1
|
Chen J, Yang R, Yu H, Wu H, Wu N, Wang S, Yin X, Shi X, Wang H. Ultrasmall iron oxide nanoparticles with MRgFUS for enhanced magnetic resonance imaging of orthotopic glioblastoma. J Mater Chem B 2024; 12:4833-4842. [PMID: 38647018 DOI: 10.1039/d3tb02966b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ultrasmall iron oxide nanoparticles (USIO NPs) are expected to become the next generation T1 contrast agents; however, their diagnostic and therapeutic potential for primary brain tumors (such as glioblastoma multiforme, GBM) is yet to be explored. At present, the main challenge is the effective hindering of biological barriers, including the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB). Herein, we aimed to investigate whether the USIO NPs, in combination with MR-guided focused ultrasound (MRgFUS), could intensify MR imaging of GBM. In this study, we presented zwitterionic USIO NPs for enhanced MR imaging of both xenografted and orthotopic GBM mouse models. We first synthesized citric-stabilized USIO NPs with a size of 3.19 ± 0.76 nm, modified with ethylenediamine, and decorated with 1,3-propanesultone (1,3-PS) to form USIO NPs-1,3-PS. The obtained USIO NPs-1,3-PS exhibited good cytocompatibility and cellular uptake efficiency. MRgFUS, in combination with microbubbles, provided a non-invasive and safe technique for BBB opening, which, in turn, promoted the delivery of USIO NPs-1,3-PS in orthotopic GBM. This developed USIO NP nanoplatform may improve the precision imaging of solid tumors and therapeutic efficacy in the central nervous system.
Collapse
Affiliation(s)
- Jingwen Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China.
| | - Rui Yang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China.
| | - Hao Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Nan Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Suhe Wang
- Department of Internal Medicine, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Xiaorui Yin
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China.
| | - Xiangyang Shi
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China.
- R & D Center of Medical Artificial Intelligence and Medical Engineering, Haining Rd.100, Shanghai General Hospital, Shanghai 200080, China
- National Center for Translational Medicine (Shanghai), New Songjiang Rd.650, Shanghai 201620, China
- Jiading Branch of Shanghai General Hospital, Huangjia Garden Rd. 800, Shanghai 201803, China
| |
Collapse
|
2
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Wang M, Chen Q, Wang S, Xie H, Liu J, Huang R, Xiang Y, Jiang Y, Tian D, Bian E. Super-enhancers complexes zoom in transcription in cancer. J Exp Clin Cancer Res 2023; 42:183. [PMID: 37501079 PMCID: PMC10375641 DOI: 10.1186/s13046-023-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- MengTing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - QingYang Chen
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - ShuJie Wang
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - RuiXiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YuFei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YanYi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - ErBao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Zhu Q, Zhu Z, Renaud SJ, Hu L, Guo Y. The Oncogenic Role of Cyclin-Dependent Kinase Inhibitor 2C in Lower-Grade Glioma. J Mol Neurosci 2023; 73:327-344. [PMID: 37223854 DOI: 10.1007/s12031-023-02120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Lower-grade gliomas (LGGs) are slow-growing, indolent tumors that usually affect younger patients and present a therapeutic challenge due to the heterogeneity of their clinical presentation. Dysregulation of cell cycle regulatory factors is implicated in the progression of many tumors, and drugs that target cell cycle machinery have shown efficacy as promising therapeutic approaches. To date, however, no comprehensive study has examined how cell cycle-related genes affect LGG outcomes. The cancer genome atlas (TCGA) data were used as the training set for differential analysis of gene expression and patient outcomes; the Chinese glioma genome atlas (CGGA) was used for validation. Levels of one candidate protein, cyclin-dependent kinase inhibitor 2C (CDKN2C), and its relationship to clinical prognosis were determined using a tissue microarray containing 34 LGG tumors. A nomogram was constructed to model the putative role of candidate factors in LGG. Cell type proportion analysis was performed to evaluate immune cell infiltration in LGG. Various genes encoding cell cycle regulatory factors showed increased expression in LGG and were significantly related to isocitrate dehydrogenase and chromosome arms 1p and 19q mutation status. CDKN2C expression independently predicted the outcome of LGG patients. High M2 macrophage values along with elevated CDKN2C expression were associated with poorer prognosis in LGG patients. CDKN2C plays an oncogenic role in LGG, which is associated with M2 macrophages.
Collapse
Affiliation(s)
- Qiongni Zhu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhimin Zhu
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Stephen James Renaud
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China.
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| |
Collapse
|
5
|
Abdelmalak M, Singh R, Anwer M, Ivanchenko P, Randhawa A, Ahmed M, Ashton AW, Du Y, Jiao X, Pestell R. The Renaissance of CDK Inhibitors in Breast Cancer Therapy: An Update on Clinical Trials and Therapy Resistance. Cancers (Basel) 2022; 14:cancers14215388. [PMID: 36358806 PMCID: PMC9655989 DOI: 10.3390/cancers14215388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Cyclin-dependent kinase inhibitors (palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio)), targeting aberrant cell-cycle activity have been evaluated extensively in clinical trials. Significant delays in progression free survival and overall survival are now documented with each agent in estrogen receptor positive and human epidermal growth factor receptor two negative advanced breast cancer including luminal B breast cancer. Therapy resistance, driven by chromosomal instability, results in genomic rearrangements, activation of cell-cycle components (cyclin E/cdk2 in Rb− tumors, cyclin D1 in growth factor activated pathways), and the immune response. Molecular analysis of therapy resistant tumors may provide the rational basis for new therapies (brivanib, CYC065, WEE1 kinase and other inhibitors). Luminal B breast cancer is enriched for cyclin D1 overexpression and the chromosomal instability gene signature. The molecular mechanisms governing chromosomal instability in luminal B breast cancer remain poorly understood. Co-targeting of chromosomal instability may potentially reduce the prevalent escape mechanisms that reduce the effectiveness of cyclin-dependent kinase inhibitors. Abstract Cyclin-dependent kinases (CDKs) govern cell-cycle checkpoint transitions necessary for cancer cell proliferation. Recent developments have illustrated nuanced important differences between mono CDK inhibitor (CDKI) treatment and the combination therapies of breast cancers. The CDKIs that are currently FDA-approved for breast cancer therapy are oral agents that selectively inhibit CDK4 and CDK6, include palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio). CDKI therapy is effective in hormone receptor positive (HR+), and human epidermal growth factor receptor two negative (HER2−) advanced breast cancers (ABC) malignancies, but remains susceptible due to estrogen and progesterone receptor overexpression. Adding a CDK4/6I to endocrine therapy increases efficacy and delays disease progression. Given the side effects of CDKI, identifying potential new treatments to enhance CDKI effectiveness is essential. Recent long-term studies with Palbociclib, including the PALLAS and PENELOPE B, which failed to meet their primary endpoints of influencing progression-free survival, suggest a deeper mechanistic understanding of cyclin/CDK functions is required. The impact of CDKI on the anti-tumor immune response represents an area of great promise. CDKI therapy resistance that arises provides the opportunity for specific types of new therapies currently in clinical trials.
Collapse
Affiliation(s)
- Mary Abdelmalak
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Rajanbir Singh
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Mohammed Anwer
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Pavel Ivanchenko
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Amritdeep Randhawa
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Myra Ahmed
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Anthony W. Ashton
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- Lankenau Institute for Medical Research Philadelphia, 100 East Lancaster Ave., Wynnewood, PA 19069, USA
| | - Yanming Du
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- Correspondence: (X.J.); (R.P.)
| | - Richard Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- The Wistar Cancer Center, Philadelphia, PA 19107, USA
- Correspondence: (X.J.); (R.P.)
| |
Collapse
|
6
|
Curtaz CJ, Kiesel L, Meybohm P, Wöckel A, Burek M. Anti-Hormonal Therapy in Breast Cancer and Its Effect on the Blood-Brain Barrier. Cancers (Basel) 2022; 14:cancers14205132. [PMID: 36291916 PMCID: PMC9599962 DOI: 10.3390/cancers14205132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The molecular receptor status of breast cancer has implications for prognosis and long-term metastasis. Although metastatic luminal B-like, hormone-receptor-positive, HER2−negative, breast cancer causes brain metastases less frequently than other subtypes, though tumor metastases in the brain are increasingly being detected of this patient group. Despite the many years of tried and tested use of a wide variety of anti-hormonal therapeutic agents, there is insufficient data on their intracerebral effectiveness and their ability to cross the blood-brain barrier. In this review, we therefore summarize the current state of knowledge on anti-hormonal therapy and its intracerebral impact and effects on the blood-brain barrier in breast cancer.
Collapse
Affiliation(s)
- Carolin J. Curtaz
- Department of Gynecology and Obstetrics, University Hospital Würzburg, 97080 Würzburg, Germany
- Correspondence:
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University Hospital of Münster, 48143 Münster, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
7
|
Ismail M, Yang W, Li Y, Wang Y, He W, Wang J, Muhammad P, Chaston TB, Rehman FU, Zheng M, Lovejoy DB, Shi B. Biomimetic Dp44mT-nanoparticles selectively induce apoptosis in Cu-loaded glioblastoma resulting in potent growth inhibition. Biomaterials 2022; 289:121760. [PMID: 36044788 DOI: 10.1016/j.biomaterials.2022.121760] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/11/2022] [Accepted: 08/20/2022] [Indexed: 12/25/2022]
Abstract
Selective targeting of elevated copper (Cu) in cancer cells by chelators to induce tumor-toxic reactive oxygen species (ROS) may be a promising approach in the treatment of glioblastoma multiforme (GBM). Previously, the Cu chelator di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) attracted much interest due to its potent anti-tumor activity mediated by the formation of a highly redox-active Cu-Dp44mT complex. However, its translational potential was limited by the development of toxicity in murine models of cancer reflecting poor selectivity. Here, we overcame the limitations of Dp44mT by incorporating it in new biomimetic nanoparticles (NPs) optimized for GBM therapy. Biomimetic design elements enhancing selectivity included angiopeptide-2 functionalized red blood cell membrane (Ang-M) camouflaging of the NPs carrier. Co-loading Dp44mT with regadenoson (Reg), that transiently opens the blood-brain-barrier (BBB), yielded biomimetic Ang-MNPs@(Dp44mT/Reg) NPs that actively targeted and traversed the BBB delivering Dp44mT specifically to GBM cells. To further improve selectivity, we innovatively pre-loaded GBM tumors with Cu. Oral dosing of U87MG-Luc tumor bearing mice with diacetyl-bis(4-methylthiosemicarbazonato)-copperII (Cu(II)-ATSM), significantly enhanced Cu-level in GBM tumor. Subsequent treatment of mice bearing Cu-enriched orthotopic U87MG-Luc GBM with Ang-MNPs@(Dp44mT/Reg) substantially prevented orthotopic GBM growth and led to maximal increases in median survival time. These results highlighted the importance of both angiopeptide-2 functionalization and tumor Cu-loading required for greater selective cytotoxicity. Targeting Ang-MNPs@(Dp44mT/Reg) NPs also down-regulated antiapoptotic Bcl-2, but up-regulated pro-apoptotic Bax and cleaved-caspase-3, demonstrating the involvement of the apoptotic pathway in GBM suppression. Notably, Ang-MNPs@(Dp44mT/Reg) showed negligible systemic drug toxicity in mice, further indicating therapeutic potential that could be adapted for other central nervous system disorders.
Collapse
Affiliation(s)
- Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Wen Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Yanfei Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Yibin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Wenya He
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Jiefei Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Timothy B Chaston
- University Centre for Rural Health, School of Public Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Fawad Ur Rehman
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Centre for Regenerative Medicine and Stem Cells Research, The Aga Khan University, Stadium Road, Karachi, 78400, Pakistan
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - David B Lovejoy
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| |
Collapse
|
8
|
Yin L, Yao Z, Wang Y, Mazuranic M. Investigational cyclin-dependent kinase 4/6 inhibitor GLR2007 demonstrates activity against isocitrate dehydrogenase wild-type glioblastoma and other solid tumors in mice xenograft models. Front Oncol 2022; 12:915862. [PMID: 36033522 PMCID: PMC9403987 DOI: 10.3389/fonc.2022.915862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinases, CDK4 and CDK6, are essential in regulating the cell cycle, which is disrupted in cancers like isocitrate dehydrogenase wild-type glioblastoma (GBM). Currently marketed CDK4/6 inhibitors, including abemaciclib, have shown preclinical efficacy in solid tumors, but factors such as poor blood–brain barrier (BBB) penetration limit their efficacy in GBM. GLR2007 is an investigational CDK4/6 inhibitor with the potential for improved BBB penetration. In vitro assays were used to assess the potency and inhibition of CDK4/6 enzymatic activity of GLR2007. Using in vivo assays, the distribution of radiolabeled GLR2007 in rats was determined through quantitative whole-body autoradiography. The antitumor efficacy of GLR2007 was evaluated in human GBM and breast cancer orthotopic mice xenograft models, and human lung, colorectal, and liver cancer in a subcutaneous xenograft model. In tumor cell line proliferation assays, GLR2007 inhibited proliferation at lower concentration values than abemaciclib in 19 of 20 GBM, five of seven breast, 20 of 21 lung, and 24 of 24 liver cancer cell lines. Total levels of radiolabeled GLR2007 in the brains of rats exceeded those in plasma by 2.3–4.5-fold from 2–6 hours after dosing. A xenograft model showed that, compared with vehicle control, 50 mg/kg GLR2007 induced 95.9% tumor growth inhibition (TGI) (P<0.001) in GBM orthotopic xenografts, 81.4% TGI (P=0.037) in breast cancer orthotopic xenografts, and 91.5% TGI (P<0.001) in colorectal cancer subcutaneous xenografts. These studies show possible BBB penetration of GLR2007 and demonstrate its potential as a CDK4/6 inhibitor for the treatment of solid tumors, including GBM.
Collapse
Affiliation(s)
- Lei Yin
- Gan & Lee Pharmaceuticals, Beijing, China
- *Correspondence: Lei Yin,
| | | | - Yue Wang
- Gan & Lee Pharmaceuticals USA Corp., Bridgewater, NJ, United States
| | | |
Collapse
|
9
|
Benot-Dominguez R, Cimini A, Barone D, Giordano A, Pentimalli F. The Emerging Role of Cyclin-Dependent Kinase Inhibitors in Treating Diet-Induced Obesity: New Opportunities for Breast and Ovarian Cancers? Cancers (Basel) 2022; 14:2709. [PMID: 35681689 PMCID: PMC9179653 DOI: 10.3390/cancers14112709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overweight and obesity constitute the most impactful lifestyle-dependent risk factors for cancer and have been tightly linked to a higher number of tumor-related deaths nowadays. The excessive accumulation of energy can lead to an imbalance in the level of essential cellular biomolecules that may result in inflammation and cell-cycle dysregulation. Nutritional strategies and phytochemicals are gaining interest in the management of obesity-related cancers, with several ongoing and completed clinical studies that support their effectiveness. At the same time, cyclin-dependent kinases (CDKs) are becoming an important target in breast and ovarian cancer treatment, with various FDA-approved CDK4/6 inhibitors that have recently received more attention for their potential role in diet-induced obesity (DIO). Here we provide an overview of the most recent studies involving nutraceuticals and other dietary strategies affecting cell-cycle pathways, which might impact the management of breast and ovarian cancers, as well as the repurposing of already commercialized chemotherapeutic options to treat DIO.
Collapse
Affiliation(s)
- Reyes Benot-Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
10
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 2022; 21:39. [PMID: 35135556 PMCID: PMC8822752 DOI: 10.1186/s12943-022-01513-z] [Citation(s) in RCA: 351] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Collapse
Affiliation(s)
- Keyang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Weijie Ye
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjing Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Jiang Y, Zhang C, Lu L, Wang X, Liu H, Jiang Y, Hong L, Chen Y, Huang H, Guo D. The Prognostic Role of Cyclin D1 in Multiple Myeloma: A Systematic Review and Meta-Analysis. Technol Cancer Res Treat 2022; 21:15330338211065252. [PMID: 35098809 PMCID: PMC8811435 DOI: 10.1177/15330338211065252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: Cyclin D1 has been identified as a proto-oncogene associated with the uncontrolled proliferation of tumor cells. This systematic review and meta-analysis aims to estimate the prognostic significance of cyclin D1 in multiple myeloma (MM) patients. Method: We searched for qualified data in PubMed, Embase, and Web of Science up to February 2020. Data quality was assessed by the Newcastle-Ottawa scale (NOS). Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were used to evaluate the relationship between cyclin D1 expression and overall survival (OS), progression-free survival (PFS)/event-free survival (EFS) in patients with MM. Result: A total of 13 studies involving 961 patients were included. Overall, pooled analysis revealed significant heterogeneity between cyclin D1 expression and the prognosis of MM (OS, HR = 1.08, 95% CI: 0.71-1.64, I2 = 67.9%; PFS/EFS, HR = 0.97, 95% CI: 0.49-1.93, I2 = 85.8%). Subgroup analysis revealed that the prolongation of OS was relevant to increased expression of cyclin D1 in MM patients in the relapsed and refractory group (OS, HR = 0.46, 95% CI: 0.24-0.90). Another subgroup assessment of OS established that MM patients with CCND1 overexpression in the bortezomib group had longer survival time (HR = 0.30, 95% CI: 0.11-0.82), whereas, those overexpressing CCND1 in the conventional chemotherapy group had poor prognosis (HR = 2.19, 95% CI: 1.18-4.08). We also found that increased cyclin D1 expression correlated favorably with PFS in the autologous stem cell transplantation (ASCT) (HR = 0.45, 95% CI: 0.28-0.73) or reverse transcription-polymerase chain reaction (RT-PCR) group (HR = 0.41, 95% CI: 0.26-0.64). Conclusion: The result of this meta-analysis suggested that CCND1 overexpression might be a predictive biomarker for MM patients when treated with bortezomib, receiving ASCT, or in relapsed and refractory period.
Collapse
Affiliation(s)
- Yuwen Jiang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chenlu Zhang
- Department of Hematology, Zhangjiagang Hospital Affiliated to Suzhou University, Suzhou, China
| | - Ling Lu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yijing Jiang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lemin Hong
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | | | - Hongming Huang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Dan Guo
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
12
|
Liu H, Qiu W, Sun T, Wang L, Du C, Hu Y, Liu W, Feng F, Chen Y, Sun H. Therapeutic strtegies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds. Acta Pharm Sin B 2021; 12:1781-1804. [PMID: 35847506 PMCID: PMC9279645 DOI: 10.1016/j.apsb.2021.12.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/02/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common aggressive malignant tumor in brain neuroepithelial tumors and remains incurable. A variety of treatment options are currently being explored to improve patient survival, including small molecule inhibitors, viral therapies, cancer vaccines, and monoclonal antibodies. Among them, the unique advantages of small molecule inhibitors have made them a focus of attention in the drug discovery of glioblastoma. Currently, the most used chemotherapeutic agents are small molecule inhibitors that target key dysregulated signaling pathways in glioblastoma, including receptor tyrosine kinase, PI3K/AKT/mTOR pathway, DNA damage response, TP53 and cell cycle inhibitors. This review analyzes the therapeutic benefit and clinical development of novel small molecule inhibitors discovered as promising anti-glioblastoma agents by the related targets of these major pathways. Meanwhile, the recent advances in temozolomide resistance and drug combination are also reviewed. In the last part, due to the constant clinical failure of targeted therapies, this paper reviewed the research progress of other therapeutic methods for glioblastoma, to provide patients and readers with a more comprehensive understanding of the treatment landscape of glioblastoma.
Collapse
|
13
|
Riess C, Irmscher N, Salewski I, Strüder D, Classen CF, Große-Thie C, Junghanss C, Maletzki C. Cyclin-dependent kinase inhibitors in head and neck cancer and glioblastoma-backbone or add-on in immune-oncology? Cancer Metastasis Rev 2021; 40:153-171. [PMID: 33161487 PMCID: PMC7897202 DOI: 10.1007/s10555-020-09940-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Cyclin-dependent kinases (CDK) control the cell cycle and play a crucial role in oncogenesis. Pharmacologic inhibition of CDK has contributed to the recent clinical approval of dual CDK4/6 inhibitors for the treatment of breast and small cell lung cancer. While the anticancer cell effects of CDK inhibitors are well-established, preclinical and early clinical studies describe additional mechanisms of action such as chemo- and radiosensitization or immune stimulation. The latter offers great potential to incorporate CDK inhibitors in immune-based treatments. However, dosing schedules and accurate timing of each combination partner need to be respected to prevent immune escape and resistance. In this review, we provide a detailed summary of CDK inhibitors in the two solid cancer types head and neck cancer and glioblastoma multiforme; it describes the molecular mechanisms of response vs. resistance and covers strategies to avoid resistance by the combination of immunotherapy or targeted therapy.
Collapse
Affiliation(s)
- Christin Riess
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
- University Children's and Adolescents' Hospital, Rostock University Medical Center, Rostock, Germany
| | - Nina Irmscher
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Inken Salewski
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Daniel Strüder
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Rostock, Germany
| | - Carl-Friedrich Classen
- University Children's and Adolescents' Hospital, Rostock University Medical Center, Rostock, Germany
| | - Christina Große-Thie
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
14
|
Zhou Z, Sun B, Nie A, Yu D, Bian M. Roles of Aminoacyl-tRNA Synthetases in Cancer. Front Cell Dev Biol 2020; 8:599765. [PMID: 33330488 PMCID: PMC7729087 DOI: 10.3389/fcell.2020.599765] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the ligation of amino acids to their cognate transfer RNAs (tRNAs), thus playing an important role in protein synthesis. In eukaryotic cells, these enzymes exist in free form or in the form of multi-tRNA synthetase complex (MSC). The latter contains nine cytoplasmic ARSs and three ARS-interacting multifunctional proteins (AIMPs). Normally, ARSs and AIMPs are regarded as housekeeping molecules without additional functions. However, a growing number of studies indicate that ARSs are involved in a variety of physiological and pathological processes, especially tumorigenesis. Here, we introduce the roles of ARSs and AIMPs in certain cancers, such as colon cancer, lung cancer, breast cancer, gastric cancer and pancreatic cancer. Furthermore, we particularly focus on their potential clinical applications in cancer, aiming at providing new insights into the pathogenesis and treatment of cancer.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Liao X, Hong Y, Mao Y, Chen N, Wang Q, Wang Z, Zhang L, Wang L, Shi C, Shi W, Ge H, Li A, Li X, Xia G, Liu Y. SPH3643: A novel cyclin-dependent kinase 4/6 inhibitor with good anticancer efficacy and strong blood-brain barrier permeability. Cancer Sci 2020; 111:1761-1773. [PMID: 32103527 PMCID: PMC7226180 DOI: 10.1111/cas.14367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/01/2023] Open
Abstract
The cyclin‐dependent kinase (CDK)4/6‐cyclin D1‐Rb‐p16/ink4a pathway is responsible for regulating cell progression past the G1 restriction point during the cell cycle. The development of a majority of human tumors is associated with dysregulation of this pathway, resulting in increased cancer cell proliferation. Both CDK4 and CDK6, well‐validated cancer drug targets, function primarily as catalytic enzymes that mediate the phosphorylation of retinoblastoma protein (Rb). Here, we determined that SPH3643 is a novel potent antiproliferative agent that inhibits CDK4/6 kinase activity. In biochemical assays, SPH3643 showed more potent inhibition of both CDK4 and CDK6 than did 2 published CDK4/6 inhibitors, LY2835219 and palbociclib, and had better selectivity than LY2835219. Further in vitro study revealed that SPH3643 blocked Cdk/Rb signaling by inhibiting the phosphorylation of RbSer780 and arrested the MCF‐7 cancer cells at G0/G1 phase, resulting in marked inhibition of the proliferation of Rb‐positive cancer cell lines. In vivo SPH3643 treatment in mice bearing xenograft tumor models of breast cancer, colon cancer, acute myelocytic leukemia, and glioblastoma resulted in significant decreases in tumor growth. SPH3643 was able to particularly strongly inhibit glioblastoma (U87‐MG) cell growth in the brains of orthotopic carcinoma xenograft mice due to its high degree of intracerebral penetration and significant persistence in this setting. Together these results revealed that SPH3643 is a potent, orally active small‐molecule inhibitor of CDK4/6 with robust anticancer efficacy and a high degree of blood‐brain barrier permeability.
Collapse
Affiliation(s)
- XueMei Liao
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Yuan Hong
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Yu Mao
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Na Chen
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Qian Wang
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Zhe Wang
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - LeDuo Zhang
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Li Wang
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Chen Shi
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - WeiJun Shi
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Hui Ge
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - AnDi Li
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Xin Li
- Shanghai Pharma Biotherapeutics USA Inc., San Diego, California
| | - GuangXin Xia
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - YanJun Liu
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| |
Collapse
|