1
|
Triaa N, Znati M, Ben Jannet H, Bouajila J. Biological Activities of Novel Oleanolic Acid Derivatives from Bioconversion and Semi-Synthesis. Molecules 2024; 29:3091. [PMID: 38999041 PMCID: PMC11243203 DOI: 10.3390/molecules29133091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Oleanolic acid (OA) is a vegetable chemical that is present naturally in a number of edible and medicinal botanicals. It has been extensively studied by medicinal chemists and scientific researchers due to its biological activity against a wide range of diseases. A significant number of researchers have synthesized a variety of analogues of OA by modifying its structure with the intention of creating more potent biological agents and improving its pharmaceutical properties. In recent years, chemical and enzymatic techniques have been employed extensively to investigate and modify the chemical structure of OA. This review presents recent advancements in medical chemistry for the structural modification of OA, with a special focus on the biotransformation, semi-synthesis and relationship between the modified structures and their biopharmaceutical properties.
Collapse
Affiliation(s)
- Nahla Triaa
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
- Laboratoire de Génie Chimique, Université Paul Sabatier, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Mansour Znati
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
| | - Hichem Ben Jannet
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université Paul Sabatier, CNRS, INPT, UPS, 31062 Toulouse, France
| |
Collapse
|
2
|
Lahmadi G, Horchani M, Dbeibia A, Mahdhi A, Romdhane A, Lawson AM, Daïch A, Harrath AH, Ben Jannet H, Othman M. Novel Oleanolic Acid-Phtalimidines Tethered 1,2,3 Triazole Hybrids as Promising Antibacterial Agents: Design, Synthesis, In Vitro Experiments and In Silico Docking Studies. Molecules 2023; 28:4655. [PMID: 37375209 DOI: 10.3390/molecules28124655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
As part of the valorization of agricultural waste into bioactive compounds, a series of structurally novel oleanolic acid ((3β-hydroxyolean-12-en-28-oic acid, OA-1)-phtalimidines (isoindolinones) conjugates 18a-u bearing 1,2,3-triazole moieties were designed and synthesized by treating an azide 4 previously prepared from OA-1 isolated from olive pomace (Olea europaea L.) with a wide range of propargylated phtalimidines using the Cu(I)-catalyzed click chemistry approach. OA-1 and its newly prepared analogues, 18a-u, were screened in vitro for their antibacterial activity against two Gram-positive bacteria, Staphylococcus aureus and Listeria monocytogenes, and two Gram-negative bacteria, Salmonella thyphimurium and Pseudomonas aeruginosa. Attractive results were obtained, notably against L. monocytogenes. Compounds 18d, 18g, and 18h exhibited the highest antibacterial activity when compared with OA-1 and other compounds in the series against tested pathogenic bacterial strains. A molecular docking study was performed to explore the binding mode of the most active derivatives into the active site of the ABC substrate-binding protein Lmo0181 from L. monocytogenes. Results showed the importance of both hydrogen bonding and hydrophobic interactions with the target protein and are in favor of the experimental data.
Collapse
Affiliation(s)
- Ghofrane Lahmadi
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Mabrouk Horchani
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Amal Dbeibia
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Anis Romdhane
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Ata Martin Lawson
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| | - Adam Daïch
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Mohamed Othman
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| |
Collapse
|
3
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. PHYTOCHEMISTRY 2022; 203:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
Affiliation(s)
- Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Fu-Hua Deng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Li-Huan Peng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
4
|
Oboh M, Govender L, Siwela M, Mkhwanazi BN. Anti-Diabetic Potential of Plant-Based Pentacyclic Triterpene Derivatives: Progress Made to Improve Efficacy and Bioavailability. Molecules 2021; 26:7243. [PMID: 34885816 PMCID: PMC8659003 DOI: 10.3390/molecules26237243] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
Diabetes mellitus (DM) results from the inability of the pancreas to produce sufficient insulin or weakened cellular response to the insulin produced, which leads to hyperglycemia. Current treatments of DM focus on the use of oral hypoglycemic drugs such as acarbose, alpha-glucose inhibitors, sulphonylureas, thiazolidinediones, and biguanides to control blood glucose levels. However, these medications are known to have various side effects in addition to their bioavailability, efficacy, and safety concerns. These drawbacks have increased interest in the anti-diabetic potential of plant-derived bioactive compounds such as oleanolic and maslinic acids. Although their efficacy in ameliorating blood glucose levels has been reported in several studies, their bioavailability and efficacy remain of concern. The current review examines the anti-diabetic effects of oleanolic, maslinic, asiatic, ursolic, and corosolic acids and their derivatives, as well as the progress made thus far to enhance their bioavailability and efficacy. The literature for the current review was gathered from leading academic databases-including Google Scholar and PubMed-the key words listed below were used. The literature was searched as widely and comprehensively as possible without a defined range of dates.
Collapse
Affiliation(s)
| | | | | | - Blessing Nkazimulo Mkhwanazi
- Dietetics and Human Nutrition, School of Agricultural, Earth and Environmental Sciences, University of Kwazulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg 3201, South Africa; (M.O.); (L.G.); (M.S.)
| |
Collapse
|
5
|
Csuk R, Deigner HP. The potential of click reactions for the synthesis of bioactive triterpenes. Bioorg Med Chem Lett 2019; 29:949-958. [PMID: 30799214 DOI: 10.1016/j.bmcl.2019.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023]
Abstract
Click reactions between alkynes and azides using the privileged scaffold of triterpenes have been of interest for biological chemistry. Many publications deal with the synthesis of novel bioactive molecules; these conjugates have also been used for bioanalytical and diagnostic purposes. As a result, conjugates of better physicochemical properties were obtained; even compounds of improved solubility in water and physiological fluids were made through the introduction of a triazol residue. "Hybrid-structures", i.e. molecules consisting of two independently bioactive subunits linked by a triazole residue were higher bioactive than their parent compounds but not as active as expected, and with a few exceptions the ultimate breakthrough has not yet been achieved. Only in the synthesis of compounds with anti-leishmanial activity some new and promising lead structures were found. As a consequence, triazole modified triterpenes seem to hold their greatest future prospect rather as diagnostic reagents and molecular probes than as drugs.
Collapse
Affiliation(s)
- René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Hans-Peter Deigner
- Furtwangen University, Medical and Life Sciences Faculty, Jakob-Kienzle Str. 17, D-78054 Villingen-Schwenningen, Germany
| |
Collapse
|
6
|
Khusnutdinova EF, Petrova AV, Faskhutdinova LN, Kukovinets OS. 1,2,3-Triazole Derivatives Based on Glycine and Phenylalanine Amides and Triterpene Acids. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ayeleso TB, Matumba MG, Mukwevho E. Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases. Molecules 2017; 22:molecules22111915. [PMID: 29137205 PMCID: PMC6150249 DOI: 10.3390/molecules22111915] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for natural products as an alternative therapy for chronic diseases has encouraged research into the pharmacological importance of bioactive compounds from plants. Recently, there has been a surge of interest in the therapeutic potential of oleanolic acid (OA) in the prevention and management of chronic diseases. Oleanolic acid is a pentacyclic triterpenoid widely found in plants, including fruits and vegetables with different techniques and chromatography platforms being employed in its extraction and isolation. Several studies have demonstrated the potential therapeutic effects of OA on different diseases and their symptoms. Furthermore, oleanolic acid also serves as a framework for the development of novel semi-synthetic triterpenoids that could prove vital in finding therapeutic modalities for various ailments. There are recent advances in the design and synthesis of chemical derivatives of OA to enhance its solubility, bioavailability and potency. Some of these derivatives have also been therapeutic candidates in a number of clinical trials. This review consolidates and expands on recent reports on the biological effects of oleanolic acid from different plant sources and its synthetic derivatives as well as their mechanisms of action in in vitro and in vivo study models. This review suggests that oleanolic acid and its derivatives are important candidates in the search for alternative therapy in the treatment and management of chronic diseases.
Collapse
Affiliation(s)
- Taiwo Betty Ayeleso
- Department of Biochemistry, North West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Mashudu Given Matumba
- Department of Biochemistry, North West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Emmanuel Mukwevho
- Department of Biochemistry, North West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
8
|
Sidova V, Zoufaly P, Pokorny J, Dzubak P, Hajduch M, Popa I, Urban M. Cytotoxic conjugates of betulinic acid and substituted triazoles prepared by Huisgen Cycloaddition from 30-azidoderivatives. PLoS One 2017; 12:e0171621. [PMID: 28158265 PMCID: PMC5291411 DOI: 10.1371/journal.pone.0171621] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022] Open
Abstract
In this work, we describe synthesis of conjugates of betulinic acid with substituted triazoles prepared via Huisgen 1,3-cycloaddition. All compounds contain free 28-COOH group. Allylic bromination of protected betulinic acid by NBS gave corresponding 30-bromoderivatives, their substitution with sodium azides produced 30-azidoderivatives and these azides were subjected to CuI catalysed Huisgen 1,3-cycloaddition to give the final conjugates. Reactions had moderate to high yields. All new compounds were tested for their in vitro cytotoxic activities on eight cancer and two non-cancer cell lines. The most active compounds were conjugates of 3β-O-acetylbetulinic acid and among them, conjugate with triazole substituted by benzaldehyde 9b was the best with IC50 of 3.3 μM and therapeutic index of 9.1. Five compounds in this study had IC50 below 10 μM and inhibited DNA and RNA synthesis and caused block in G0/G1 cell cycle phase which is highly similar to actinomycin D. It is unusual that here prepared 3β-O-acetates were more active than compounds with the free 3-OH group and this suggests that this set may have common mechanism of action that is different from the mechanism of action of previously known 3β-O-acetoxybetulinic acid derivatives. Benzaldehyde type conjugate 9b is the best candidate for further drug development.
Collapse
Affiliation(s)
- Veronika Sidova
- Department of Organic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Pavel Zoufaly
- Department of Organic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Jan Pokorny
- Department of Organic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Igor Popa
- Department of Organic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Milan Urban
- Department of Organic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
9
|
Lupane and 18α-oleanane derivatives substituted in the position 2, their cytotoxicity and influence on cancer cells. Eur J Med Chem 2016; 121:120-131. [DOI: 10.1016/j.ejmech.2016.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/25/2022]
|
10
|
Donnier-Maréchal M, Vidal S. Glycogen phosphorylase inhibitors: a patent review (2013 - 2015). Expert Opin Ther Pat 2016; 26:199-212. [PMID: 26666989 DOI: 10.1517/13543776.2016.1131268] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Control of glycemia is crucial in the treatment of type 2 diabetes complications. Glycogen phosphorylase (GP) releases glucose from the liver into the blood stream. Design of potent GP inhibitors is a therapeutic strategy in the context of type 2 diabetes. AREAS COVERED Glucose-based inhibitors have found potential applications since they now reach low nanomolar Ki values. Another set of patents disclose cholic acid/7-aza-indole conjugates for targeted drug delivery to the liver. A series of benzazepinones have also been reported as potent GP inhibitors. In vitro data are reported for GP inhibition but the in vivo biological data at the cellular or animal levels are often missing, even though the literature reported for these molecules is also discussed. EXPERT OPINION A structural analogy between glucose-based GP inhibitors and C-glucosides targeting sodium glucose co-transporter 2 (SGLT2) is intriguing. Cholic acid/7-aza-indole conjugates are promising in vivo drug delivery systems to the liver. Benzazepinones were very recently described and no associated literature is available, making it very difficult to comment at present. While industry has slowed down on GP inhibitors design, academic groups are pursuing investigations and have provided potential drug candidates which will resuscitate the interest for GP, including its potential for targeting cancer.
Collapse
Affiliation(s)
- Marion Donnier-Maréchal
- a Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246 , CNRS and Université Claude Bernard Lyon 1 , Villeurbanne , France
| | - Sébastien Vidal
- a Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246 , CNRS and Université Claude Bernard Lyon 1 , Villeurbanne , France
| |
Collapse
|
11
|
Kvasnica M, Urban M, Dickinson NJ, Sarek J. Pentacyclic triterpenoids with nitrogen- and sulfur-containing heterocycles: synthesis and medicinal significance. Nat Prod Rep 2015; 32:1303-30. [DOI: 10.1039/c5np00015g] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Triterpenoids are natural compounds which are usually produced by plants as secondary metabolites. Triterpenic heterocycles are compounds with a variety of interesting biological activities.
Collapse
Affiliation(s)
- Miroslav Kvasnica
- Laboratory of Growth Regulators
- Centre of the Region Hana for Biotechnological and Agricultural Research
- Institute of Experimental Botany ASCR & Palacky University
- 78371 Olomouc
- Czech Republic
| | - Milan Urban
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacky University
- 77900 Olomouc
- Czech Republic
| | - Niall J. Dickinson
- Department of Organic Chemistry
- Faculty of Science
- Palacky University
- Olomouc
- Czech Republic
| | - Jan Sarek
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacky University
- 77900 Olomouc
- Czech Republic
| |
Collapse
|