer drugs to healthy tissues and increasing financial burden on patients emerged as major concerns. As promising alternatives to chemo agents, repurposed non-chemo drugs and dietary phytochemicals have been investigated as adjuvants to conventional anti-tumor therapeutics, offering a safe and economic strategy for combination therapy. In this review, we aim to highlight the advances in research about combination therapy using conventional therapeutics and repurposed drugs or phytochemicals for an enhanced anti-tumor efficacy, along with the mechanisms involved in the synergism. Beyond these, we outlined the potential challenges and solutions for clinical translation of the proposed combination therapy, providing a safe and affordable strategy to improve the reach of cancer therapy to low income regions with such new tricks of old drugs.
Collapse
Affiliation(s)
- Mei Zhang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom; School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom.
| |
Collapse
|
9
|
Trošelj KG, Samaržija I, Tomljanović M, Kujundžić RN, Đaković N, Mojzeš A. Implementing Curcumin in Translational Oncology Research. Molecules 2020; 25:E5240. [PMID: 33182817 PMCID: PMC7698148 DOI: 10.3390/molecules25225240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Most data published on curcumin and curcumin-based formulations are very promising. In cancer research, the majority of data has been obtained in vitro. Less frequently, researchers used experimental animals. The results of several clinical studies are conclusive, and these studies have established a good foundation for further research focusing on implementing curcumin in clinical oncology. However, the issues regarding timely data reporting and lack of disclosure of the exact curcumin formulations used in these studies should not be neglected. This article is a snapshot of the current status of publicly available data on curcumin clinical trials and a detailed presentation of results obtained so far with some curcumin formulations. Phenomena related to the observed effects of curcumin shown in clinical trials are presented, and its modifying effect on gut microbiota and metabolic reprogramming is discussed. Based on available data, there is a strong indication that curcumin and its metabolites present molecules that do not necessarily need to be abundant in order to act locally and benefit systemically. Future clinical studies should be designed in a way that will take that fact into consideration.
Collapse
Affiliation(s)
- Koraljka Gall Trošelj
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Ivana Samaržija
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Marko Tomljanović
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Renata Novak Kujundžić
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Nikola Đaković
- Institute for Clinical Medical Research and Education, University Hospital Centre Sisters of Charity, 10000 Zagreb, Croatia;
- Department of Clinical Oncology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anamarija Mojzeš
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| |
Collapse
|
10
|
Adachi S, Hamoya T, Fujii G, Narita T, Komiya M, Miyamoto S, Kurokawa Y, Takahashi M, Takayama T, Ishikawa H, Tashiro K, Mutoh M. Theracurmin inhibits intestinal polyp development in Apc-mutant mice by inhibiting inflammation-related factors. Cancer Sci 2020; 111:1367-1374. [PMID: 31991021 PMCID: PMC7156816 DOI: 10.1111/cas.14329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Therefore, it is important to establish useful methods for preventing CRC. One prevention strategy involves the use of cancer chemopreventive agents, including functional foods. We focused on the well‐known cancer chemopreventive agent curcumin, which is derived from turmeric. However, curcumin has the disadvantage of being poorly soluble in water due to its high hydrophobicity. To overcome this problem, the formation of submicron particles with surface controlled technology has been applied to curcumin to give it remarkably improved water solubility, and this derived compound is named Theracurmin. To date, the preventive effects of Theracurmin on hereditary intestinal carcinogenesis have not been elucidated. Thus, we used Apc‐mutant mice, a model of familial adenomatous polyposis, to evaluate the effects of Theracurmin. First, we showed that treatment with 10‐20 µM Theracurmin for 24 hours reduced nuclear factor‐κB (NF‐κB) transcriptional activity in human colon cancer DLD‐1 and HCT116 cells. However, treatment with curcumin mixed in water did not change the NF‐κB promoter transcriptional activity. As NF‐κB is a regulator of inflammation‐related factors, we next investigated the downstream targets of NF‐κB: monocyte chemoattractant protein‐1 (MCP‐1) and interleukin (IL)‐6. We found that treatment with 500 ppm Theracurmin for 8 weeks inhibited intestinal polyp development and suppressed MCP‐1 and IL‐6 mRNA expression levels in the parts of the intestine with polyps. This report provides a proof of concept for the ongoing Theracurmin human trial (J‐CAP‐C study).
Collapse
Affiliation(s)
- Saeko Adachi
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan.,Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushuu University, Fukuoka, Japan
| | - Takahiro Hamoya
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Gen Fujii
- Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Takumi Narita
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Masami Komiya
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Shingo Miyamoto
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Yurie Kurokawa
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Maiko Takahashi
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Faculty of Medicine Graduate School of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Hideki Ishikawa
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushuu University, Fukuoka, Japan
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan.,Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
11
|
Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin Cancer Biol 2020; 80:73-86. [PMID: 32088363 PMCID: PMC7438305 DOI: 10.1016/j.semcancer.2020.02.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of most common malignancies worldwide and its incidence is still growing. In spite of recent advances in targeted therapies, their clinical efficacy has been limited, non-curative and unaffordable. A growing body of literature indicates that CRC is a multi-modal disease, where a variety of factors within the tumor microenvironment play a significant role in its pathogenesis. For instance, imbalance in gut microbial profiles and impaired intestinal barrier function contribute to the overall intestinal inflammation and initiation of CRC. Moreover, persistent chronic inflammation favors a tumor microenvironment for the growth of cancer. In addition, autophagy or 'self-eating' is a surveillance mechanism involved in the degradation of cellular constituents that are generated under stressful conditions. Cancer stem cells (CSCs), on the other hand, engage in the onset of CRC and are able to endow cancer cells with chemo-resistance. Furthermore, the aberrant epigenetic alterations promote CRC. These evidences highlight the need for multi-targeted approaches that are not only safe and inexpensive but offer a more effective alternative to current generation of targeted drugs. Curcumin, derived from the plant Curcuma longa, represents one such option that has a long history of its use for a variety of chronic disease including cancer, in Indian ayurvedic and traditional Chinese medicine. Scientific evidence over the past few decades have overwhelmingly shown that curcumin exhibits a multitude of anti-cancer activities orchestrated through key signaling pathways associated with cancer. In this article, we will present a current update and perspective on this natural medicine - incorporating the basic cellular mechanisms it effects and the current state of clinical evidence, challenges and promise for its use as a cancer preventative and potential adjunct together with modern therapies for CRC patients.
Collapse
|