1
|
Rocha LGDN, Guimarães PAS, Carvalho MGR, Ruiz JC. Tumor Neoepitope-Based Vaccines: A Scoping Review on Current Predictive Computational Strategies. Vaccines (Basel) 2024; 12:836. [PMID: 39203962 PMCID: PMC11360805 DOI: 10.3390/vaccines12080836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024] Open
Abstract
Therapeutic cancer vaccines have been considered in recent decades as important immunotherapeutic strategies capable of leading to tumor regression. In the development of these vaccines, the identification of neoepitopes plays a critical role, and different computational methods have been proposed and employed to direct and accelerate this process. In this context, this review identified and systematically analyzed the most recent studies published in the literature on the computational prediction of epitopes for the development of therapeutic vaccines, outlining critical steps, along with the associated program's strengths and limitations. A scoping review was conducted following the PRISMA extension (PRISMA-ScR). Searches were performed in databases (Scopus, PubMed, Web of Science, Science Direct) using the keywords: neoepitope, epitope, vaccine, prediction, algorithm, cancer, and tumor. Forty-nine articles published from 2012 to 2024 were synthesized and analyzed. Most of the identified studies focus on the prediction of epitopes with an affinity for MHC I molecules in solid tumors, such as lung carcinoma. Predicting epitopes with class II MHC affinity has been relatively underexplored. Besides neoepitope prediction from high-throughput sequencing data, additional steps were identified, such as the prioritization of neoepitopes and validation. Mutect2 is the most used tool for variant calling, while NetMHCpan is favored for neoepitope prediction. Artificial/convolutional neural networks are the preferred methods for neoepitope prediction. For prioritizing immunogenic epitopes, the random forest algorithm is the most used for classification. The performance values related to the computational models for the prediction and prioritization of neoepitopes are high; however, a large part of the studies still use microbiome databases for training. The in vitro/in vivo validations of the predicted neoepitopes were verified in 55% of the analyzed studies. Clinical trials that led to successful tumor remission were identified, highlighting that this immunotherapeutic approach can benefit these patients. Integrating high-throughput sequencing, sophisticated bioinformatics tools, and rigorous validation methods through in vitro/in vivo assays as well as clinical trials, the tumor neoepitope-based vaccine approach holds promise for developing personalized therapeutic vaccines that target specific tumor cancers.
Collapse
Affiliation(s)
- Luiz Gustavo do Nascimento Rocha
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Paul Anderson Souza Guimarães
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Maria Gabriela Reis Carvalho
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Jeronimo Conceição Ruiz
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
2
|
Chaudhry Z, Boyadzhyan A, Sasaninia K, Rai V. Targeting Neoantigens in Cancer: Possibilities and Opportunities in Breast Cancer. Antibodies (Basel) 2024; 13:46. [PMID: 38920970 PMCID: PMC11200483 DOI: 10.3390/antib13020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
As one of the most prevalent forms of cancer worldwide, breast cancer has garnered significant attention within the clinical research setting. While traditional treatment employs a multidisciplinary approach including a variety of therapies such as chemotherapy, hormone therapy, and even surgery, researchers have since directed their attention to the budding role of neoantigens. Neoantigens are defined as tumor-specific antigens that result from a multitude of genetic alterations, the most prevalent of which is the single nucleotide variant. As a result of their foreign nature, neoantigens elicit immune responses upon presentation by Major Histocompatibility Complexes I and II followed by recognition by T cell receptors. Previously, researchers have been able to utilize these immunogenic properties and manufacture neoantigen-specific T-cells and neoantigen vaccines. Within the context of breast cancer, biomarkers such as tumor protein 53 (TP53), Survivin, Partner and Localizer of BRCA2 (PALB2), and protein tyrosine phosphatase receptor T (PTPRT) display exceeding potential to serve as neoantigens. However, despite their seemingly limitless potential, neoantigens must overcome various obstacles if they are to be fairly distributed to patients. For instance, a prolonged period between the identification of a neoantigen and the dispersal of treatment poses a serious risk within the context of breast cancer. Regardless of these current obstacles, it appears highly promising that future research into neoantigens will make an everlasting impact on the health outcomes within the realm of breast cancer. The purpose of this literature review is to comprehensively discuss the etiology of various forms of breast cancer and current treatment modalities followed by the significance of neoantigens in cancer therapeutics and their application to breast cancer. Further, we have discussed the limitations, future directions, and the role of transcriptomics in neoantigen identification and personalized medicine. The concepts discussed in the original and review articles were included in this review article.
Collapse
Affiliation(s)
| | | | | | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (Z.C.); (A.B.); (K.S.)
| |
Collapse
|
3
|
Malla R, Srilatha M, Muppala V, Farran B, Chauhan VS, Nagaraju GP. Neoantigens and cancer-testis antigens as promising vaccine candidates for triple-negative breast cancer: Delivery strategies and clinical trials. J Control Release 2024; 370:707-720. [PMID: 38744346 DOI: 10.1016/j.jconrel.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Immunotherapy is gaining prominence as a promising strategy for treating triple-negative breast cancer (TNBC). Neoantigens (neoAgs) and cancer-testis antigens (CTAs) are tumor-specific targets originating from somatic mutations and epigenetic changes in cancer cells. These antigens hold great promise for personalized cancer vaccines, as supported by preclinical and early clinical evidence in TNBC. This review delves into the potential of neoAgs and CTAs as vaccine candidates, emphasizing diverse strategies and delivery approaches. It also highlights the current status of vaccination modalities undergoing clinical trials in TNBC therapy. A comprehensive understanding of neoAgs, CTAs, vaccination strategies, and innovative delivery methods is crucial for optimizing neoAg-based immunotherapies in clinical practice.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, AP, India
| | - Veda Muppala
- Department of Neuroscience, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Batoul Farran
- Division of Hematology and Oncology, Department of Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Virander Singh Chauhan
- Molecular Medicine Group, Molecular Medicines International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
4
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2024:10.1007/s12033-024-01144-3. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Jiani W, Qin T, Jie M. Tumor neoantigens and tumor immunotherapies. Aging Med (Milton) 2024; 7:224-230. [PMID: 38725698 PMCID: PMC11077340 DOI: 10.1002/agm2.12295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
As a high-risk group of patients with cancer, the elderly exhibit limited efficacy with traditional treatments. Immunotherapy emerges as a promising adjunctive therapeutic approach that holds potential in addressing the needs of geriatric patients with cancer. Neoantigens, a unique class of tumor-specific antigens generated by non-synonymous mutations, are garnering increasing attention as targets for immunotherapy in clinical applications. Newly developed technologies, such as second-generation gene sequencing and mass spectrometry, have provided powerful technical support for the identification and prediction of neoantigens. At present, neoantigen-based immunotherapy has been extensively applied in clinical trials and has demonstrated both safety and efficacy, marking the beginning of a new era for cancer immunotherapy. This article reviews the conception, classification, inducers, and screening process of tumor neoantigens, as well as the application prospects and combination therapy strategies of neoantigen-based cancer immunotherapy.
Collapse
Affiliation(s)
- Wang Jiani
- Department of Biotherapy Center, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Tan Qin
- Department of Biotherapy Center, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Ma Jie
- Department of Biotherapy Center, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
6
|
Wijeratne S, Gonzalez MEH, Roach K, Miller KE, Schieffer KM, Fitch JR, Leonard J, White P, Kelly BJ, Cottrell CE, Mardis ER, Wilson RK, Miller AR. Full-length isoform concatenation sequencing to resolve cancer transcriptome complexity. BMC Genomics 2024; 25:122. [PMID: 38287261 PMCID: PMC10823626 DOI: 10.1186/s12864-024-10021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cancers exhibit complex transcriptomes with aberrant splicing that induces isoform-level differential expression compared to non-diseased tissues. Transcriptomic profiling using short-read sequencing has utility in providing a cost-effective approach for evaluating isoform expression, although short-read assembly displays limitations in the accurate inference of full-length transcripts. Long-read RNA sequencing (Iso-Seq), using the Pacific Biosciences (PacBio) platform, can overcome such limitations by providing full-length isoform sequence resolution which requires no read assembly and represents native expressed transcripts. A constraint of the Iso-Seq protocol is due to fewer reads output per instrument run, which, as an example, can consequently affect the detection of lowly expressed transcripts. To address these deficiencies, we developed a concatenation workflow, PacBio Full-Length Isoform Concatemer Sequencing (PB_FLIC-Seq), designed to increase the number of unique, sequenced PacBio long-reads thereby improving overall detection of unique isoforms. In addition, we anticipate that the increase in read depth will help improve the detection of moderate to low-level expressed isoforms. RESULTS In sequencing a commercial reference (Spike-In RNA Variants; SIRV) with known isoform complexity we demonstrated a 3.4-fold increase in read output per run and improved SIRV recall when using the PB_FLIC-Seq method compared to the same samples processed with the Iso-Seq protocol. We applied this protocol to a translational cancer case, also demonstrating the utility of the PB_FLIC-Seq method for identifying differential full-length isoform expression in a pediatric diffuse midline glioma compared to its adjacent non-malignant tissue. Our data analysis revealed increased expression of extracellular matrix (ECM) genes within the tumor sample, including an isoform of the Secreted Protein Acidic and Cysteine Rich (SPARC) gene that was expressed 11,676-fold higher than in the adjacent non-malignant tissue. Finally, by using the PB_FLIC-Seq method, we detected several cancer-specific novel isoforms. CONCLUSION This work describes a concatenation-based methodology for increasing the number of sequenced full-length isoform reads on the PacBio platform, yielding improved discovery of expressed isoforms. We applied this workflow to profile the transcriptome of a pediatric diffuse midline glioma and adjacent non-malignant tissue. Our findings of cancer-specific novel isoform expression further highlight the importance of long-read sequencing for characterization of complex tumor transcriptomes.
Collapse
Affiliation(s)
- Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Maria E Hernandez Gonzalez
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Kelli Roach
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - James R Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Jeffrey Leonard
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA.
| |
Collapse
|
7
|
Zeng F, Li D, Kang X, Wu Q, Song M, Ou Z, Yang Z, Yang J, Luo L. MALAT1 promotes FOXA1 degradation by competitively binding to miR-216a-5p and enhancing neuroendocrine differentiation in prostate cancer. Transl Oncol 2024; 39:101807. [PMID: 38235618 PMCID: PMC10628887 DOI: 10.1016/j.tranon.2023.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVES Prostate cancer (PC) is a leading cause of cancer-related death in males worldwide. Neuroendocrine differentiation (NED) is a feature of PC that often goes undetected and is associated with poor patient outcomes. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs/miRs), and messenger RNAs (mRNAs) play important roles in the development and progression of PC. METHODS In this study, we used transcriptome sequencing and bioinformatics analysis to identify key regulators of NED in PC. Specifically, we examined the expression of PC-related lncRNAs, miRNAs, and mRNAs in PC cells and correlated these findings with NED phenotypes. RESULTS Our data revealed that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and zinc finger protein 91 (ZFP91) were upregulated in PC, while miR-216a-5p was down-regulated. Ectopic expression of MALAT1 induced NED and promoted malignant phenotypes of PC cells. Furthermore, we found that MALAT1 competitively bound to miR-216a-5p, upregulated ZFP91, and promoted the degradation of forkhead box A1 (FOXA1), a key gene involved in NED of PC. CONCLUSION Taken together, these results suggest that MALAT1 plays an oncogenic role in NED and metastasis of PC via the miR-216a-5p/ZFP91/FOXA1 pathway. Our study highlights the potential of targeting this pathway as a novel therapeutic strategy for PC.
Collapse
Affiliation(s)
- Fanchang Zeng
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Daoyuan Li
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Xinli Kang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Qinghui Wu
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Mi Song
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Zhewen Ou
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Zuobing Yang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Jing Yang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Liumei Luo
- Department of Scientific Research, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua Road, Xiuying District, Haikou, Hainan 570311, China.
| |
Collapse
|
8
|
Nguyen BQT, Tran TPD, Nguyen HT, Nguyen TN, Pham TMQ, Nguyen HTP, Tran DH, Nguyen V, Tran TS, Pham TVN, Le MT, Phan MD, Giang H, Nguyen HN, Tran LS. Improvement in neoantigen prediction via integration of RNA sequencing data for variant calling. Front Immunol 2023; 14:1251603. [PMID: 37731488 PMCID: PMC10507271 DOI: 10.3389/fimmu.2023.1251603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Neoantigen-based immunotherapy has emerged as a promising strategy for improving the life expectancy of cancer patients. This therapeutic approach heavily relies on accurate identification of cancer mutations using DNA sequencing (DNAseq) data. However, current workflows tend to provide a large number of neoantigen candidates, of which only a limited number elicit efficient and immunogenic T-cell responses suitable for downstream clinical evaluation. To overcome this limitation and increase the number of high-quality immunogenic neoantigens, we propose integrating RNA sequencing (RNAseq) data into the mutation identification step in the neoantigen prediction workflow. Methods In this study, we characterize the mutation profiles identified from DNAseq and/or RNAseq data in tumor tissues of 25 patients with colorectal cancer (CRC). Immunogenicity was then validated by ELISpot assay using long synthesis peptides (sLP). Results We detected only 22.4% of variants shared between the two methods. In contrast, RNAseq-derived variants displayed unique features of affinity and immunogenicity. We further established that neoantigen candidates identified by RNAseq data significantly increased the number of highly immunogenic neoantigens (confirmed by ELISpot) that would otherwise be overlooked if relying solely on DNAseq data. Discussion This integrative approach holds great potential for improving the selection of neoantigens for personalized cancer immunotherapy, ultimately leading to enhanced treatment outcomes and improved survival rates for cancer patients.
Collapse
Affiliation(s)
| | | | - Huu Thinh Nguyen
- University Medical Center Ho Chi Minh City, Ho Chi Minh, Vietnam
| | | | | | | | - Duc Huy Tran
- University Medical Center Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Vy Nguyen
- Medical Genetics Institute, Ho Chi Minh, Vietnam
| | - Thanh Sang Tran
- University Medical Center Ho Chi Minh City, Ho Chi Minh, Vietnam
| | | | - Minh-Triet Le
- University Medical Center Ho Chi Minh City, Ho Chi Minh, Vietnam
| | | | - Hoa Giang
- Medical Genetics Institute, Ho Chi Minh, Vietnam
| | | | - Le Son Tran
- Medical Genetics Institute, Ho Chi Minh, Vietnam
| |
Collapse
|
9
|
Tretter C, de Andrade Krätzig N, Pecoraro M, Lange S, Seifert P, von Frankenberg C, Untch J, Zuleger G, Wilhelm M, Zolg DP, Dreyer FS, Bräunlein E, Engleitner T, Uhrig S, Boxberg M, Steiger K, Slotta-Huspenina J, Ochsenreither S, von Bubnoff N, Bauer S, Boerries M, Jost PJ, Schenck K, Dresing I, Bassermann F, Friess H, Reim D, Grützmann K, Pfütze K, Klink B, Schröck E, Haller B, Kuster B, Mann M, Weichert W, Fröhling S, Rad R, Hiltensperger M, Krackhardt AM. Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification. Nat Commun 2023; 14:4632. [PMID: 37532709 PMCID: PMC10397250 DOI: 10.1038/s41467-023-39570-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic pan-tumor analyses may reveal the significance of common features implicated in cancer immunogenicity and patient survival. Here, we provide a comprehensive multi-omics data set for 32 patients across 25 tumor types for proteogenomic-based discovery of neoantigens. By using an optimized computational approach, we discover a large number of tumor-specific and tumor-associated antigens. To create a pipeline for the identification of neoantigens in our cohort, we combine DNA and RNA sequencing with MS-based immunopeptidomics of tumor specimens, followed by the assessment of their immunogenicity and an in-depth validation process. We detect a broad variety of non-canonical HLA-binding peptides in the majority of patients demonstrating partially immunogenicity. Our validation process allows for the selection of 32 potential neoantigen candidates. The majority of neoantigen candidates originates from variants identified in the RNA data set, illustrating the relevance of RNA as a still understudied source of cancer antigens. This study underlines the importance of RNA-centered variant detection for the identification of shared biomarkers and potentially relevant neoantigen candidates.
Collapse
Affiliation(s)
- Celina Tretter
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Niklas de Andrade Krätzig
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IInd Medical Department, Munich, Germany
- Technical University of Munich, TUM School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- Technical University of Munich, TUM School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany
| | - Matteo Pecoraro
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Munich, Germany
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sebastian Lange
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IInd Medical Department, Munich, Germany
- Technical University of Munich, TUM School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- Technical University of Munich, TUM School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany
| | - Philipp Seifert
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Clara von Frankenberg
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Johannes Untch
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Gabriela Zuleger
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Mathias Wilhelm
- Technical University of Munich, TUM School of Life Sciences, Chair of Proteomics and Bioanalytics, Freising, Germany
- Technical University of Munich, TUM School of Life Sciences, Computational Mass Spectrometry, Freising, Germany
| | - Daniel P Zolg
- Technical University of Munich, TUM School of Life Sciences, Chair of Proteomics and Bioanalytics, Freising, Germany
| | - Florian S Dreyer
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Eva Bräunlein
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Thomas Engleitner
- Technical University of Munich, TUM School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- Technical University of Munich, TUM School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany
| | - Sebastian Uhrig
- German Cancer Consortium (DKTK), partner site Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Precision Oncology Program, NCT Heidelberg, Heidelberg, Germany
| | - Melanie Boxberg
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany
| | - Julia Slotta-Huspenina
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany
| | - Sebastian Ochsenreither
- German Cancer Consortium (DKTK), partner site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nikolas von Bubnoff
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Hematology and Oncology, Medical Center, University of Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Sebastian Bauer
- German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp J Jost
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- University Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria
| | - Kristina Schenck
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Iska Dresing
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Florian Bassermann
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
- Technical University of Munich, TUM School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Helmut Friess
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Department of Surgery, Munich, Germany
| | - Daniel Reim
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Department of Surgery, Munich, Germany
| | - Konrad Grützmann
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Core Unit Molecular Tumor Diagnostics (CMTD), NCT Dresden, Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Katrin Pfütze
- German Cancer Consortium (DKTK), partner site Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Klink
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Evelin Schröck
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Bernhard Haller
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Institute of AI and Informatics in Medicine, Munich, Germany
| | - Bernhard Kuster
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Life Sciences, Chair of Proteomics and Bioanalytics, Freising, Germany
- Technical University of Munich, TUM School of Life Sciences, Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Freising, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, Munich, Germany
| | - Wilko Weichert
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), partner site Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IInd Medical Department, Munich, Germany
- Technical University of Munich, TUM School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- Technical University of Munich, TUM School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany
| | - Michael Hiltensperger
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany
| | - Angela M Krackhardt
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Technical University of Munich, TUM School of Medicine, Klinikum rechts der Isar, IIIrd Medical Department, Munich, Germany.
- Technical University of Munich, TUM School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany.
- Malteser Krankenhaus St. Franziskus-Hospital, Flensburg, Germany.
| |
Collapse
|
10
|
Fonseca-Montaño MA, Vázquez-Santillán KI, Hidalgo-Miranda A. The current advances of lncRNAs in breast cancer immunobiology research. Front Immunol 2023; 14:1194300. [PMID: 37342324 PMCID: PMC10277570 DOI: 10.3389/fimmu.2023.1194300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy and the leading cause of cancer-related death in women worldwide. Breast cancer development and progression are mainly associated with tumor-intrinsic alterations in diverse genes and signaling pathways and with tumor-extrinsic dysregulations linked to the tumor immune microenvironment. Significantly, abnormal expression of lncRNAs affects the tumor immune microenvironment characteristics and modulates the behavior of different cancer types, including breast cancer. In this review, we provide the current advances about the role of lncRNAs as tumor-intrinsic and tumor-extrinsic modulators of the antitumoral immune response and the immune microenvironment in breast cancer, as well as lncRNAs which are potential biomarkers of tumor immune microenvironment and clinicopathological characteristics in patients, suggesting that lncRNAs are potential targets for immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Marco Antonio Fonseca-Montaño
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado, Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
11
|
Fehm TN, Welslau M, Müller V, Lüftner D, Schütz F, Fasching PA, Janni W, Thomssen C, Witzel I, Beierlein M, Belleville E, Untch M, Thill M, Tesch H, Ditsch N, Lux MP, Aktas B, Banys-Paluchowski M, Kolberg-Liedtke C, Hartkopf AD, Wöckel A, Kolberg HC, Harbeck N, Stickeler E. Update Breast Cancer 2022 Part 5 - Early Stage Breast Cancer. Geburtshilfe Frauenheilkd 2023; 83:289-298. [PMID: 36908285 PMCID: PMC9998178 DOI: 10.1055/a-2018-9053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/27/2022] [Indexed: 03/14/2023] Open
Abstract
The treatment of patients with early stage breast cancer has changed in recent years due to the introduction of pembrolizumab, olaparib, and abemaciclib. These and other drugs with the same class of active ingredient are currently in trial for various indications. This review article summarizes the latest results that have either been presented at major conferences such as the ESMO 2022 or published recently in international journals. This includes reports on newly discovered breast cancer genes, atezolizumab in neoadjuvant therapy in HER2-positive patients, long-term data from the APHINITY study, and on how preoperative peritumoral application of local anesthetics can influence the prognosis. We also present solid data on dynamic Ki-67 from the ADAPT studies.
Collapse
Affiliation(s)
- Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Diana Lüftner
- Immanuel Hospital Märkische Schweiz, Buckow; Medical University of Brandenburg Theodor-Fontane, Brandenburg, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Isabell Witzel
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Milena Beierlein
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Gynecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Agaplesion Markus Krankenhaus, Department of Gynecology and Gynecological Oncology, Frankfurt, Germany
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Paderborn, Germany
| | - Bahriye Aktas
- Department of Gynecology, University of Leipzig Medical Center, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, Munich, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Düsseldorf), University Hospital of RWTH Aachen, Aachen, Germany
| |
Collapse
|
12
|
Liu Z, Lv J, Dang Q, Liu L, Weng S, Wang L, Zhou Z, Kong Y, Li H, Han Y, Han X. Engineering neoantigen vaccines to improve cancer personalized immunotherapy. Int J Biol Sci 2022; 18:5607-5623. [PMID: 36263174 PMCID: PMC9576504 DOI: 10.7150/ijbs.76281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy treatments harnessing the immune system herald a new era of personalized medicine, offering considerable benefits for cancer patients. Over the past years, tumor neoantigens emerged as a rising star in immunotherapy. Neoantigens are tumor-specific antigens arising from somatic mutations, which are proceeded and presented by the major histocompatibility complex on the cell surface. With the advancement of sequencing technology and bioinformatics engineering, the recognition of neoantigens has accelerated and is expected to be incorporated into the clinical routine. Currently, tumor vaccines against neoantigens mainly encompass peptides, DNA, RNA, and dendritic cells, which are extremely specific to individual patients. Due to the high immunogenicity of neoantigens, tumor vaccines could activate and expand antigen-specific CD4+ and CD8+ T cells to intensify anti-tumor immunity. Herein, we introduce the origin and prediction of neoantigens and compare the advantages and disadvantages of multiple types of neoantigen vaccines. Besides, we review the immunizations and the current clinical research status in neoantigen vaccines, and outline strategies for enhancing the efficacy of neoantigen vaccines. Finally, we present the challenges facing the application of neoantigens.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Jinxiang Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhaokai Zhou
- Department of Pediatric Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 40052, China
| | - Ying Kong
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huanyun Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yilin Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.,✉ Corresponding author: Xinwei Han.
| |
Collapse
|
13
|
Welslau M, Müller V, Lüftner D, Schütz F, Stickeler E, Fasching PA, Janni W, Thomssen C, Witzel I, Fehm TN, Belleville E, Bader S, Seitz K, Untch M, Thill M, Tesch H, Ditsch N, Lux MP, Aktas B, Banys-Paluchowski M, Schneeweiss A, Harbeck N, Würstlein R, Hartkopf AD, Wöckel A, Seliger B, Massa C, Kolberg HC. Update Breast Cancer 2022 Part 1 - Early Stage Breast Cancer. Geburtshilfe Frauenheilkd 2022; 82:580-589. [PMID: 35903719 PMCID: PMC9315400 DOI: 10.1055/a-1811-6106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 10/26/2022] Open
Abstract
Evidence relating to the treatment of breast cancer patients with early-stage disease has increased significantly in the past year. Abemaciclib, olaparib, and pembrolizumab are new drugs with good efficacy in the relevant patient groups. However, some questions remain unanswered. In particular, it remains unclear which premenopausal patients with hormone receptor-positive breast cancer should be spared unnecessary treatment. The question of the degree to which chemotherapy exerts a direct cytotoxic effect on the tumor or reduces ovarian function through chemotherapy could be of key importance. This group of patients could potentially be spared chemotherapy. New, previously experimental biomarker analysis methods, such as spatial analysis of gene expression (spatial transcriptomics) are gradually finding their way into large randomized phase III trials, such as the NeoTRIP trial. This in turn leads to a better understanding of the predictive factors of new therapies, for example immunotherapy. This review summarizes the scientific innovations from recent congresses such as the San Antonio Breast Cancer Symposium 2021 but also from recent publications.
Collapse
Affiliation(s)
| | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Diana Lüftner
- Charité University Hospital, Department of Hematology, Oncology and Tumour Immunology, University Medicine Berlin, Berlin, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Elmar Stickeler
- Department of Gynecology and Obstetrics, RWTH University Hospital Aachen, Aachen, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Isabell Witzel
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Simon Bader
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Katharina Seitz
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen,
Germany
| | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Genecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Agaplesion Markus Krankenhaus, Department of Gynecology and Gynecological Oncology, Frankfurt am Main
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Germany
| | - Bahriye Aktas
- Klinik und Poliklinik für Gynäkologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, Munich, Germany
| | - Rachel Würstlein
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, Munich, Germany
| | - Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Barbara Seliger
- Martin-Luther-Universitat Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany
| | - Chiara Massa
- Martin-Luther-Universitat Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany
| | | |
Collapse
|
14
|
Charneau J, Suzuki T, Shimomura M, Fujinami N, Mishima Y, Hiranuka K, Watanabe N, Yamada T, Nakamura N, Nakatsura T. Development of antigen-prediction algorithm for personalized neoantigen vaccine using human leukocyte antigen transgenic mouse. Cancer Sci 2022; 113:1113-1124. [PMID: 35122353 PMCID: PMC8990807 DOI: 10.1111/cas.15291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Immunotherapy is currently recognized as the fourth modality in cancer therapy. CTLs can detect cancer cells via complexes involving human leukocyte antigen (HLA) class I molecules and peptides derived from tumor antigens, resulting in antigen-specific cancer rejection. The peptides may be predicted in silico using machine learning-based algorithms. Neopeptides, derived from neoantigens encoded by somatic mutations in cancer cells, are putative immunotherapy targets, as they have high tumor specificity and immunogenicity. Here, we used our pipeline to select 278 neoepitopes with high predictive "SCORE" from the tumor tissues of 46 patients with hepatocellular carcinoma or metastasis of colorectal carcinoma. We validated peptide immunogenicity and specificity by in vivo vaccination with HLA-A2, A24, B35, and B07 transgenic mice using ELISpot assay, in vitro and in vivo killing assays. We statistically evaluated the power of our prediction algorithm and demonstrated the capacity of our pipeline to predict neopeptides (area under the curve = 0.687, p < 0.0001). We also analyzed the potential of long peptides containing the predicted neoepitopes to induce CTLs. Our study indicated that the short peptides predicted using our algorithm may be intrinsically present in tumor cells as cleavage products of long peptides. Thus, we empirically demonstrated that the accuracy and specificity of our prediction tools may be potentially improved in vivo using the HLA transgenic mouse model. Our data will help to feedback algorithms to improve in silico prediction, potentially allowing researchers to predict peptides for personalized immunotherapy.
Collapse
Affiliation(s)
- Jimmy Charneau
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Pharmacology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Norihiro Fujinami
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | | | | | | | | | | | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
15
|
Xu X, Zhou Z, Li H, Fan Y. Towards customized cancer vaccines: a promising filed in personalized cancer medicine. Expert Rev Vaccines 2021; 20:545-557. [PMID: 33769185 DOI: 10.1080/14760584.2021.1909479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Cancer remains a major source of disease burden worldwide. Although cancer vaccines have been developed, most currently available cancer vaccines have limited therapeutic efficacy. Recent research using novel sequencing and bioinformatic tools has led scientists to realize that each tumor harbors a unique set of genetic mutations that can manifest as tumor-specific neoantigens. Therefore, it would be useful to develop personalized cancer vaccines that target neoantigens, which might improve the efficacy of these cancer treatments. AREAS COVERED This review covers cancer vaccine development and the emerging field of personalized cancer vaccines, with a discussion of future clinical trials for this promising treatment strategy. EXPERT OPINION Developing vaccines to treat tumors is one of the most promising and exciting fields in cancer research. However, cancer vaccines have shown limited efficacy in clinical trials for several decades, which may be related to the unique and complex processes underlying tumor development and progression. Recent studies have indicated that tumors express highly specific neoantigens, which are distinct from self-antigens. Thus, developing cancer vaccines that target these tumor-specific neoantigens is a promising strategy for developing personalized cancer vaccines.
Collapse
Affiliation(s)
- Xiaoling Xu
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital),Hangzhou City, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences,Hangzhou City, China
| | - Zichao Zhou
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences,Hangzhou City, China.,Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou City, China
| | - Hui Li
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital),Hangzhou City, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences,Hangzhou City, China
| | - Yun Fan
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital),Hangzhou City, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences,Hangzhou City, China
| |
Collapse
|
16
|
Yuan J, Yuan X, Wu K, Gao J, Li L. A Local and Low-Dose Chemotherapy/Autophagy-Enhancing Regimen Treatment Markedly Inhibited the Growth of Established Solid Tumors Through a Systemic Antitumor Immune Response. Front Oncol 2021; 11:658254. [PMID: 33859948 PMCID: PMC8042230 DOI: 10.3389/fonc.2021.658254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy is one of the main options for the treatment of a variety of malignant tumors. However, the severe side effects resulting from the killing of normal proliferating cells limit the application of cancer-targeting chemotherapeutic drugs. To improve the efficacy of classic systemic chemotherapy, the local delivery of high-dose chemotherapeutic drugs was developed as a method to enhance local drug concentrations and minimize systemic toxicity. Studies have demonstrated that chemotherapy is often accompanied by cancer-associated immunogenic cell death (ICD) and that autophagy is involved in the induction of ICD. To improve the efficacy of local cancer chemotherapy, we hypothesized that the local delivery of chemotherapeutic plus autophagy-enhancing agents would enhance the promotive effects of ICD on the antitumor immune response. Here, we report that a low-dose chemotherapy/autophagy enhancing regimen (CAER) not only resulted in the increased death of B16F10 and 4T1 tumor cells, but also induced higher levels of autophagy in vitro. Importantly, the local delivery of the CARE drugs significantly inhibited tumor growth in B16F10 and 4T1 tumor-bearing mice. Systemic antitumor T-cell immunity was observed in vivo, including neoantigen-specific T-cell responses. Furthermore, bioinformatic analysis of human breast cancer and melanoma tissues showed that autophagy-associated gene expression was upregulated in tumor samples. Increased autophagy and immune cell infiltration in tumor tissues were positively correlated with good prognosis of tumor patients. This work highlights a new approach to improve the effects of local chemotherapy and enhance systemic antitumor immunity.
Collapse
Affiliation(s)
- Jia Yuan
- Institute of Clinical Oncology, Research Center of Cancer Diagnosis and Therapy, and Department of Clinical Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xianlin Yuan
- Institute of Clinical Oncology, Research Center of Cancer Diagnosis and Therapy, and Department of Clinical Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kunlong Wu
- Institute of Clinical Oncology, Research Center of Cancer Diagnosis and Therapy, and Department of Clinical Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Junxia Gao
- Institute of Clinical Oncology, Research Center of Cancer Diagnosis and Therapy, and Department of Clinical Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liangping Li
- Institute of Clinical Oncology, Research Center of Cancer Diagnosis and Therapy, and Department of Clinical Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|