1
|
Ding W, He C, Liu X, Hou C, Wang Q, Gong T, Yang J, Shen J, Shan Z, Sun R. Ubiquitination-deficit of Cnot4 impairs the capacity of proliferation and differentiation in mouse embryonic stem cells. Biochem Biophys Res Commun 2025; 747:151260. [PMID: 39798536 DOI: 10.1016/j.bbrc.2024.151260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/25/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Neurodevelopmental abnormalities are significant contributors to a variety of neurological disorders. Ubiquitination is essential for embryonic development and plays a pivotal role in neurodevelopment. Although Cnot4 possesses E3-ubiquitin ligase activity, its function in neurodevelopment and embryonic stem cells (ESCs) remains inadequately understood. This study examined the impact of Cnot4 ubiquitination-deficit in mouse ESCs using flow cytometry, CCK-8 assays, immunofluorescence, western blotting, RNA sequencing (RNA-seq), and intracellular Ca2+ measurement. Findings demonstrated that the lack of ubiquitination in Cnot4 reduced ESC proliferation rates and facilitated ectodermal differentiation during spontaneous ESC differentiation. RNA-seq analysis identified that the differentially expressed genes were primarily linked to glucose metabolism and Ca2+ signaling pathways. Additionally, results indicated that the ubiquitination-deficit in Cnot4 caused increased intracellular Ca2+ levels in mESCs. These findings suggest that Cnot4 plays a critical role in the regulation of proliferation and differentiation of mESCs through ubiquitination, providing a basis for further exploration of its involvement in embryonic and neural development.
Collapse
Affiliation(s)
- Wenxin Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Chenyao He
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Xin Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Chunlei Hou
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Tiantian Gong
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Jiahao Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Zhiyan Shan
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China.
| | - Ruizhen Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Zhang Q, Ran T, Li S, Han L, Chen S, Lin G, Wu H, Wu H, Feng S, Chen J, Zhang Q, Zhao X. Catalpol ameliorates liver fibrosis via inhibiting aerobic glycolysis by EphA2/FAK/Src signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156047. [PMID: 39321687 DOI: 10.1016/j.phymed.2024.156047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Hepatic fibrosis is a pathological process in a variety of acute or chronic liver injuries. Catalpol (CAT), an iridoid glycoside found in Rehmannia glutinosa, has several pharmacological properties, including anti-inflammatory, antidiabetic and anti-fibrotic effects. Nevertheless, there is currently no report on whether CAT regulates the aerobic glycolysis of hepatic stellate cells (HSCs) to inhibit liver fibrosis. OBJECTIVE This study aimed to investigate the protective effects of CAT on hepatic fibrosis and elucidate its underlying mechanisms. METHODS To explore whether CAT improved liver fibrosis in vivo and in vitro, hepatic fibrosis was induced to mice by intraperitoneally injecting carbon tetrachloride (CCl4). Additionally, LX-2 cells were stimulated with transforming growth factor-β (TGF-β) to simulate fibrosis in vitro. Serum markers of liver injury were examined by using an automatic biochemical analyzer. Histopathological staining, Immunofluorescence (IF) staining, Western blot (WB) analysis, co-immunoprecipitation (Co-IP), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), etc. were employed to identify the targeting between CAT and EphA2 and detect the expression of aerobic glycolysis related proteins, fiber markers and signaling pathways that are responsible for CAT's anti-fibrotic effects of CAT. RESULTS Results showed that CAT significantly inhibited hepatic injury, fibrogenesis and inflammation in mice treated with CCl4. This was demonstrated by the enhancement of fibrosis markers, liver function indices, and histopathology. In addition, CAT significantly inhibited the activation of HSCs in TGF-β-induced LX-2 cells, as indicated by decreased proliferation, migration, and expression of collagen I and a-SMA. The study results also suggested that CAT may exert anti-fibrotic effects by inhibiting glycolysis in activated HSCs and in CCl4-treated mice. Mechanistically, CAT directly targets Ephrin type-A receptor 2 (EphA2) to reduce binding with focal adhesion kinases (FAK) and significantly inhibits the FAK/Src pathway. In addition, the pharmacological inhibition of EphA2 cannot further increase the therapeutic effects of CAT on liver fibrosis in vivo and in vitro. CONCLUSION The study findings generally demonstrated that CAT presented a novel therapeutic method to treat hepatic fibrosis; this method which inhibits the aerobic glycolysis of activated HSCs through the EphA2/FAK/Src signaling pathway.
Collapse
Affiliation(s)
- Qingxiu Zhang
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Tao Ran
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Shiliang Li
- Department of Vascular Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Lu Han
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Shaojie Chen
- Guizhou Medical University, Guiyang 550000, China.
| | - Guoyuan Lin
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Huayue Wu
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Huan Wu
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Shu Feng
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Jiyu Chen
- Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Qian Zhang
- Department of Nephrology, The Guizhou provincial people's Hospital, Guiyang 550000, China.
| | - Xueke Zhao
- Department of Infectious Disease, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| |
Collapse
|
3
|
Liu P, Luo Y, Wu H, Han Y, Wang S, Liu R, Wen S, Huang P. HKDC1 functions as a glucose sensor and promotes metabolic adaptation and cancer growth via interaction with PHB2. Cell Death Differ 2024; 31:1595-1610. [PMID: 39375512 PMCID: PMC11618360 DOI: 10.1038/s41418-024-01392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Glucose sensing and metabolic adaptation to glucose availability in the tumor microenvironment are critical for cancer development. Here we show that HKDC1, a hexokinase highly expressed in cancer associated with poor prognosis, functions as a glucose sensor that alters its stability in response to environmental glucose. The glucose-sensing domain is located between amino acids 751-917, with Ser896 as a key residue that regulates HKDC1 stability by affecting Lys620 ubiquitination. This sensing mechanism enables cellular adaptation to glucose starvation by promoting mitochondrial fatty acid utilization. Furthermore, HKDC1 promotes tumor growth by sequestering prohibitin 2 (PHB2) to disable its suppressive effect on SP1, thus promoting the expression of pro-oncogenic molecules. Abrogation of HKDC1 by genetic knockout or by glucose depletion releases PHB2, leading to suppression of cancer cell proliferation and inhibition of tumor growth. Our study reveals a previously unrecognized role of HKDC1 in glucose sensing and metabolic adaptation, and identifies HKDC1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Panpan Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Yao Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hongyu Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yi Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shoujie Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Metabolic Research Platform, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
4
|
Yang W, Lin R, Guan S, Dang Y, He H, Huang X, Yang C. HNF1ɑ promotes colorectal cancer progression via HKDC1-mediated activation of AKT/AMPK signaling pathway. Gene 2024; 928:148752. [PMID: 38986750 DOI: 10.1016/j.gene.2024.148752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The hepatocyte nuclear factor-1 (HNF1ɑ) is a transcription factor that contributes to several kinds of cancer progression. However, very little is known regarding the mechanisms underlying the activity of HNF1ɑ. We aimed to explore the role of HNF1ɑ in the progress of colorectal cancer (CRC) and elucidate its molecular mechanism. HNF1ɑ expression was upregulated in CRC samples and high expression of HNF1ɑ was associated with poor prognosis of CRC patients. HNF1α knockdown and overexpression inhibited and promoted proliferation, migration and invasion of CRC cells both in vitro and in vivo respectively. Mechanistically, HNF1ɑ increased the transcriptional activity of hexokinase domain component 1(HKDC1)promoter, thus activated AKT/AMPK signaling. Meanwhile, HKDC1 upregulation was important for the proliferation, migration and invasion of CRC cells and knockdown of HKDC1 significantly reversed the proliferation, migration and invasion induced by HNF1α overexpression. Taken together, HNF1ɑ contributes to CRC progression and metastasis through binding to HKDC1 and activating AKT/AMPK signaling. Targeting HNF1ɑ could be a potential therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Weijin Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ruirong Lin
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Shen Guan
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Yuan Dang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Hongxin He
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Xinxiang Huang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Chunkang Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, China.
| |
Collapse
|
5
|
Fang Z, Zhang W, Wang H, Zhang C, Li J, Chen W, Xu X, Wang L, Ma M, Zhang S, Li Y. Helicobacter pylori promotes gastric cancer progression by activating the TGF-β/Smad2/EMT pathway through HKDC1. Cell Mol Life Sci 2024; 81:453. [PMID: 39545942 PMCID: PMC11568101 DOI: 10.1007/s00018-024-05491-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Helicobacter pylori (H. pylori) infection is widely acknowledged as the primary risk factor for gastric cancer, facilitating its progression via the Correa cascade. Concurrently, Hexokinase Domain Containing 1 (HKDC1) has been implicated in the mediation of aerobic glycolysis, contributing to tumorigenesis across various cancers. However, the precise role of HKDC1 in the inflammatory transformation associated with H. pylori-induced gastric cancer remains elusive. In this study, transcriptome sequencing revealed a significant correlation between HKDC1 and H. pylori-induced gastric cancer. Subsequent validation using qRT-PCR, immunohistochemistry, and Western blot analysis confirmed elevated HKDC1 expression in both human and murine gastritis and gastric tumors. Moreover, in vitro and in vivo experiments demonstrated that H. pylori infection up-regulates TGF-β1 and p-Smad2, thereby activating the epithelial-mesenchymal transition (EMT) pathway, with HKDC1 playing a pivotal role. Suppression of HKDC1 expression or pharmacological inhibition of TGF-β1 reversed EMT activation, consequently reducing gastric cancer cell proliferation and metastasis. These results underscore HKDC1's essential contribution to H. pylori-induced gastric cancer progression via EMT activation.
Collapse
Affiliation(s)
- Ziqing Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Weitong Zhang
- Department of General Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Chaoyang Zhang
- Department of General Surgery, The Second Affiliated Hospital Zhejiang University, Hangzhou, 310000, China
| | - Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Wanjing Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Xin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Luyang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Mengdi Ma
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Shangxin Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China.
| |
Collapse
|
6
|
Liu B, Sun Y, Wang W, Ren J, Wang D. BHLHE40-mediated transcriptional activation of GRIN2D in gastric cancer is involved in metabolic reprogramming. Funct Integr Genomics 2024; 24:214. [PMID: 39546079 DOI: 10.1007/s10142-024-01495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Gastric cancer (GC) is the third leading cause of death in developed countries. The reprogramming of energy metabolism represents a hallmark of cancer, particularly amplified dependence on aerobic glycolysis. Here, we aimed to illustrate the functional role of glutamate ionotropic receptor N-methyl-D-aspartate type subunit 2D (GRIN2D) in the regulation of glycolysis in GC and the mechanisms involved. Differentially expressed genes were analyzed using the GEO and GEPIA databases, followed by prognostic value prediction using the Kaplan-Meier Plotter database. The effect of GRIN2D knockdown on the malignant behavior and glycolysis of GC cells was explored. GRIN2D expression was upregulated in GC cells and promoted the malignant behavior of GC cells by activating glycolysis. Class E basic helix-loop-helix protein 40 (BHLHE40) was overexpressed in GC cells and mediated transcriptional activation of GRIN2D. The anti-tumor effects of BHLHE40 knockdown on GC cells in vitro and in vivo were reversed by GRIN2D overexpression. Knockdown of GRIN2D or BHLHE40 downregulated the expression of mRNA of electron transport chain subunits and phosphorylation of p38 MARK and inhibited calcium efflux in GC cells. Overexpression of GRIN2D promoted calcium efflux, phosphorylation of p38 MARK protein, and proliferation of GES1 cells. Altogether, the findings derived from this study suggest that BHLHE40 knockdown suppresses the growth, mobility, and glycolysis of GC cells by inhibiting GRIN2D transcription and disrupting the BHLHE40/GRIN2D axis may be an attractive therapeutic strategy for GC.
Collapse
Affiliation(s)
- Bin Liu
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Guangling District, Yangzhou, Jiangsu, 225001, P.R. China
| | - Yuanlin Sun
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, 270000, P.R. China
| | - Wei Wang
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Guangling District, Yangzhou, Jiangsu, 225001, P.R. China
| | - Jun Ren
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Guangling District, Yangzhou, Jiangsu, 225001, P.R. China
| | - Daorong Wang
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Guangling District, Yangzhou, Jiangsu, 225001, P.R. China.
| |
Collapse
|
7
|
Huangfu L, Zhu H, Wang G, Chen J, Wang Y, Fan B, Wang X, Yao Q, Guo T, Han J, Hu Y, Du H, Li X, Ji J, Xing X. The deubiquitinase USP15 drives malignant progression of gastric cancer through glucose metabolism remodeling. J Exp Clin Cancer Res 2024; 43:235. [PMID: 39164728 PMCID: PMC11334570 DOI: 10.1186/s13046-024-03152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/04/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Ubiquitin-specific protease 15 (USP15) exhibits amplifications in various tumors, including gastric cancer (GC), yet its biological function and mechanisms in GC progression remain elusive. METHODS Here, we established stable USP15 knockdown or overexpression GC cell lines and explored the potential mechanism of USP15 in GC. Besides, we also identified interacting targets of USP15. RESULTS USP15 knockdown significantly impeded cell proliferation, invasion, epithelial-mesenchymal transition, and distal colonization in xenograft models, while enhancing oxaliplatin's antitumor effect. USP15 was involved in ubiquitination modification of glycolytic regulators. Silencing of USP15 suppressed glycolytic activity and impaired mitochondrial functions. Interference with USP15 expression reversed tumor progression and distal colonization in vivo. HKDC1 and IGF2BP3 were found as core interacting targets of USP15, and HKDC1 was identified as a substrate for ubiquitination modification by USP15, whereby USP15 regulated glucose metabolism activity by inhibiting the ubiquitination degradation of HKDC1. CONCLUSIONS Our study unveiled aberrantly high expression of USP15 in GC tissues, correlating with malignant progression and nonresponse to neoadjuvant therapy. USP15 inhibitors, if developed, could be effective in promoting chemotherapy through glucose metabolism remodeling.
Collapse
Affiliation(s)
- Longtao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Huanbo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, Fu-Cheng Road, Beijing, 100142, China
| | - Gangjian Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, Fu-Cheng Road, Beijing, 100142, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, Fu-Cheng Road, Beijing, 100142, China
| | - Yongqi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Biao Fan
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaoyang Wang
- Department of Pharmacy, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Qian Yao
- Department of Pathology, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Jing Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Ying Hu
- Biological Sample Bank, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaomei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China
| | - Jiafu Ji
- Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, Fu-Cheng Road, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China.
| | - Xiaofang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, 100142, China.
| |
Collapse
|
8
|
Jiang Y, Lu Z, Wang D, Hou Z, Zhong T, Yan Z, Lin A, Jiang B, Ren J, Li K. Toxic effects of freshwater grouper (Acrossocheilus fasciatus) eggs on poultry: Morphological and transcriptomic insights into hepatic toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116684. [PMID: 38968728 DOI: 10.1016/j.ecoenv.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Fish egg poisoning is a serious and neglected public menace that kills hundreds of people and numerous poultry each year. Freshwater groupers (Acrossocheilus fasciatus) are common food fish in the southeastern regions of China. Their toxic eggs are regarded as a significant public health concern. The molecular mechanisms of egg-toxin toxicity in freshwater grouper to poisoned organisms are elusive. In this study, black-boned chicks were exposed to toxic eggs from freshwater grouper at a lethal dose. The hepatic morphology of the intoxicated chick was assessed. An analysis of the liver gene expression profile was conducted by comparing samples exposed to toxic eggs with control samples using RNA-Seq. The result revealed that an increase in vacuolation and congestion was observed in chicks with toxic eggs exposure. The transcriptome analysis revealed 5421 genes with differential expression, comprising 2810 up-regulated and 2611 down-regulated genes. The genes were primarily linked to energy metabolism, cell apoptosis, cell adhesion, exogenous microbial infection, and cell junction. The most strongly upregulated genes were cholecystokinin (CCK), cholecystokinin A receptor (CCKAR), and unc-80 homolog, NALCN activator (UNC80), and the most downregulated genes were glycine amidinotransferase (GATM), fatty acid desaturase 2 (FADS2), and hexokinase 2 (HKDC1). GO term with the highest enrichment of DEGs is nucleosome assembly. According to KEGG pathways, the three most significant metabolic pathways in the liver are DNA replication, retinol metabolism, and steroid biosynthesis. The results could be crucial for comprehending the negative biological impacts of egg-toxin and its toxic mechanisms. The outcome could provide potential biomarkers of egg-toxin exposure in hepatic, which might be useful for manufacturing an antidote to egg-toxin and providing valuable insights for ecotoxicity studies.
Collapse
Affiliation(s)
- Yanqiu Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 210306, China
| | - Zhen Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Derui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Marine Science, Beibu Gulf University, Qinzhou 535011, China
| | - Zhihao Hou
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Tianxing Zhong
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 210306, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Ocean, Yantai University, Yantai 264005, China
| | - Ainuo Lin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Baozhen Jiang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jianfeng Ren
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 210306, China.
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
9
|
Nie SF, Wang CY, Li L, Yang C, Zhu ZM, Fei JD. Tumor recurrence and survival prognosis in patients with advanced gastric cancer after radical resection with radiotherapy and chemotherapy. World J Gastrointest Surg 2024; 16:1660-1669. [PMID: 38983352 PMCID: PMC11230023 DOI: 10.4240/wjgs.v16.i6.1660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Advanced gastric cancer is a common malignancy that is often diagnosed at an advanced stage and is still at risk of recurrence after radical surgical treatment. Chemoradiotherapy, as one of the important treatment methods for gastric cancer, is of great significance for improving the survival rate of patients. However, the tumor recurrence and survival prognosis of gastric cancer patients after radiotherapy and chemotherapy are still uncertain. AIM To analyze the tumor recurrence after radical radiotherapy and chemotherapy for advanced gastric cancer and provide more in-depth guidance for clinicians. METHODS A retrospective analysis was performed on 171 patients with gastric cancer who received postoperative adjuvant radiotherapy and chemotherapy in our hospital from 2021 to 2023. The Kaplan-Meier method was used to calculate the recurrence rate and survival rate; the log-rank method was used to analyze the single-factor prognosis; and the Cox model was used to analyze the prognosis associated with multiple factors. RESULTS The median follow-up time of the whole group was 63 months, and the follow-up rate was 93.6%. Stage II and III patients accounted for 31.0% and 66.7%, respectively. The incidences of Grade 3 and above acute gastrointestinal reactions and hematological adverse reactions were 8.8% and 9.9%, respectively. A total of 166 patients completed the entire chemoradiotherapy regimen, during which no adverse reaction-related deaths occurred. In terms of the recurrence pattern, 17 patients had local recurrence, 29 patients had distant metastasis, and 12 patients had peritoneal implantation metastasis. The 1-year, 3-year, and 5-year overall survival (OS) rates were 83.7%, 66.3%, and 60.0%, respectively. The 1-year, 3-year, and 5-year disease-free survival rates were 75.5%, 62.7%, and 56.5%, respectively. Multivariate analysis revealed that T stage, peripheral nerve invasion, and the lymph node metastasis rate (LNR) were independent prognostic factors for OS. CONCLUSION Postoperative intensity-modulated radiotherapy combined with chemotherapy for gastric cancer treatment is well tolerated and has acceptable adverse effects, which is beneficial for local tumor control and can improve the long-term survival of patients. The LNR was an independent prognostic factor for OS. For patients with a high risk of local recurrence, postoperative adjuvant chemoradiation should be considered.
Collapse
Affiliation(s)
- Shuang-Fa Nie
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 75000, Hebei Province, China
| | - Chen-Yang Wang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 75000, Hebei Province, China
| | - Lei Li
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 75000, Hebei Province, China
| | - Cheng Yang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 75000, Hebei Province, China
| | - Zi-Ming Zhu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Jian-Dong Fei
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 75000, Hebei Province, China
| |
Collapse
|
10
|
Wen W, Ertas YN, Erdem A, Zhang Y. Dysregulation of autophagy in gastric carcinoma: Pathways to tumor progression and resistance to therapy. Cancer Lett 2024; 591:216857. [PMID: 38583648 DOI: 10.1016/j.canlet.2024.216857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The considerable death rates and lack of symptoms in early stages of gastric cancer (GC) make it a major health problem worldwide. One of the most prominent risk factors is infection with Helicobacter pylori. Many biological processes, including those linked with cell death, are disrupted in GC. The cellular "self-digestion" mechanism necessary for regular balance maintenance, autophagy, is at the center of this disturbance. Misregulation of autophagy, however, plays a role in the development of GC. In this review, we will examine how autophagy interacts with other cell death processes, such as apoptosis and ferroptosis, and how it affects the progression of GC. In addition to wonderful its role in the epithelial-mesenchymal transition, it is engaged in GC metastasis. The role of autophagy in GC in promoting drug resistance stands out. There is growing interest in modulating autophagy for GC treatment, with research focusing on natural compounds, small-molecule inhibitors, and nanoparticles. These approaches could lead to breakthroughs in GC therapy, offering new hope in the fight against this challenging disease.
Collapse
Affiliation(s)
- Wen Wen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Ahmet Erdem
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41001 Turkey.
| | - Yao Zhang
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Chen HY, Li XN, Yang L, Ye CX, Chen ZL, Wang ZJ. CircVMP1 promotes glycolysis and disease progression by upregulating HKDC1 in colorectal cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:1617-1630. [PMID: 38009649 DOI: 10.1002/tox.24061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to play important roles in cancers. Here, we characterized circVMP1 (hsa_circ_0006508), an important circRNA which promoted glycolysis and disease progression in colorectal cancer (CRC). In this study, we aimed to explore the mechanism by which circVMP1 regulated tumor glycolysis and its related pathways in promoting CRC cell proliferation and metastasis. METHODS The expression level of circVMP1 in CRC tissues and adjacent normal tissues was detected using quantitative PCR. In vitro and in vivo functional experiments were used to evaluate the effects of circVMP1 in the regulation of CRC cell proliferation and migration. Mitochondrial stress tests and glycolysis stress tests were conducted to detect the effect of circVMP1 on oxidative phosphorylation and glycolysis. Dual-luciferase reporter and RNA immunoprecipitation assays were used to evaluate the interaction between circVMP1, miR-3167, and HKDC1. RESULTS We demonstrated that the level of circVMP1 was significantly upregulated in CRC tissues compared with normal tissues. In HCT116 and SW480 cells, overexpression of circVMP1 promoted proliferation, metastasis, and glycolysis. In vivo analysis indicated that circVMP1 accelerated the proliferation of xenograft tumors. As for the mechanism, overexpression of circVMP1 increased the levels of hexokinase domain component 1 (HKDC1) through competitive binding with miR-3167. CONCLUSION Our study reported that circVMP1 was one of the tumor driver genes that promoted CRC malignant progression and glycolysis by upregulating HKDC1. CircVMP1/miR-3167/HKDC1 was a signaling axis that might be a target for CRC therapy.
Collapse
Affiliation(s)
- Hong-Yu Chen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiang-Nan Li
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lei Yang
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chun-Xiang Ye
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhi-Lei Chen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhen-Jun Wang
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Pang Q, Huang S, Cao J. HKDC1 enhances the proliferation, migration and glycolysis of pancreatic adenocarcinoma and is linked to immune infiltration. J Cancer 2024; 15:1983-1993. [PMID: 38434978 PMCID: PMC10905392 DOI: 10.7150/jca.92823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Background: Understanding the molecular mechanisms of pancreatic adenocarcinoma (PAAD) development is vital for treating this disease, as the current prognosis and treatment options are highly discouraging. Objective: This study aimed to examine the involvement of Hexokinase Domain Containing 1 (HKDC1) in the progression of PAAD. Methods: The study utilized bioinformatics techniques to evaluate the relationship between the expression of HKDC1 and clinical characteristics. In vitro experiments were conducted to investigate the molecular mechanisms and biological functions of HKDC1 in PAAD. Results: The findings of this research indicate that the expression of HKDC1 was increased in various types of human cancers, and a significant correlation was observed between elevated HKDC1 expression in PAAD and unfavorable prognosis. According to the findings from univariate and multivariate Cox regression analyses, HKDC1 could potentially serve as a standalone prognostic indicator for individuals diagnosed with PAAD. After performing calculations, we determined that the HKDC1 high-expression group exhibited lower immunologic score and higher ESTIMATE score, indicating a difference in immune infiltration score. In order to validate the expression of HKDC1 in PAAD cell lines, we analyzed the PAAD cell lines through qPCR and protein blotting. The expression of HKDC1 in human PAAD tissues was also detected by western blotting. Additionally, we explored the involvement of HKDC1 in PAAD by conducting experiments such as colony formation, 5-ethynyl-2'-deoxyuridine (EdU), transwell, and wound healing assays. In our study, we discovered that disruption of HKDC1 expression in PAAD cell types resulted in a decrease in cell growth rate and inhibited cell movement and invasion. Conclusion: To conclude, our findings indicate that HKDC1 has a significant impact on the tumor microenvironment (TME) of PAAD and could potentially be a promising target for PAAD treatment, offering fresh perspectives on the management of PAAD.
Collapse
Affiliation(s)
| | | | - Jiaqing Cao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang (330006), China
| |
Collapse
|
13
|
Wang X, Zhang J, Wu Y, Zhang Y, Zhang S, Li A, Wang J, Wang Z. RORα inhibits gastric cancer proliferation through attenuating G6PD and PFKFB3 induced glycolytic activity. Cancer Cell Int 2024; 24:12. [PMID: 38184549 PMCID: PMC10770990 DOI: 10.1186/s12935-023-03201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Glycolysis is critical for harvesting abundant energy to maintain the tumor microenvironment in malignant tumors. Retinoic acid-related orphan receptor α (RORα) has been identified as a circadian gene. However, the association of glycolysis with RORα in regulating gastric cancer (GC) proliferation remains poorly understood. METHODS Bioinformatic analysis and retrospective study were utilized to explore the role of RORα in cell cycle and glycolysis in GC. The mechanisms were performed in vitro and in vivo including colony formation, Cell Counting Kit-8 (CCK-8), Epithelial- mesenchymal transition (EMT) and subcutaneous tumors of mice model assays. The key drives between RORα and glycolysis were verified through western blot and chip assays. Moreover, we constructed models of high proliferation and high glucose environments to verify a negative feedback and chemoresistance through a series of functional experiments in vitro and in vivo. RESULTS RORα was found to be involved in the cell cycle and glycolysis through a gene set enrichment analysis (GSEA) algorithm. GC patients with low RORα expression were not only associated with high circulating tumor cells (CTC) and high vascular endothelial growth factor (VEGF) levels. However, it also presented a positive correlation with the standard uptake value (SUV) level. Moreover, the SUVmax levels showed a positive linear relation with CTC and VEGF levels. In addition, RORα expression levels were associated with glucose 6 phosphate dehydrogenase (G6PD) and phosphofructokinase-2/fructose-2,6-bisphosphatase (PFKFB3) expression levels, and GC patients with low RORα and high G6PD or low RORα and high PFKFB3 expression patterns had poorest disease-free survival (DFS). Functionally, RORα deletion promoted GC proliferation and drove glycolysis in vitro and in vivo. These phenomena were reversed by the RORα activator SR1078. Moreover, RORα deletion promoted GC proliferation through attenuating G6PD and PFKFB3 induced glycolytic activity in vitro and in vivo. Mechanistically, RORα was recruited to the G6PD and PFKFB3 promoters to modulate their transcription. Next, high proliferation and high glucose inhibited RORα expression, which indicated that negative feedback exists in GC. Moreover, RORα deletion improved fluorouracil chemoresistance through inhibition of glucose uptake. CONCLUSION RORα might be a novel biomarker and therapeutic target for GC through attenuating glycolysis.
Collapse
Affiliation(s)
- Xiaoshan Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Junyi Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Yuwei Wu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Yuqing Zhang
- Department of Occupational Health and Environmental Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Siyuan Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Angqing Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Jian Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Zhengguang Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
14
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
15
|
Gupta J, Ahmed AT, Tayyib NA, Zabibah RS, Shomurodov Q, Kadheim MN, Alsaikhan F, Ramaiah P, Chinnasamy L, Samarghandian S. A state-of-art of underlying molecular mechanisms and pharmacological interventions/nanotherapeutics for cisplatin resistance in gastric cancer. Biomed Pharmacother 2023; 166:115337. [PMID: 37659203 DOI: 10.1016/j.biopha.2023.115337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
The fourth common reason of death among patients is gastric cancer (GC) and it is a dominant tumor type in Ease Asia. One of the problems in GC therapy is chemoresistance. Cisplatin (CP) is a platinum compound that causes DNA damage in reducing tumor progression and viability of cancer cells. However, due to hyperactivation of drug efflux pumps, dysregulation of genes and interactions in tumor microenvironment, tumor cells can develop resistance to CP chemotherapy. The current review focuses on the CP resistance emergence in GC cells with emphasizing on molecular pathways, pharmacological compounds for reversing chemoresistance and the role of nanostructures. Changes in cell death mechanisms such as upregulation of pro-survival autophagy can prevent CP-mediated apoptosis that results in drug resistance. Moreover, increase in metastasis via EMT induction induces CP resistance. Dysregulation of molecular pathways such as PTEN, PI3K/Akt, Nrf2 and others result in changes in CP response of GC cells. Non-coding RNAs determine CP response of GC cells and application of pharmacological compounds with activity distinct of CP can result in sensitivity in tumor cells. Due to efficacy of exosomes in transferring bioactive molecules such as RNA and DNA molecules among GC cells, exosomes can also result in CP resistance. One of the newest progresses in overcoming CP resistance in GC is application of nanoplatforms for delivery of CP in GC therapy that they can increase accumulation of CP at tumor site and by suppressing carcinogenic factors and overcoming biological barriers, they increase CP toxicity on cancer cells.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Qakhramon Shomurodov
- Department of Maxillofacial Surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific Affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Mostafai N Kadheim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, the Islamic Republic of Iran.
| |
Collapse
|
16
|
Huang RJ, Wichmann IA, Su A, Sathe A, Shum MV, Grimes SM, Meka R, Almeda A, Bai X, Shen J, Nguyen Q, Amieva MR, Hwang JH, Ji HP. A spatially mapped gene expression signature for intestinal stem-like cells identifies high-risk precursors of gastric cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558462. [PMID: 37786704 PMCID: PMC10541579 DOI: 10.1101/2023.09.20.558462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Objective Gastric intestinal metaplasia (GIM) is a precancerous lesion that increases gastric cancer (GC) risk. The Operative Link on GIM (OLGIM) is a combined clinical-histopathologic system to risk-stratify patients with GIM. The identification of molecular biomarkers that are indicators for advanced OLGIM lesions may improve cancer prevention efforts. Methods This study was based on clinical and genomic data from four cohorts: 1) GAPS, a GIM cohort with detailed OLGIM severity scoring (N=303 samples); 2) the Cancer Genome Atlas (N=198); 3) a collation of in-house and publicly available scRNA-seq data (N=40), and 4) a spatial validation cohort (N=5) consisting of annotated histology slides of patients with either GC or advanced GIM. We used a multi-omics pipeline to identify, validate and sequentially parse a highly-refined signature of 26 genes which characterize high-risk GIM. Results Using standard RNA-seq, we analyzed two separate, non-overlapping discovery (N=88) and validation (N=215) sets of GIM. In the discovery phase, we identified 105 upregulated genes specific for high-risk GIM (defined as OLGIM III-IV), of which 100 genes were independently confirmed in the validation set. Spatial transcriptomic profiling revealed 36 of these 100 genes to be expressed in metaplastic foci in GIM. Comparison with bulk GC sequencing data revealed 26 of these genes to be expressed in intestinal-type GC. Single-cell profiling resolved the 26-gene signature to both mature intestinal lineages (goblet cells, enterocytes) and immature intestinal lineages (stem-like cells). A subset of these genes was further validated using single-molecule multiplex fluorescence in situ hybridization. We found certain genes (TFF3 and ANPEP) to mark differentiated intestinal lineages, whereas others (OLFM4 and CPS1) localized to immature cells in the isthmic/crypt region of metaplastic glands, consistent with the findings from scRNAseq analysis. Conclusions using an integrated multi-omics approach, we identified a novel 26-gene expression signature for high-OLGIM precursors at increased risk for GC. We found this signature localizes to aberrant intestinal stem-like cells within the metaplastic microenvironment. These findings hold important translational significance for future prevention and early detection efforts.
Collapse
Affiliation(s)
- Robert J. Huang
- Division of Gastroenterology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Ignacio A. Wichmann
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
- Division of Obstetrics and Gynecology, Department of Obstetrics, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Andrew Su
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Miranda V. Shum
- Division of Gastroenterology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Susan M. Grimes
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Rithika Meka
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Alison Almeda
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Xiangqi Bai
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jeanne Shen
- Department of Pathology, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Manuel R. Amieva
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Joo Ha Hwang
- Division of Gastroenterology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Hanlee P. Ji
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
Bou Antoun N, Chioni AM. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int J Mol Sci 2023; 24:12222. [PMID: 37569598 PMCID: PMC10418675 DOI: 10.3390/ijms241512222] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
One of the leading causes of death worldwide, in both men and women, is cancer. Despite the significant development in therapeutic strategies, the inevitable emergence of drug resistance limits the success and impedes the curative outcome. Intrinsic and acquired resistance are common mechanisms responsible for cancer relapse. Several factors crucially regulate tumourigenesis and resistance, including physical barriers, tumour microenvironment (TME), heterogeneity, genetic and epigenetic alterations, the immune system, tumour burden, growth kinetics and undruggable targets. Moreover, transforming growth factor-beta (TGF-β), Notch, epidermal growth factor receptor (EGFR), integrin-extracellular matrix (ECM), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), wingless-related integration site (Wnt/β-catenin), Janus kinase/signal transducers and activators of transcription (JAK/STAT) and RAS/RAF/mitogen-activated protein kinase (MAPK) signalling pathways are some of the key players that have a pivotal role in drug resistance mechanisms. To guide future cancer treatments and improve results, a deeper comprehension of drug resistance pathways is necessary. This review covers both intrinsic and acquired resistance and gives a comprehensive overview of recent research on mechanisms that enable cancer cells to bypass barriers put up by treatments, and, like "satellite navigation", find alternative routes by which to carry on their "journey" to cancer progression.
Collapse
Affiliation(s)
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Biomolecular Sciences Department, Kingston University London, Kingston-upon-Thames KT1 2EE, UK;
| |
Collapse
|
18
|
Bhat SA, Farooq Z, Ismail H, Corona-Avila I, Khan MW. Unraveling the Sweet Secrets of HCC: Glucometabolic Rewiring in Hepatocellular Carcinoma. Technol Cancer Res Treat 2023; 22:15330338231219434. [PMID: 38083797 PMCID: PMC10718058 DOI: 10.1177/15330338231219434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/13/2017] [Indexed: 12/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the primary form of liver cancer. It causes ∼ 800 000 deaths per year, which is expected to increase due to increasing rates of obesity and metabolic dysfunction associated steatotic liver disease (MASLD). Current therapies include immune checkpoint inhibitors, tyrosine kinase inhibitors, and monoclonal antibodies, but these therapies are not satisfactorily effective and often come with multiple side effects and recurrences. Metabolic reprogramming plays a significant role in HCC progression and is often conserved between tumor types. Thus, targeting rewired metabolic pathways could provide an attractive option for targeting tumor cells alone or in conjunction with existing treatments. Therefore, there is an urgent need to identify novel targets involved in cancer-mediated metabolic reprogramming in HCC. In this review, we provide an overview of molecular rewiring and metabolic reprogramming of glucose metabolism in HCC to understand better the concepts that might widen the therapeutic window against this deadly cancer.
Collapse
Affiliation(s)
- Sheraz Ahmad Bhat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
- Sri Pratap College, Cluster University Srinagar, Srinagar, Jammu & Kashmir, India
| | - Zeenat Farooq
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Hagar Ismail
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Md. Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|