1
|
Luo Q, Zhou L, Luo D, Yu L. Clonal hematopoiesis of indeterminate potential (CHIP): A potential contributor to lymphoma. Crit Rev Oncol Hematol 2024; 206:104589. [PMID: 39667716 DOI: 10.1016/j.critrevonc.2024.104589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
Clonal hematopoiesis (CH) typically refers to the clonal expansion of hematopoietic stem cells (HSCs) due to genetic mutations, serving as the pathogenic basis for various diseases. Clonal hematopoiesis of indeterminate potential (CHIP) is a subtype of CH, emerging as a significant risk factor for myeloid malignancies and cardiovascular diseases, which has attracted increasing attention. However, recent research has unveiled previously overlooked links between CHIP and lymphoma. This paper reviews the relationship between CHIP and lymphoma, focusing on the role and mechanism of TET2 and DNMT3A-mediated CHIP in lymphoma from the perspective of laboratory research and clinical observation. Additionally, we explore the therapeutic implications of targeting CHIP genes and inflammatory pathways in lymphoma. Our findings underscore the multifaceted influence of CHIP on lymphoma development and provide a promising avenue for therapeutic interventions in CHIP mediated lymphoma.
Collapse
Affiliation(s)
- QingQing Luo
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China
| | - LiLi Zhou
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China
| | - DaYa Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Li Yu
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Anandakrishnan R, Shahidi R, Dai A, Antony V, Zyvoloski IJ. An approach for developing a blood-based screening panel for lung cancer based on clonal hematopoietic mutations. PLoS One 2024; 19:e0307232. [PMID: 39172974 PMCID: PMC11341013 DOI: 10.1371/journal.pone.0307232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
Early detection can significantly reduce mortality due to lung cancer. Presented here is an approach for developing a blood-based screening panel based on clonal hematopoietic mutations. Animal model studies suggest that clonal hematopoietic mutations in tumor infiltrating immune cells can modulate cancer progression, representing potential predictive biomarkers. The goal of this study was to determine if the clonal expansion of these mutations in blood samples could predict the occurrence of lung cancer. A set of 98 potentially pathogenic clonal hematopoietic mutations in tumor infiltrating immune cells were identified using sequencing data from lung cancer samples. These mutations were used as predictors to develop a logistic regression machine learning model. The model was tested on sequencing data from a separate set of 578 lung cancer and 545 non-cancer samples from 18 different cohorts. The logistic regression model correctly classified lung cancer and non-cancer blood samples with 94.12% sensitivity (95% Confidence Interval: 92.20-96.04%) and 85.96% specificity (95% Confidence Interval: 82.98-88.95%). Our results suggest that it may be possible to develop an accurate blood-based lung cancer screening panel using this approach. Unlike most other "liquid biopsies" currently under development, the approach presented here is based on standard sequencing protocols and uses a relatively small number of rationally selected mutations as predictors.
Collapse
Affiliation(s)
- Ramu Anandakrishnan
- Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, Virginia, United States of America
- Maryland-Virginia College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ryan Shahidi
- Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, Virginia, United States of America
| | - Andrew Dai
- Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, Virginia, United States of America
| | - Veneeth Antony
- Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, Virginia, United States of America
| | - Ian J. Zyvoloski
- University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Levy D, Kirmani S, Huan T, Van Amburg J, Joehanes R, Uddin MM, Nguyen NQ, Yu B, Brody J, Fornage M, Bressler J, Sotoodehnia N, Ong D, Puddu F, Floyd J, Ballantyne C, Psaty B, Raffield L, Natarajan P, Conneely K, Carson A, Lange L, Ferrier K, Heard-Costa N, Murabito J, Bick A. Epigenome-wide DNA Methylation Association Study of CHIP Provides Insight into Perturbed Gene Regulation. RESEARCH SQUARE 2024:rs.3.rs-4656898. [PMID: 39070619 PMCID: PMC11276001 DOI: 10.21203/rs.3.rs-4656898/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
With age, hematopoietic stem cells can acquire somatic mutations in leukemogenic genes that confer a proliferative advantage in a phenomenon termed "clonal hematopoiesis of indeterminate potential" (CHIP). How these mutations confer a proliferative advantage and result in increased risk for numerous age-related diseases remains poorly understood. We conducted a multiracial meta-analysis of epigenome-wide association studies (EWAS) of CHIP and its subtypes in four cohorts (N=8196) to elucidate the molecular mechanisms underlying CHIP and illuminate how these changes influence cardiovascular disease risk. The EWAS findings were functionally validated using human hematopoietic stem cell (HSC) models of CHIP. A total of 9615 CpGs were associated with any CHIP, 5990 with DNMT3A CHIP, 5633 with TET2 CHIP, and 6078 with ASXL1 CHIP (P <1×10-7). CpGs associated with CHIP subtypes overlapped moderately, and the genome-wide DNA methylation directions of effect were opposite for TET2 and DNMT3A CHIP, consistent with their opposing effects on global DNA methylation. There was high directional concordance between the CpGs shared from the meta-EWAS and human edited CHIP HSCs. Expression quantitative trait methylation analysis further identified transcriptomic changes associated with CHIP-associated CpGs. Causal inference analyses revealed 261 CHIP-associated CpGs associated with cardiovascular traits and all-cause mortality (FDR adjusted p-value <0.05). Taken together, our study sheds light on the epigenetic changes impacted by CHIP and their associations with age-related disease outcomes. The novel genes and pathways linked to the epigenetic features of CHIP may serve as therapeutic targets for preventing or treating CHIP-mediated diseases.
Collapse
Affiliation(s)
- Daniel Levy
- Framingham Heart Study, Framingham, MA, 01702, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Sara Kirmani
- Framingham Heart Study, Framingham, MA, 01702, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda
| | | | - Joseph Van Amburg
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center
| | | | | | | | - Bing Yu
- University of Texas Health Science Center at Houston
| | | | - Myriam Fornage
- 1. Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center 2. Human Genetics Center, Department of Epidemiology, School of Public Health
| | - Jan Bressler
- School of Public Health, University of Texas Health Science Center at Houston
| | | | - David Ong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | | | | | | | | | - Pradeep Natarajan
- Broad Institute of Harvard and Massachusetts Institute of Technology
| | | | | | - Leslie Lange
- Division of Biomedical Informatics and Personalized Medicine
| | | | | | - Joanne Murabito
- Section of General Internal Medicine, Boston University Chobanian & Avedisian School of Medicine
| | | |
Collapse
|
4
|
Cacic AM, Schulz FI, Germing U, Dietrich S, Gattermann N. Molecular and clinical aspects relevant for counseling individuals with clonal hematopoiesis of indeterminate potential. Front Oncol 2023; 13:1303785. [PMID: 38162500 PMCID: PMC10754976 DOI: 10.3389/fonc.2023.1303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) has fascinated the medical community for some time. Discovered about a decade ago, this phenomenon links age-related alterations in hematopoiesis not only to the later development of hematological malignancies but also to an increased risk of early-onset cardiovascular disease and some other disorders. CHIP is detected in the blood and is characterized by clonally expanded somatic mutations in cancer-associated genes, predisposing to the development of hematologic neoplasms such as MDS and AML. CHIP-associated mutations often involve DNA damage repair genes and are frequently observed following prior cytotoxic cancer therapy. Genetic predisposition seems to be a contributing factor. It came as a surprise that CHIP significantly elevates the risk of myocardial infarction and stroke, and also contributes to heart failure and pulmonary hypertension. Meanwhile, evidence of mutant clonal macrophages in vessel walls and organ parenchyma helps to explain the pathophysiology. Besides aging, there are some risk factors promoting the appearance of CHIP, such as smoking, chronic inflammation, chronic sleep deprivation, and high birth weight. This article describes fundamental aspects of CHIP and explains its association with hematologic malignancies, cardiovascular disorders, and other medical conditions, while also exploring potential progress in the clinical management of affected individuals. While it is important to diagnose conditions that can lead to adverse, but potentially preventable, effects, it is equally important not to stress patients by confronting them with disconcerting findings that cannot be remedied. Individuals with diagnosed or suspected CHIP should receive counseling in a specialized outpatient clinic, where professionals from relevant medical specialties may help them to avoid the development of CHIP-related health problems. Unfortunately, useful treatments and clinical guidelines for managing CHIP are still largely lacking. However, there are some promising approaches regarding the management of cardiovascular disease risk. In the future, strategies aimed at restoration of gene function or inhibition of inflammatory mediators may become an option.
Collapse
Affiliation(s)
- Anna Maria Cacic
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Felicitas Isabel Schulz
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| |
Collapse
|
5
|
Boucai L, Ptashkin RN, Levine RL, Fagin JA. Effects of radioactive iodine on clonal hematopoiesis in patients with thyroid cancer: A prospective study. Clin Endocrinol (Oxf) 2023; 99:122-129. [PMID: 37088956 PMCID: PMC10644358 DOI: 10.1111/cen.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVE Exposure to therapeutic radioactive iodine (RAI) is associated with an increased relative risk of myeloid malignancies. Clonal hematopoiesis (CH) is a precursor state that can be detected in blood of healthy individuals decades before overt development of leukemia. We prospective studied the effects of RAI on CH. DESIGN Prospective cohort study. PATIENTS AND MEASUREMENTS We examined the effect of RAI on CH in 20 patients exposed to RAI for thyroid carcinoma and 20 age-matched unexposed controls. CH status was determined at baseline, 6, 12, 18 and 24 months. We also examined the effect of CH on structural progression of disease. RESULTS No CH mutations were observed in the patient population that were not present at baseline. Using a variant allelic fraction (VAF) of 2% to define CH, 6/20 older patients (55-80 years old) had CH compared to 2/20 younger patients (20-40 years old) (p = 0.11). Six patients exposed to RAI had CH compared to two patients not exposed to RAI (30% vs. 10%, p = 0.11). There was no significant difference in CH VAF increase in patients treated with RAI compared to untreated age-matched controls (3.8% vs. 1.2%, p = 0.2). CH was significantly associated with somatic BRAFV600E mutations and with worse progression-free survival in the overall cohort as well as among BRAFV600E-mutant tumors. CONCLUSIONS There was no increase in CH in patients treated with RAI over a 2-year follow-up period. Larger studies with longer follow-up periods are needed to investigate the association between RAI and clonal dynamics. The presence of CH is associated with worse structural progression in both BRAFV600E-mutant and wild-type thyroid cancers.
Collapse
Affiliation(s)
- Laura Boucai
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ryan N. Ptashkin
- Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ross L. Levine
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - James A. Fagin
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
6
|
Younes IE, Syler L, Hamed A. Review of clonal hematopoiesis, subtypes and its role in neoplasia and different morbidities. Leuk Res 2023; 130:107307. [PMID: 37186988 DOI: 10.1016/j.leukres.2023.107307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Clonal hematopoiesis (CH) is the development of a certain cell lineage which is the cornerstone of hematologic malignancy especially myeloid neoplasms, however, can also be found in old age (6th-7th decade). CH is caused by many different somatic mutations most commonly in DNMT3A, TET2, ASXL1, SF3B1 and TP53. It is detected by different sequencing methods, the most commonly used ones are next generation sequencing (NGS) which can be whole exome, whole genome sequencing or a panel for certain genes. CH is divided into multiple categories depending on the clinical picture associated with it into: clonal monocytosis of undetermined significance (CMUS), clonal hematopoiesis of indeterminate significance (CHIP), clonal cytopenia and monocytosis of undetermined significance (CCMUS) and clonal cytopenia of undetermined significance (CCUS). In order to diagose CH, first other hematologic malignancies must be ruled out CH is also associated with many different entities including lung cancer and some studies have shown that COVID-19 infections are affected by CH. Certain traits and infections are associated with CH including smoking, obesity, and cardiovascular disease. A minority of patients with CH progress to a malignant process (between 0.5 %-2 %) which do not require treatment, however, any patient with CH should be kept under surveillance in order to detect any malignancy early and be treated accordingly. SIMPLE SUMMARY: Clonal hematopoiesis (CH) is considered to be the predisposing factor for development of different hematologic neoplasms. With the help of NGS, patients with CH can be monitored more closely. Several studies have shown that these patients might develop hematologic neoplasms in their lifetime. It has been subdivided into multiple groups according to the clinical picture and/or blood counts.
Collapse
Affiliation(s)
| | - Lee Syler
- Department of Pathology, University of South Florida, Tampa, FL 33620, USA
| | - Amira Hamed
- Department of Pathology, University of Massachusetts, Worcester, MA 01655, USA
| |
Collapse
|
7
|
Komic L, Kumric M, Urlic H, Rizikalo A, Grahovac M, Kelam J, Tomicic M, Rusic D, Ticinovic Kurir T, Bozic J. Obesity and Clonal Hematopoiesis of Indeterminate Potential: Allies in Cardiovascular Diseases and Malignancies. Life (Basel) 2023; 13:1365. [PMID: 37374147 PMCID: PMC10304718 DOI: 10.3390/life13061365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The clonal hematopoiesis of indeterminate potential (CHIP) is a term used to describe individuals who have detectable somatic mutations in genes commonly found in individuals with hematologic cancers but without any apparent evidence of such conditions. The mortality rate in individuals with CHIP is remarkably higher than the influence ascribed to hematologic malignancies, and it is plausible that cardiovascular diseases (CVD) could elucidate the apparent disparity. Studies have shown that the most frequently altered genes in CHIP are associated with the increased incidence of CVDs, type 2 diabetes mellitus (T2DM) and myeloid malignancies, as well as obesity. Additionally, multiple research studies have confirmed that obesity is also independently associated with these conditions, particularly the development and progression of atherosclerotic CVD. Considering the shared pathogenetic mechanisms of obesity and CHIP, our objective in this review was to investigate both preclinical and clinical evidence regarding the correlation between obesity and CHIP and the resulting implications of this interaction on the pathophysiology of CVDs and malignancies. The pro-inflammatory condition induced by obesity and CHIP enhances the probability of developing both diseases and increases the likelihood of developing CVDs, T2DM and malignancies, suggesting that a dangerous vicious loop may exist. However, it is vital to conduct additional research that will suggest targeted treatment options for obese individuals with CHIP in order to reduce harmful effects connected to these conditions.
Collapse
Affiliation(s)
- Luka Komic
- Department of Family Medicine, Split-Dalmatia County Health Center, 21000 Split, Croatia; (L.K.); (J.K.); (M.T.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (H.U.); (T.T.K.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, 21000 Split, Croatia
| | - Hrvoje Urlic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (H.U.); (T.T.K.)
| | - Azer Rizikalo
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Marko Grahovac
- Department of Pharmacology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Jelena Kelam
- Department of Family Medicine, Split-Dalmatia County Health Center, 21000 Split, Croatia; (L.K.); (J.K.); (M.T.)
| | - Marion Tomicic
- Department of Family Medicine, Split-Dalmatia County Health Center, 21000 Split, Croatia; (L.K.); (J.K.); (M.T.)
- Department of Family Medicine, University of Split School of Medicine, 21000 Split, Croatia
| | - Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia;
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (H.U.); (T.T.K.)
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Split, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (H.U.); (T.T.K.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
8
|
Buttigieg MM, Rauh MJ. Clonal Hematopoiesis: Updates and Implications at the Solid Tumor-Immune Interface. JCO Precis Oncol 2023; 7:e2300132. [PMID: 37343201 PMCID: PMC10309572 DOI: 10.1200/po.23.00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Recent larger-scale studies of patients with cancer and longitudinal population cohorts have revealed how age-related expansions of mutant hematopoietic cells (clonal hematopoiesis [CH]) have differential associations with incident and prevalent cancers and their outcomes. Increasing recognition and deeper understanding of genetic subtypes of CH are yielding insights into the tumor-immune interface that may help to explain the heterogeneous impact of CH on tumorigenesis and treatment. Herein, we update the expanding influence of CH in precision oncology and propose important research and clinical questions to address to effectively manage and harness CH in oncology patients.
Collapse
Affiliation(s)
- Marco M Buttigieg
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
9
|
Sunildutt N, Parihar P, Chethikkattuveli Salih AR, Lee SH, Choi KH. Revolutionizing drug development: harnessing the potential of organ-on-chip technology for disease modeling and drug discovery. Front Pharmacol 2023; 14:1139229. [PMID: 37180709 PMCID: PMC10166826 DOI: 10.3389/fphar.2023.1139229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
The inefficiency of existing animal models to precisely predict human pharmacological effects is the root reason for drug development failure. Microphysiological system/organ-on-a-chip technology (organ-on-a-chip platform) is a microfluidic device cultured with human living cells under specific organ shear stress which can faithfully replicate human organ-body level pathophysiology. This emerging organ-on-chip platform can be a remarkable alternative for animal models with a broad range of purposes in drug testing and precision medicine. Here, we review the parameters employed in using organ on chip platform as a plot mimic diseases, genetic disorders, drug toxicity effects in different organs, biomarker identification, and drug discoveries. Additionally, we address the current challenges of the organ-on-chip platform that should be overcome to be accepted by drug regulatory agencies and pharmaceutical industries. Moreover, we highlight the future direction of the organ-on-chip platform parameters for enhancing and accelerating drug discoveries and personalized medicine.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | | | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
10
|
Lysenko V, Schürch PM, Tuzlak S, van Wijk NWV, Kovtonyuk LV, Becher B, Manz MG, Kreutmair S, Theocharides APA. Blocking the CD47-SIRPα interaction reverses the disease phenotype in a polycythemia vera mouse model. Leukemia 2023:10.1038/s41375-023-01903-2. [PMID: 37095207 DOI: 10.1038/s41375-023-01903-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
Polycythemia vera (PV) is a hematopoietic stem cell neoplasm driven by somatic mutations in JAK2, leading to increased red blood cell (RBC) production uncoupled from mechanisms that regulate physiological erythropoiesis. At steady-state, bone marrow macrophages promote erythroid maturation, whereas splenic macrophages phagocytose aged or damaged RBCs. The binding of the anti-phagocytic ("don't eat me") CD47 ligand expressed on RBCs to the SIRPα receptor on macrophages inhibits phagocytic activity protecting RBCs from phagocytosis. In this study, we explore the role of the CD47-SIRPα interaction on the PV RBC life cycle. Our results show that blocking CD47-SIRPα in a PV mouse model due to either anti-CD47 treatment or loss of the inhibitory SIRPα-signal corrects the polycythemia phenotype. Anti-CD47 treatment marginally impacted PV RBC production while not influencing erythroid maturation. However, upon anti-CD47 treatment, high-parametric single-cell cytometry identified an increase of MerTK+ splenic monocyte-derived effector cells, which differentiate from Ly6Chi monocytes during inflammatory conditions, acquire an inflammatory phagocytic state. Furthermore, in vitro, functional assays showed that splenic JAK2 mutant macrophages were more "pro-phagocytic," suggesting that PV RBCs exploit the CD47-SIRPα interaction to escape innate immune attacks by clonal JAK2 mutant macrophages.
Collapse
Affiliation(s)
- Veronika Lysenko
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Patrick M Schürch
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Selma Tuzlak
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Nicole Wildner-Verhey van Wijk
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Larisa V Kovtonyuk
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Stefanie Kreutmair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Reed SC, Croessmann S, Park BH. CHIP Happens: Clonal Hematopoiesis of Indeterminate Potential and Its Relationship to Solid Tumors. Clin Cancer Res 2023; 29:1403-1411. [PMID: 36454121 PMCID: PMC10106364 DOI: 10.1158/1078-0432.ccr-22-2598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the expansion of hematopoietic cells harboring leukemia-associated somatic mutations in otherwise healthy people and occurs in at least 10% of adults over 70. It is well established that people with CHIP have increased rates of hematologic malignancy, increased risk of cardiovascular disease, and worse all-cause mortality compared with those without CHIP. Despite recent advancements in understanding CHIP as it relates to these known outcomes, much remains to be learned about the development and role of CHIP in other disease states. Emerging research has identified high rates of CHIP in patients with solid tumors, driven in part by oncologic therapy, and revealed associations between CHIP and differential outcomes in both solid tumors and other diseases. Recent studies have demonstrated that CHIP can contribute to dysregulated inflammatory signaling in multiple contexts, underscoring the importance of interrogating how CHIP might alter tumor immunology. Here, we review the role of CHIP mutations in clonal expansion of hematopoietic cells, explore the relationship between CHIP and solid tumors, and discuss the potential roles of CHIP in inflammation and solid tumor biology.
Collapse
Affiliation(s)
- Sarah C. Reed
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sarah Croessmann
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ben Ho Park
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Zhan Z, Guo W, Wan X, Bai O. Second primary malignancies in non-Hodgkin lymphoma: epidemiology and risk factors. Ann Hematol 2023; 102:249-259. [PMID: 36622391 DOI: 10.1007/s00277-023-05095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Abstract
With the advancements in therapeutics for non-Hodgkin lymphoma (NHL), the long-term survival of patients with NHL has markedly increased. Second primary malignancies (SPMs) have become an increasingly relevant long-term concern for NHL survivors. The etiology of SPMs is multifactorial and involves multiple steps. Germline alterations, immune dysregulation, and clonal hematopoiesis contribute to the accumulation of intrinsic adverse factors, and external factors such as lifestyle; exposure to infectious factors; and late effects of radiotherapy, chemotherapy, high-dose therapy, and autologous hematopoietic stem cell transplantation further increase SPM risk. Therapy-related myeloid neoplasms (t-MNs) are a devastating complication of cytotoxic chemotherapeutic agents. However, as targeted therapies begin to replace cytotoxic chemotherapy, the incidence of t-MNs is likely to decline, particularly for indolent B-cell NHL.
Collapse
Affiliation(s)
- Zhumei Zhan
- Department of Hematology, The First Hospital of Jilin University, No. 71 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, China
| | - Wei Guo
- Department of Hematology, The First Hospital of Jilin University, No. 71 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, China
| | - Xin Wan
- Department of Hematology, The First Hospital of Jilin University, No. 71 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, China
| | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, No. 71 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, China.
| |
Collapse
|
13
|
O’Connell CL, Baer MR, Ørskov AD, Saini SK, Duong VH, Kropf P, Hansen JW, Tsao-Wei D, Jang HS, Emadi A, Holmberg-Thyden S, Cowland J, Brinker BT, Horwood K, Burgos R, Hostetter G, Youngblood BA, Hadrup SR, Issa JP, Jones P, Baylin SB, Siddiqi I, Grønbaek K. Safety, Outcomes, and T-Cell Characteristics in Patients with Relapsed or Refractory MDS or CMML Treated with Atezolizumab in Combination with Guadecitabine. Clin Cancer Res 2022; 28:5306-5316. [PMID: 36222848 PMCID: PMC9772102 DOI: 10.1158/1078-0432.ccr-22-1810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE We hypothesized that resistance to hypomethylating agents (HMA) among patients with myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) would be overcome by combining a programmed death-ligand 1 antibody with an HMA. PATIENTS AND METHODS We conducted a Phase I/II, multicenter clinical trial for patients with MDS not achieving an International Working Group response after at least 4 cycles of an HMA ("refractory") or progressing after a response ("relapsed") with 3+ or higher risk MDS by the revised International Prognostic Scoring System (IPSS-R) and CMML-1 or -2. Phase I consisted of a 3+3 dose-escalation design beginning with guadecitabine at 30 mg/m2 and escalating to 60 mg/m2 Days 1 to 5 with fixed-dose atezolizumab: 840 mg intravenously Days 8 and 22 of a 28-day cycle. Primary endpoints were safety and tolerability; secondary endpoints were overall response rate (ORR) and survival. RESULTS Thirty-three patients, median age 73 (range 54-85), were treated. Thirty patients had MDS and 3 had CMML, with 30% relapsed and 70% refractory. No dose-limiting toxicities were observed in Phase I. There were 3 (9%) deaths in ≤ 30 days. Five patients (16%) came off study for drug-related toxicity. Immune-related adverse events (IRAE) occurred in 12 (36%) patients (4 grade 3, 3 grade 2, and 5 grade1). ORR was 33% [95% confidence interval (CI), 19%-52%] with 2 complete remission (CR), 3 hematologic improvement, 5 marrow CR, and 1 partial remission. Median overall survival was 15.1 (95% CI, 8.5-25.3) months. CONCLUSIONS Guadecitabine with atezolizumab has modest efficacy with manageable IRAEs and typical cytopenia-related safety concerns for patients with relapsed or refractory MDS and CMML.
Collapse
Affiliation(s)
- Casey L O’Connell
- Jane Anne Nohl Division of Hematology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maria R Baer
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA,University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Andreas Due Ørskov
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark,Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sunil Kumar Saini
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Vu H. Duong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA,University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Jakob Werner Hansen
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark,Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Denice Tsao-Wei
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hyo Sik Jang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Ashkan Emadi
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA,University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Staffan Holmberg-Thyden
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jack Cowland
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Brett T. Brinker
- Medical Oncology, Cancer and Hematology Centers of West Michigan, Grand Rapids, MI, USA
| | - Kristin Horwood
- Jane Anne Nohl Division of Hematology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan Burgos
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Galen Hostetter
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Sine Reker Hadrup
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Peter Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Imran Siddiqi
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirsten Grønbaek
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark,Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Arends CM, Damm F. [Clonal hematopoiesis and solid neoplasms]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:1133-1140. [PMID: 36149440 DOI: 10.1007/s00108-022-01404-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Clonal hematopoiesis (CH) is a premalignant state of the hematopoietic system that frequently occurs in old age and is associated with an elevated cardiovascular risk and higher overall mortality. AIM The prevalence and clinical implications of CH in patients with solid neoplasms were examined. MATERIAL AND METHODS A review, summary and discussion of the recent literature was carried out. RESULTS CH occurs in 20-30% of patients with solid neoplasms. In the molecular diagnostics of tumor or cell-free DNA from plasma, CH mutations can be falsely interpreted as tumor mutations. CH and in particular mutations in the genes of the DNA damage repair machinery are associated with a higher risk of therapy-associated myeloid neoplasms (t-MN) following chemotherapy, radiotherapy and poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor therapy. CONCLUSION CH is a frequent phenomenon in patients with solid neoplasms. It has high clinical relevance due to the associated risk of t‑MN. More research is needed for a better understanding of the role of CH in this patient collective and to derive evidence-based recommendations for action.
Collapse
Affiliation(s)
- Christopher Maximilian Arends
- Campus Virchow Klinikum, Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland
| | - Frederik Damm
- Campus Virchow Klinikum, Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland. .,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Deutschland. .,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland.
| |
Collapse
|
15
|
Hoermann G. Clinical Significance of Clonal Hematopoiesis of Indeterminate Potential in Hematology and Cardiovascular Disease. Diagnostics (Basel) 2022; 12:1613. [PMID: 35885518 PMCID: PMC9317488 DOI: 10.3390/diagnostics12071613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 01/15/2023] Open
Abstract
Liquid profiling uses circulating tumor DNA (ctDNA) for minimal invasive tumor mutational profiling from peripheral blood. The presence of somatic mutations in peripheral blood cells without further evidence of a hematologic neoplasm defines clonal hematopoiesis of indeterminate potential (CHIP). CHIP-mutations can be found in the cell-free DNA (cfDNA) of plasma, are a potential cause of false positive results in liquid profiling, and thus limit its usage in screening settings. Various strategies are in place to mitigate the effect of CHIP on the performance of ctDNA assays, but the detection of CHIP also represents a clinically significant incidental finding. The sequelae of CHIP comprise the risk of progression to a hematologic neoplasm including therapy-related myeloid neoplasms. While the hematological risk increases with the co-occurrence of unexplained blood count abnormalities, a number of non-hematologic diseases have independently been associated with CHIP. In particular, CHIP represents a major risk factor for cardiovascular disease such as atherosclerosis or heart failure. The management of CHIP requires an interdisciplinary setting and represents a new topic in the field of cardio-oncology. In the future, the information on CHIP may be taken into account for personalized therapy of cancer patients.
Collapse
|