1
|
Tawil S, Khaddage-Soboh N. Cancer research in Lebanon: Scope of the most recent publications of an academic institution (Review). Oncol Lett 2024; 28:350. [PMID: 38872861 PMCID: PMC11170263 DOI: 10.3892/ol.2024.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2024] Open
Abstract
Cancer may be considered one of the most interesting areas of study, and although oncology research has grown markedly over the last decade, there is as yet no known cure for cancer. The objective of the present review is to examine various approaches to cancer research from a single institution, summarize their key conclusions and offer recommendations for future evaluations. The review examined 72 cancer-associated studies that were published within six years from 2017 to 2022. Published works in the subject fields of 'cancer' or 'oncology' and 'research' that were indexed in Scopus and Web of Science were retrieved and sorted according to article title, author names, author count, citation count and key words. After screening, a total of 28 in vitro/animal studies and 46 patient-associated published studies were obtained. A large proportion of these studies comprised literature reviews (20/72), while 20 studies were observational in nature. The 72 publications included 23 in which various types of cancer were examined, while the remaining studies focused on specific types of cancer, including lung, breast, colon and brain cancer. These studies aimed to investigate the incidence, prevalence, treatment and prevention mechanisms associated with cancer. Despite the existence of extensive cancer research, scientists seldom contemplate an ultimate cure for cancer. However, it is crucial to continuously pursue research on cancer prevention and treatment in order to enhance the effectiveness and minimize potential side effects of cancer therapy.
Collapse
Affiliation(s)
- Samah Tawil
- School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Nada Khaddage-Soboh
- Adnan Kassar School of Business, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
2
|
Zeiz A, Kawtharani R, Elmasri M, Khawaja G, Hamade E, Habib A, Ayoub AJ, Abarbri M, El-Dakdouki MH. Molecular properties prediction, anticancer and anti-inflammatory activities of some pyrimido[1,2-b]pyridazin-2-one derivatives. BIOIMPACTS : BI 2023; 14:27688. [PMID: 38505674 PMCID: PMC10945296 DOI: 10.34172/bi.2023.27688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 03/21/2024]
Abstract
Introduction The anticancer and anti-inflammatory activities of a novel series of eleven pyrimido[1,2-b]pyridazin-2-one analogues substituted at position 7 were assessed in the current study. Methods The physicochemical characteristics were studied using MolSoft software. The antiproliferative activity was investigated by MTT cell viability assay, and cell cycle analysis elucidated the antiproliferative mechanism of action. Western blot analysis examined the expression levels of key pro-apoptotic (Bax, p53) and pro-survival (Bcl-2) proteins. The anti-inflammatory activity was assessed by measuring the production levels of nitric oxide in RAW264.7 cells, and the expression levels of COX-2 enzyme in LPS-activated THP-1 cells. In addition, the gene expression of various pro-inflammatory cytokines (IL-6, IL-8, IL-1β, TNF-α) and chemokines (CCL2, CXCL1, CXCL2, CXCL3) was assessed by RT-qPCR. Results Compound 1 bearing a chlorine substituent displayed the highest cytotoxic activity against HCT-116 and MCF-7 cancer cells where IC50 values of 49.35 ± 2.685 and 69.32 ± 3.186 µM, respectively, were achieved. Compound 1 increased the expression of pro-apoptotic proteins p53 and Bax while reducing the expression of pro-survival protein Bcl-2. Cell cycle analysis revealed that compound 1 arrested cell cycle at the G0/G1 phase. Anti-inflammatory assessments revealed that compound 1 displayed the strongest inhibitory activity on NO production with IC50 of 29.94 ± 2.24 µM, and down-regulated the expression of COX-2. Compound 1 also induced a statistically significant decrease in the gene expression of various cytokines and chemokines. Conclusion These findings showed that the pyrimidine derivative 1 displayed potent anti-inflammatory and anticancer properties in vitro, and can be selected as a lead compound for further investigation.
Collapse
Affiliation(s)
- Ali Zeiz
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Debbieh, Lebanon
| | - Ranin Kawtharani
- Laboratory of Medicinal Chemistry and Natural Products, Lebanese University, Faculty of Science-I, Beirut, Lebanon
| | - Mirvat Elmasri
- Department of Chemistry and Biochemistry, Faculty of Science-I, Lebanese University, Beirut, Lebanon
| | - Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Debbieh, Lebanon
| | - Eva Hamade
- Department of Chemistry and Biochemistry, Faculty of Science-I, Lebanese University, Beirut, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Aida Habib
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Abeer J. Ayoub
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E)., EA 6299. Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France
| | | |
Collapse
|
3
|
Ghobrial DK, El-Nikhely N, Sheta E, Ragab HM, Rostom SAF, Saeed H, Wahid A. The Role of Pyrazolo[3,4-d]pyrimidine-Based Kinase Inhibitors in The Attenuation of CCl4-Induced Liver Fibrosis in Rats. Antioxidants (Basel) 2023; 12:antiox12030637. [PMID: 36978885 PMCID: PMC10045301 DOI: 10.3390/antiox12030637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Liver Fibrosis can be life-threatening if left untreated as it may lead to serious, incurable complications. The common therapeutic approach is to reverse the fibrosis while the intervention is still applicable. Celecoxib was shown to exhibit some antifibrotic properties in the induced fibrotic liver in rats. The present study aimed to investigate the possible antifibrotic properties in CCl4-induced liver fibrosis in male Sprague–Dawley rats compared to celecoxib of three novel methoxylated pyrazolo[3,4-d]pyrimidines. The three newly synthesized compounds were proved to be safe candidates. They showed a therapeutic effect against severe CCl4-induced fibrosis but at different degrees. The three compounds were able to partially reverse hepatic architectural distortion and reduce the fibrotic severity by showing antioxidant properties reducing MDA with increasing GSH and SOD levels, remodeling the extracellular matrix proteins and liver enzymes balance, and reducing the level of proinflammatory (TNF-α and IL-6) and profibrogenic (TGF-β) cytokines. The results revealed that the dimethoxy-analog exhibited the greatest activity in all the previously mentioned parameters compared to celecoxib and the other two analogs which could be attributed to the different methoxylation patterns of the derivatives. Collectively, the dimethoxy-derivative could be considered a safe promising antifibrotic candidate.
Collapse
Affiliation(s)
- Diana K. Ghobrial
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
- Correspondence: (D.K.G.); (A.W.)
| | - Nefertiti El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21321, Egypt
| | - Hanan M. Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
| | - Sherif A. F. Rostom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
- Correspondence: (D.K.G.); (A.W.)
| |
Collapse
|
4
|
Hassan AY, Abou-Amra ES, El-Sebaey SA. Design and Synthesis of New Series of Chiral Pyrimidine and Purine analogs as COX-2 Inhibitors: Anticancer Screening, Molecular Modelling, and In Silico Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Domiati SA, Abd El Galil KH, Abourehab MAS, Ibrahim TM, Ragab HM. Structure-guided approach on the role of substitution on amide-linked bipyrazoles and its effect on their anti-inflammatory activity. J Enzyme Inhib Med Chem 2022; 37:2179-2190. [PMID: 35950562 PMCID: PMC9377232 DOI: 10.1080/14756366.2022.2109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A structure-guided modelling approach using COX-2 as a template was used to investigate the effect of replacing the chloro atom located at the chlorophenyl ring of amide-linked bipyrazole moieties, aiming at attaining better anti-inflammatory effect with a good safety profile. Bromo, fluoro, nitro, and methyl groups were revealed to be ideal candidates. Consequently, new bipyrazole derivatives were synthesised. The in vitro inhibitory COX-1/COX-2 activity of the synthesised compounds exhibited promising selectivity. The fluoro and methyl derivatives were the most active candidates. The in vivo formalin-induced paw edoema model confirmed the anti-inflammatory activity of the synthesised compounds. All the tested derivatives had a good ulcerogenic safety profile except for the methyl substituted compound. In silico molecular dynamics simulations of the fluoro and methyl poses complexed with COX-2 for 50 ns indicated stable binding to COX-2. Generally, our approach delivers a fruitful matrix for the development of further amide-linked bipyrazole anti-inflammatory candidates.
Collapse
Affiliation(s)
- Souraya A Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Khaled H Abd El Galil
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University
| | - Mohammed A S Abourehab
- Department of Pharmaceutics College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Mohsin NUA, Aslam S, Ahmad M, Irfan M, Al-Hussain SA, Zaki MEA. Cyclooxygenase-2 (COX-2) as a Target of Anticancer Agents: A Review of Novel Synthesized Scaffolds Having Anticancer and COX-2 Inhibitory Potentialities. Pharmaceuticals (Basel) 2022; 15:ph15121471. [PMID: 36558921 PMCID: PMC9783503 DOI: 10.3390/ph15121471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a serious threat to human beings and is the second-largest cause of death all over the globe. Chemotherapy is one of the most common treatments for cancer; however, drug resistance and severe adverse effects are major problems associated with anticancer therapy. New compounds with multi-target inhibitory properties are targeted to surmount these challenges. Cyclooxygenase-2 (COX-2) is overexpressed in cancers of the pancreas, breast, colorectal, stomach, and lung carcinoma. Therefore, COX-2 is considered a significant target for the synthesis of new anticancer agents. This review discusses the biological activity of recently prepared dual anticancer and COX-2 inhibitory agents. The most important intermolecular interactions with the COX-2 enzyme have also been presented. Analysis of these agents in the active area of the COX-2 enzyme could guide the introduction of new lead compounds with extreme selectivity and minor side effects.
Collapse
Affiliation(s)
- Noor ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.A.); (M.E.A.Z.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Correspondence: (M.A.); (M.E.A.Z.)
| |
Collapse
|
7
|
Eze CC, Ezeokonkwo AM, Ugwu ID, Eze UF, Onyeyilim EL, Attah IS, Okonkwo IV. Azole-pyrimidine Hybrid Anticancer Agents: A Review of Molecular Structure, Structure Activity Relationship and Molecular Docking. Anticancer Agents Med Chem 2022; 22:2822-2851. [PMID: 35306990 DOI: 10.2174/1871520622666220318090147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
Abstract
Cancer has emerged as one of the leading causes of deaths globally partly due to the steady rise in anticancer drug resistance. Pyrimidine and pyrimidine-fused heterocycles are some of the privileged scaffolds in medicine, as they possess diverse biological properties. Pyrimidines containing azole nucleus possesses inestimable anticancer potency and has enormous potential to conduct the regulation of cellular pathways for selective anticancer activity. The present review outlines the molecular structure of pyrimidine-fused azoles with significant anticancer activity. The structure activity relationship and molecular docking studies have also been discussed. The current review is the first complete compilation of significant literature on the proposed topic from 2016 to 2020. The information contained in this review offers a useful insight to chemists in the design of new and potent anticancer azole-pyrimidine analogues.
Collapse
Affiliation(s)
- Chinweike Cosmas Eze
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | | | - Izuchukwu David Ugwu
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Uchenna Florence Eze
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Ebuka Leonard Onyeyilim
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Izuchi Solomon Attah
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Ifeoma Vivian Okonkwo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| |
Collapse
|
8
|
Abstract
This paper uses a unique dataset from Lebanon, a developing country with unstable political conditions, to explore the drivers of research outcomes. We use the Negative Binomial model to empirically examine the determinants of the total number of publications and single and co-authored articles. The results indicate that males are more likely to publish co-authored papers than females. Moreover, our findings show a quadratic relationship between age and the number of published papers with a peak at the age of 40. After this turning point, the publication rate starts to decrease at an increasing rate. When we run the model by gender, we find that females in large departments tend to publish more co-authored papers. We also find that full professors tend to publish more papers in Q1 and Q2 journals, while associate professors have more papers in Q2 and Q3 journals.
Collapse
|
9
|
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, Kathiravan MK. Structural Insights into Pyrazoles as Agents against Anti‐inflammatory and Related Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deivasigamani Priya
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | | | - Anandan Vijaybabu
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | - Manoharan Haritha
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | - Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
- Dr APJ Abdul Kalam Research Lab Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| |
Collapse
|
10
|
Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines. Molecules 2021; 26:molecules26102961. [PMID: 34065773 PMCID: PMC8156061 DOI: 10.3390/molecules26102961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells.
Collapse
|
11
|
Shebaby W, Saliba J, Faour WH, Ismail J, El Hage M, Daher CF, Taleb RI, Nehmeh B, Dagher C, Chrabieh E, Mroueh M. In vivo and in vitro anti-inflammatory activity evaluation of Lebanese Cannabis sativa L. ssp. indica (Lam.). JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113743. [PMID: 33359187 DOI: 10.1016/j.jep.2020.113743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis sativa L. is an aromatic annual herb belonging to the family Cannabaceae and it is widely distributed worldwide. Cultivation, selling, and consumption of cannabis and cannabis related products, regardless of its use, was prohibited in Lebanon until April 22, 2020. Nevertheless, cannabis oil has been traditionally used unlawfully for many years in Lebanon to treat diseases such as arthritis, diabetes, cancer and few neurological disorders. AIM OF THE STUDY The present study aims to evaluate the phytochemical and anti-inflammatory properties of a cannabis oil preparation that is analogous to the illegally used cannabis oil in Lebanon. MATERIALS AND METHODS Dried Cannabis flowers were extracted with ethanol without any purification procedures to simulate the extracts sold by underground dealers in Lebanon. GC/MS was performed to identify chemical components of the cannabis oil extract (COE). In vivo anti-inflammatory effect of COE was evaluated by using carageenan- and formalin-induced paw edema rat models. TNF-α production were determined by using LPS-activated rat monocytes. Anti-inflammatory markers were quantified using Western blot. RESULTS Chemical analysis of COE revealed that cannabidiol (CBD; 59.1%) and tetrahydrocannabinol (THC; 20.2%) were found to be the most abundant cannabinoids.Various monoterpenes (α-Pinene, Camphene, β-Myrecene and D-Limonene) and sesquiterpenes (β-Caryophyllene, α-Bergamotene, α-Humelene, Humulene epoxide II, and Caryophyllene oxide) were identified in the extract. Results showed that COE markedly suppressed the release of TNF-α in LPS-stimulated rat monocytes. Western blot analysis revealed that COE significantly inhibited LPS-induced COX-2 and i-NOS protein expressions and blocked the phosphorylation of MAPKs, specifically that of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK. COE displayed a significant inhibition of paw edema in both rat models. Histopathological examination revealed that COE reduced inflammation and edema in chronic paw edema model. CONCLUSION The current findings demonstrate that COE possesses remarkable in vivo and in vitro anti-inflammatory activities which support the traditional use of the Lebanese cannabis oil extract in the treatment of various inflammatory diseases including arthritis.
Collapse
Affiliation(s)
- Wassim Shebaby
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon; School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Jane Saliba
- School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Wissam H Faour
- School of Medicine, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Jana Ismail
- School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Marissa El Hage
- School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Costantine F Daher
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Robin I Taleb
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Bilal Nehmeh
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Carol Dagher
- School of Medicine, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Edwin Chrabieh
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Mohamad Mroueh
- School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| |
Collapse
|
12
|
Warda ET, Shehata IA, El-Ashmawy MB, El-Gohary NS. New series of isoxazole derivatives targeting EGFR-TK: Synthesis, molecular modeling and antitumor evaluation. Bioorg Med Chem 2020; 28:115674. [DOI: 10.1016/j.bmc.2020.115674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
|
13
|
New pyrimidines and triazolopyrimidines as antiproliferative and antioxidants with cyclooxygenase-1/2 inhibitory potential. Future Med Chem 2020; 11:1583-1603. [PMID: 31469327 DOI: 10.4155/fmc-2018-0285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Cyclooxygenase-2 (COX-2) inhibition and scavenging-free radicals are important targets in cancer treatment. Materials & methods: Sulfanylpyrimidines and triazolopyrimidines were synthesized and evaluated as anticancer and antioxidant COX-1/2 inhibitors. Results: Compound 7 showed the same growth inhibitory activity as 5-fluorouracil against MCF-7. Compound 6f displayed broad-spectrum anticancer activity against the four tested cancer cell lines. Compounds 5b, 6a, 6c, 6d and 8 were found to be more active antioxidants than trolox. Compounds 6a, 6c, 6f and 8 revealed high COX-2 inhibitory activity and selectivity, which was confirmed by docking studies. Conclusion: Compound 6f could be considered as promising anticancer and antioxidant structural lead with COX-2 inhibition that deserve further derivatization and investigation.
Collapse
|
14
|
Alharthy RD. Design and Synthesis of Novel Pyrazolo[3,4-d]Pyrimidines: In Vitro Cytotoxic Evaluation and Free Radical Scavenging Activity Studies. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02190-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Luo J, Li S, Kang Q, Sun Y, Wang T. Synthesis of some novel 5-substituted benzamido-6-arylamino-pyrazolo[3,4- D]pyrimidin-4-one derivatives for herbicidal activity. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1633529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jin Luo
- Analytical & Testing Center, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Shu Li
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Qiongwen Kang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Yi Sun
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Tao Wang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Elias A, Shebaby WN, Nehme B, Faour W, Bassil BS, Hakim JE, Iskandar R, Dib-Jalbout N, Mroueh M, Daher C, Taleb RI. In Vitro and In Vivo Evaluation of the Anticancer and Anti-inflammatory Activities of 2-Himachelen-7-ol isolated from Cedrus Libani. Sci Rep 2019; 9:12855. [PMID: 31492934 PMCID: PMC6731217 DOI: 10.1038/s41598-019-49374-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/23/2019] [Indexed: 11/20/2022] Open
Abstract
Cedrus libani is a majestic evergreen tree native to the Mediterranean mountains of Lebanon, Syria and Turkey. In this study, the tree heart wood was extracted using hexane to produce C. libani oil extract (CLOE) as a dark oil. GCMS analysis of CLOE identified up to 30 compounds whereby 2-himachalen-7-ol (7-HC) was the most abundant (40%). 7-HC was isolated using column chromatography and the identity of the white crystalline solid was confirmed via NMR spectroscopy and X-Ray Crystallography. 7-HC demonstrated potent cytotoxic activity against several human cancer cell lines including brain (SF-268, IC50 8.1 μg/mL) and colon (HT-29, IC50 10.1 μg/mL; Caco-2, IC50 9.9 μg/mL) with ovarian (Sk-OV-3, IC50 > 50 μg/mL) cells being the most resistant. However, while HT-29 displayed resistance to Cisplatin, 7-HC was 8–10 folds more potent. Co-treatment with 7-HC and Cisplatin showed a significant synergistic anti-proliferative effect against SF-268, HT-29 and Caco-2 cells. 7-HC also exhibited significant anti-inflammatory effect in formalin-induced paw edema in rats. Western blot analysis revealed that 7-HC displayed dose dependent inhibition of LPS-induced COX-2 protein expression in isolated rat monocytes. The present study demonstrates that 7-HC possesses promising anticancer and anti-inflammatory activities, and may serve as a lead molecule in cancer therapy.
Collapse
Affiliation(s)
- Andree Elias
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Wassim N Shebaby
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Bilal Nehme
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Wissam Faour
- School of Medicine, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Bassem S Bassil
- Faculty of Arts and Sciences, University of Balamand, PO Box 100, Tripoli, Lebanon
| | - Joelle El Hakim
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Rita Iskandar
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Nahia Dib-Jalbout
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Mohamad Mroueh
- School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Costantine Daher
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Robin I Taleb
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| |
Collapse
|
17
|
Synthesis, modeling and biological evaluation of some pyrazolo[3,4-d]pyrimidinones and pyrazolo[4,3-e][1,2,4]triazolo[4,3-a]pyrimidinones as anti-inflammatory agents. Bioorg Chem 2019; 90:102844. [DOI: 10.1016/j.bioorg.2019.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/03/2019] [Accepted: 03/09/2019] [Indexed: 12/11/2022]
|
18
|
El-Shoukrofy MS, Abd El Razik HA, AboulWafa OM, Bayad AE, El-Ashmawy IM. Pyrazoles containing thiophene, thienopyrimidine and thienotriazolopyrimidine as COX-2 selective inhibitors: Design, synthesis, in vivo anti-inflammatory activity, docking and in silico chemo-informatic studies. Bioorg Chem 2019; 85:541-557. [DOI: 10.1016/j.bioorg.2019.02.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
|
19
|
Afifi OS, Shaaban OG, Abd El Razik HA, Shams El-Dine SEDA, Ashour FA, El-Tombary AA, Abu-Serie MM. Synthesis and biological evaluation of purine-pyrazole hybrids incorporating thiazole, thiazolidinone or rhodanine moiety as 15-LOX inhibitors endowed with anticancer and antioxidant potential. Bioorg Chem 2019; 87:821-837. [PMID: 30999135 DOI: 10.1016/j.bioorg.2019.03.076] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/31/2019] [Indexed: 01/19/2023]
Abstract
Novel purine-pyrazole hybrids combining thiazoles, thiazolidinones and rhodanines, were designed and tested as 15-LOX inhibitors, potential anticancer and antioxidant agents. All tested compounds were found to be potent 15-LOX inhibitors with IC50 ranging from 1.76 to 6.12 µM. The prepared compounds were evaluated in vitro against five cancer cell lines: A549 (lung), Caco-2 (colon), PC3 (prostate), MCF-7 (breast) and HepG-2 (liver). Compounds 7b and 8b displayed broad spectrum anticancer activity against the five tested cell lines (IC50 = 18.5-95.39 µM). While, compound 7h demonstrated moderate anticancer activity against lung A549 and colon Caco-2 cell lines. Antioxidant screening revealed that six compounds (5a, 5b, 6b, 7b, 7h and 8b) with IC50 ranging from 0.93 to 14.43 µg/ml were found to be more potent scavengers of 2,2- diphenyl-1-picrylhydrazyl (DPPH) than the reference ascorbic acid with IC50 value of 15.34 µg/ml. Compounds 7b, 7h and 8b, when evaluated for their antioxidant activity, where found to be potent DPPH scavengers. Moreover, compound 7b displayed twice the potency of ascorbic acid as NO scavenger. Docking study was performed to elucidate the possible binding mode of the most active compounds with the active site of 15-LOX enzyme. Collectively, the purine-pyrazole hybrids having thiazoline or thizolidinone moieties (7b, 7h and 8b) constitute a promising scaffold in designing more potent 15-LOX inhibitors with anticancer and antioxidant potential.
Collapse
Affiliation(s)
- Ola S Afifi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Omaima G Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt.
| | - Heba A Abd El Razik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | | | - Fawzia A Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Alaa A El-Tombary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Marwa M Abu-Serie
- Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
20
|
Liu X, Song X, Liu Y, Xie M, Yu W, Yan S, Lin J, Jin Y. Novel 5H-[1,2,4]oxadiazolo[4,5-a]pyrimidin-5-one derivatives as antibacterial and anticancer agents: Synthesis and biological evaluation. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Ghosh S, Singharoy D, Bhattacharya SC. Spectroscopic and theoretical investigation of conformational changes of proteins by synthesized pyrimidine derivative and its sensitivity towards FRET application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:7-15. [PMID: 29358093 DOI: 10.1016/j.saa.2018.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/29/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Interest in synthesizing and characterizing (IR, NMR and HRMS spectroscopic methods) a pyrimidine based Schiff-base ligand, 2-(2-(Anthracen-9-ylmethylene) hydrazinyl)-4,6-dimethyl pyrimidine (ANHP) has been developed for its application to ascertain the conformational change of protein and sensitivity towards fluorescence resonance energy transfer (FRET) process. Location of ANHP in bovine serum albumin (BSA) and human serum albumin (HSA) proteins environment has been determined using different spectroscopic techniques. Weakly fluorescent ANHP have shown greater protein induced fluorescence enhancement (PIFE) in case of HSA than BSA, though in both cases energy transfer efficiency are almost same but difference in binding constant values encourages us to find the location of ANHP within the complex protein environment. From the FRET parameter and α-helicity change, it has been found that ANHP bound with Trp-214 of HSA and surface Trp-134 of BSA. Conformational changes of proteins have been observed more for HSA than BSA in presence of ANHP, which has confirmed the location of ANHP in both the protein environments. Coupled with experimental studies, molecular docking analysis has also been done to explain the locations and distance dependent FRET process of ANHP in both proteins.
Collapse
Affiliation(s)
- Swadesh Ghosh
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Dipti Singharoy
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|