1
|
Schiff HV, Rivas CM, Pederson WP, Sandoval E, Gillman S, Prisco J, Kume M, Dussor G, Vagner J, Ledford JG, Price TJ, DeFea KA, Boitano S. β-Arrestin-biased proteinase-activated receptor-2 antagonist C781 limits allergen-induced airway hyperresponsiveness and inflammation. Br J Pharmacol 2023; 180:667-680. [PMID: 35735078 PMCID: PMC10311467 DOI: 10.1111/bph.15903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is a heterogenous disease strongly associated with inflammation that has many different causes and triggers. Current asthma treatments target symptoms such as bronchoconstriction and airway inflammation. Despite recent advances in biological therapies, there remains a need for new classes of therapeutic agents with novel, upstream targets. The proteinase-activated receptor-2 (PAR2) has long been implicated in allergic airway inflammation and asthma and it remains an intriguing target for novel therapies. Here, we describe the actions of C781, a newly developed low MW PAR2 biased antagonist, in vitro and in vivo in the context of acute allergen exposure. EXPERIMENTAL APPROACH A human bronchial epithelial cell line expressing PAR2 (16HBE14o- cells) was used to evaluate the modulation in vitro, by C781, of physiological responses to PAR2 activation and downstream β-arrestin/MAPK and Gq/Ca2+ signalling. Acute Alternaria alternata sensitized and challenged mice were used to evaluate C781 as a prophylactically administered modulator of airway hyperresponsiveness, inflammation and mucus overproduction in vivo. KEY RESULTS C781 reduced in vitro physiological signalling in response to ligand and proteinase activation. C781 effectively antagonized β-arrestin/MAPK signalling without significant effect on Gq/Ca2+ signalling in vitro. Given prophylactically, C781 modulated airway hyperresponsiveness, airway inflammation and mucus overproduction of the small airways in an acute allergen-challenged mouse model. CONCLUSION AND IMPLICATIONS Our work demonstrates the first biased PAR2 antagonist for β-arrestin/MAPK signalling. C781 is efficacious as a prophylactic treatment for allergen-induced airway hyperresponsiveness and inflammation in mice. It exemplifies a key pharmacophore for PAR2 that can be optimized for clinical development.
Collapse
Affiliation(s)
- Hillary V. Schiff
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
| | - Candy M. Rivas
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - William P. Pederson
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - Estevan Sandoval
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
| | - Samuel Gillman
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - Joy Prisco
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
| | - Moeno Kume
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Josef Vagner
- Bio5 Collaborative Research Center, University of Arizona
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Department of Cellular and Molecular Medicine, University of Arizona
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Kathryn A. DeFea
- University of California Riverside, Biomedical Sciences and PARMedics, Incorporated
| | - Scott Boitano
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Department of Physiology, University of Arizona
| |
Collapse
|
2
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
3
|
Gandhi VD, Shrestha Palikhe N, Vliagoftis H. Protease-activated receptor-2: Role in asthma pathogenesis and utility as a biomarker of disease severity. Front Med (Lausanne) 2022; 9:954990. [PMID: 35966869 PMCID: PMC9372307 DOI: 10.3389/fmed.2022.954990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
PAR2, a receptor activated by serine proteases, has primarily pro-inflammatory roles in the airways and may play a role in asthma pathogenesis. PAR2 exerts its effects in the lungs through activation of a variety of airway cells, but also activation of circulating immune cells. There is evidence that PAR2 expression increases in asthma and other inflammatory diseases, although the regulation of PAR2 expression is not fully understood. Here we review the available literature on the potential role of PAR2 in asthma pathogenesis and propose a model of PAR2-mediated development of allergic sensitization. We also propose, based on our previous work, that PAR2 expression on peripheral blood monocyte subsets has the potential to serve as a biomarker of asthma severity and/or control.
Collapse
Affiliation(s)
- Vivek Dipak Gandhi
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Harissios Vliagoftis,
| |
Collapse
|
4
|
Rivas CM, Yee MC, Addison KJ, Lovett M, Pal K, Ledford JG, Dussor G, Price TJ, Vagner J, DeFea KA, Boitano S. Proteinase-activated receptor-2 antagonist C391 inhibits Alternaria-induced airway epithelial signalling and asthma indicators in acute exposure mouse models. Br J Pharmacol 2022; 179:2208-2222. [PMID: 34841515 DOI: 10.1111/bph.15745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/19/2021] [Accepted: 11/04/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Despite the availability of a variety of treatment options, many asthma patients have poorly controlled disease with frequent exacerbations. Proteinase-activated receptor-2 (PAR2) has been identified in preclinical animal models as important to asthma initiation and progression following allergen exposure. Proteinase activation of PAR2 raises intracellular Ca2+ , inducing MAPK and β-arrestin signalling in the airway, leading to inflammatory and protective effects. We have developed C391, a potent PAR2 antagonist effective in blocking peptidomimetic- and trypsin-induced PAR2 signalling in vitro as well as reducing inflammatory PAR2-associated pain in vivo. We hypothesized that PAR2 antagonism by C391 would attenuate allergen-induced acutely expressed asthma indicators in murine models. EXPERIMENTAL APPROACH We evaluated the ability of C391 to alter Alternaria alternata-induced PAR2 signalling pathways in vitro using a human airway epithelial cell line that naturally expresses PAR2 (16HBE14o-) and a transfected embryonic cell line (HEK 293). We next evaluated the ability for C391 to reduce A. alternata-induced acutely expressed asthma indicators in vivo in two murine strains. KEY RESULTS C391 blocked A. alternata-induced, PAR2-dependent Ca2+ and MAPK signalling in 16HBE14o- cells, as well as β-arrestin recruitment in HEK 293 cells. C391 effectively attenuated A. alternata-induced inflammation, mucus production, mucus cell hyperplasia and airway hyperresponsiveness in acute allergen-challenged murine models. CONCLUSIONS AND IMPLICATIONS To our best knowledge, this is the first demonstration of pharmacological intervention of PAR2 to reduce allergen-induced asthma indicators in vivo. These data support further development of PAR2 antagonists as potential first-in-class allergic asthma drugs.
Collapse
Affiliation(s)
- Candy M Rivas
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA.,Asthma and Airway Disease Research Center, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Michael C Yee
- Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Kenneth J Addison
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences, Tucson, Arizona, USA.,Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Marissa Lovett
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Kasturi Pal
- Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Julie G Ledford
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences, Tucson, Arizona, USA.,Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA
| | - Josef Vagner
- Bio5 Collaborative Research Institute, University of Arizona, Tucson, Arizona, USA
| | - Kathryn A DeFea
- Biomedical Sciences, University of California Riverside, Riverside, California, USA.,Corporate Headquarters, PARMedics, Inc., Temecula, California, USA
| | - Scott Boitano
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA.,Asthma and Airway Disease Research Center, University of Arizona Health Sciences, Tucson, Arizona, USA.,Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA.,Bio5 Collaborative Research Institute, University of Arizona, Tucson, Arizona, USA.,Department of Physiology, University of Arizona Health Sciences, Tucson, Arizona, USA
| |
Collapse
|
5
|
Rivas CM, Schiff H, Moutal A, Khanna R, Kiela PR, Dussor G, Price TJ, Vagner J, DeFea KA, Boitano S. Alternaria alternata-induced airway epithelial signaling and inflammatory responses via protease-activated receptor-2 expression. Biochem Biophys Res Commun 2022; 591:13-19. [PMID: 34990903 PMCID: PMC8792334 DOI: 10.1016/j.bbrc.2021.12.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023]
Abstract
Inhalation of the fungus Alternaria alternata is associated with an increased risk of allergic asthma development and exacerbations. Recent work in acute exposure animal models suggests that A. alternata-induced asthma symptoms, which include inflammation, mucus overproduction and airway hyperresponsiveness, are due to A. alternata proteases that act via protease-activated receptor-2 (PAR2). However, because other active components present in A. alternata may be contributing to asthma pathophysiology through alternative signaling, the specific role PAR2 plays in asthma initiation and maintenance remains undefined. Airway epithelial cells provide the first encounter with A. alternata and are thought to play an important role in initiating the physiologic response. To better understand the role for PAR2 airway epithelial signaling we created a PAR2-deficient human bronchial epithelial cell line (16HBEPAR-/-) from a model bronchial parental line (16HBE14o-). Comparison of in vitro physiologic responses in these cell lines demonstrated a complete loss of PAR2 agonist (2at-LIGRL-NH2) response and significantly attenuated protease (trypsin and elastase) and A. alternata responses in the 16HBEPAR-/- line. Apical application of A. alternata to 16HBE14o- and 16HBEPAR2-/- grown at air-liquid interface demonstrated rapid, PAR2-dependent and independent, inflammatory cytokine, chemokine and growth factor basolateral release. In conclusion, the novel human PAR2-deficient cell line allows for direct in vitro examination of the role(s) for PAR2 in allergen challenge with polarized human airway epithelial cells.
Collapse
Affiliation(s)
- Candy M. Rivas
- Department of Physiology, University of Arizona, Tucson, AZ;,Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ;,Bio5 Collaborative Research Institute, University of Arizona, Tucson, AZ
| | - Hillary Schiff
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ;,Bio5 Collaborative Research Institute, University of Arizona, Tucson, AZ;,Department of Biochemistry, University of Arizona, Tucson AZ
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, AZ
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ
| | - Pawel R. Kiela
- Department of Pediatrics, University of Arizona, Tucson, AZ
| | - Gregory Dussor
- Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Theodore J Price
- Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Josef Vagner
- Bio5 Collaborative Research Institute, University of Arizona, Tucson, AZ
| | - Kathryn A. DeFea
- University of California Riverside, Biomedical Sciences and PARMedics, Incorporated
| | - Scott Boitano
- Department of Physiology, University of Arizona, Tucson, AZ;,Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ;,Bio5 Collaborative Research Institute, University of Arizona, Tucson, AZ;,Corresponding Author: Scott Boitano, Ph.D., Professor, Physiology, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, Arizona. 85724-5030, , +1 (520) 626-2105
| |
Collapse
|
6
|
Matos NAD, Reis DCD, Rocha LK, Mattos MSD, Cassali GD, Russo RC, Perez ADC, Klein A. Pharmacological blockade of protease-Activated Receptor 2 improves airway remodeling and lung inflammation in experimental allergic asthma. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
7
|
Blockade of protease-activated receptor 2 attenuates allergen-mediated acute lung inflammation and leukocyte recruitment in mice. J Biosci 2021. [DOI: 10.1007/s12038-021-00239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Azouz NP, Klingler AM, Pathre P, Besse JA, Baruch-Morgenstern NB, Ballaban AY, Osswald GA, Brusilovsky M, Habel JE, Caldwell JM, Ynga-Durand MA, Abonia PJ, Hu YC, Wen T, Rothenberg ME. Functional role of kallikrein 5 and proteinase-activated receptor 2 in eosinophilic esophagitis. Sci Transl Med 2021; 12:12/545/eaaz7773. [PMID: 32461336 DOI: 10.1126/scitranslmed.aaz7773] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, food antigen-driven, inflammatory disease of the esophagus and is associated with impaired barrier function. Evidence is emerging that loss of esophageal expression of the serine peptidase inhibitor, kazal type 7 (SPINK7), is an upstream event in EoE pathogenesis. Here, we provide evidence that loss of SPINK7 mediates its pro-EoE effects via kallikrein 5 (KLK5) and its substrate, protease-activated receptor 2 (PAR2). Overexpression of KLK5 in differentiated esophageal epithelial cells recapitulated the effect of SPINK7 gene silencing, including barrier impairment and loss of desmoglein-1 expression. Conversely, KLK5 deficiency attenuated allergen-induced esophageal protease activity, modified commensal microbiome composition, and attenuated eosinophilia in a murine model of EoE. Inhibition of PAR2 blunted the cytokine production associated with loss of SPINK7 in epithelial cells and attenuated the allergen-induced esophageal eosinophilia in vivo. Clinical samples substantiated dysregulated PAR2 expression in the esophagus of patients with EoE, and delivery of the clinically approved drug α1 antitrypsin (A1AT, a protease inhibitor) inhibited experimental EoE. These findings demonstrate a role for the balance between KLK5 and protease inhibitors in the esophagus and highlight EoE as a protease-mediated disease. We suggest that antagonizing KLK5 and/or PAR2 has potential to be therapeutic for EoE.
Collapse
Affiliation(s)
- Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Andrea M Klingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Purnima Pathre
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - John A Besse
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Netali Ben Baruch-Morgenstern
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Adina Y Ballaban
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Garrett A Osswald
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Michael Brusilovsky
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Jeff E Habel
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Mario A Ynga-Durand
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA.,Laboratorio de Inmunidad de Mucosas, Sección de Investigación y Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Pablo J Abonia
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA.
| |
Collapse
|
9
|
Abu Khweek A, Kim E, Joldrichsen MR, Amer AO, Boyaka PN. Insights Into Mucosal Innate Immune Responses in House Dust Mite-Mediated Allergic Asthma. Front Immunol 2020; 11:534501. [PMID: 33424827 PMCID: PMC7793902 DOI: 10.3389/fimmu.2020.534501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/01/2020] [Indexed: 01/09/2023] Open
Abstract
The prevalence of asthma has been rising steadily for several decades, and continues to be a major public health and global economic burden due to both direct and indirect costs. Asthma is defined as chronic heterogeneous inflammatory diseases characterized by airway obstruction, mucus production and bronchospasm. Different endotypes of asthma are being recognized based on the distinct pathophysiology, genetic predisposition, age, prognosis, and response to remedies. Mucosal innate response to environmental triggers such as pollen, cigarette smoke, fragrances, viral infection, and house dust mite (HDM) are now recognized to play an important role in allergic asthma. HDM are the most pervasive allergens that co-habitat with us, as they are ubiquitous in-house dusts, mattress and bedsheets, and feed on a diet of exfoliated human skin flakes. Dermatophagoides pteronyssinus, is one among several HDM identified up to date. During the last decade, extensive studies have been fundamental in elucidating the interactions between HDM allergens, the host immune systems and airways. Moreover, the paradigm in the field of HDM-mediated allergy has been shifted away from being solely a Th2-geared to a complex response orchestrated via extensive crosstalk between the epithelium, professional antigen presenting cells (APCs) and components of the adaptive immunity. In fact, HDM have several lessons to teach us about their allergenicity, the complex interactions that stimulate innate immunity in initiating and perpetuating the lung inflammation. Herein, we review main allergens of Dermatophagoides pteronyssinus and their interactions with immunological sentinels that promote allergic sensitization and activation of innate immunity, which is critical for the development of the Th2 biased adaptive immunity to HDM allergens and development of allergic asthma.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Marisa R Joldrichsen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,The Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Prosper N Boyaka
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States.,The Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Buhl T, Ikoma A, Kempkes C, Cevikbas F, Sulk M, Buddenkotte J, Akiyama T, Crumrine D, Camerer E, Carstens E, Schön MP, Elias P, Coughlin SR, Steinhoff M. Protease-Activated Receptor-2 Regulates Neuro-Epidermal Communication in Atopic Dermatitis. Front Immunol 2020; 11:1740. [PMID: 32903402 PMCID: PMC7435019 DOI: 10.3389/fimmu.2020.01740] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Activation of protease-activated receptor-2 (PAR2) has been implicated in inflammation, pruritus, and skin barrier regulation, all characteristics of atopic dermatitis (AD), as well as Netherton syndrome which has similar characteristics. However, understanding the precise role of PAR2 on neuro-immune communication in AD has been hampered by the lack of appropriate animal models. Methods: We used a recently established mouse model with epidermal overexpression of PAR2 (PAR2OE) and littermate WT mice to study the impact of increased PAR2 expression in epidermal cells on spontaneous and house dust mite (HDM)-induced skin inflammation, itch, and barrier dysfunction in AD, in vivo and ex vivo. Results: PAR2OE newborns displayed no overt abnormalities, but spontaneously developed dry skin, severe pruritus, and eczema. Dermatological, neurophysiological, and immunological analyses revealed the hallmarks of AD-like skin disease. Skin barrier defects were observed before onset of skin lesions. Application of HDM onto PAR2OE mice triggered pruritus and the skin phenotype. PAR2OE mice displayed an increased density of nerve fibers, increased nerve growth factor and endothelin-1 expression levels, alloknesis, enhanced scratching (hyperknesis), and responses of dorsal root ganglion cells to non-histaminergic pruritogens. Conclusion: PAR2 in keratinocytes, activated by exogenous and endogenous proteases, is sufficient to drive barrier dysfunction, inflammation, and pruritus and sensitize skin to the effects of HDM in a mouse model that mimics human AD. PAR2 signaling in keratinocytes appears to be sufficient to drive several levels of neuro-epidermal communication, another feature of human AD.
Collapse
Affiliation(s)
- Timo Buhl
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States.,Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Akihiko Ikoma
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States.,Department of Dermatology and UCD Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland
| | - Cordula Kempkes
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Ferda Cevikbas
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mathias Sulk
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States.,Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Joerg Buddenkotte
- Department of Dermatology and Venerology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tasuku Akiyama
- Department of Dermatology, Anatomy and Cell Biology, Temple Itch Center, Temple University, Philadelphia, PA, United States.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Debbie Crumrine
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France
| | - Earl Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Elias
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Steinhoff
- Department of Dermatology and Surgery, University of California, San Francisco, San Francisco, CA, United States.,Department of Dermatology and UCD Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland.,Department of Dermatology and Venerology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Dermatology, Medical School, University of Qatar, Doha, Qatar.,School of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
11
|
de Almeida AD, Silva IS, Fernandes-Braga W, LimaFilho ACM, Florentino ROM, Barra A, de Oliveira Andrade L, Leite MF, Cassali GD, Klein A. A role for mast cells and mast cell tryptase in driving neutrophil recruitment in LPS-induced lung inflammation via protease-activated receptor 2 in mice. Inflamm Res 2020; 69:1059-1070. [PMID: 32632517 DOI: 10.1007/s00011-020-01376-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/04/2020] [Accepted: 07/02/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE This study aims to investigate the role of protease-activated receptor (PAR) 2 and mast cell (MC) tryptase in LPS-induced lung inflammation and neutrophil recruitment in the lungs of C57BL/6 mice. METHODS C57BL/6 mice were pretreated with the PAR2 antagonist ENMD-1068, compound 48/80 or aprotinin prior to intranasal instillation of MC tryptase or LPS. Blood leukocytes, C-X-C motif chemokine ligand (CXCL) 1 production leukocytes recovered from bronchoalveolar lavage fluid (BALF), and histopathological analysis of the lung were evaluated 4 h later. Furthermore, we performed experiments to determine intracellular calcium signaling in RAW 264.7 cells stimulated with LPS in the presence or absence of a protease inhibitor cocktail or ENMD-1068 and evaluated PAR2 expression in the lungs of LPS-treated mice. RESULTS Pharmacological blockade of PAR2 or inhibition of proteases reduced neutrophils recovered in BALF and LPS-induced calcium signaling. PAR2 blockade impaired LPS-induced lung inflammation, PAR2 expression in the lung and CXCL1 release in BALF, and increased circulating blood neutrophils. Intranasal instillation of MC tryptase increased the number of neutrophils recovered in BALF, and MC depletion with compound 48/80 impaired LPS-induced neutrophil migration. CONCLUSION Our study provides, for the first time, evidence of a pivotal role for MCs and MC tryptase in neutrophil migration, lung inflammation and macrophage activation triggered by LPS, by a mechanism dependent on PAR2 activation.
Collapse
Affiliation(s)
- Aline Dias de Almeida
- Laboratory of Pain and Inflammation, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Irismara Sousa Silva
- Laboratory of Pain and Inflammation, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio Carlos Melo LimaFilho
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - R Odrigo Machado Florentino
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ayslan Barra
- Laboratory of Pain and Inflammation, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Luciana de Oliveira Andrade
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M Fátima Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geovanni Dantas Cassali
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André Klein
- Laboratory of Pain and Inflammation, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-010, Brazil.
| |
Collapse
|
12
|
Yap JMG, Ueda T, Takeda N, Fukumitsu K, Fukuda S, Uemura T, Tajiri T, Ohkubo H, Maeno K, Ito Y, Kanemitsu Y, Niimi A. An inflammatory stimulus sensitizes TRPA1 channel to increase cytokine release in human lung fibroblasts. Cytokine 2020; 129:155027. [PMID: 32050145 DOI: 10.1016/j.cyto.2020.155027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 01/08/2023]
Abstract
External stimuli such as cigarette smoke and house dust mite are often involved in the development and exacerbation of asthma. These risk factors could activate or sensitize transient receptor potential channel ankyrin 1 (TRPA1), which are primarily expressed in neuronal structures but also in non-neuronal cells such as fibroblasts. However, the role of non-neuronal TRPA1 in the pathophysiology of airway diseases including asthma remains unclear. We investigated TRPA1 expression on human fibroblast cells and whether inflammatory mediators could modulate its function. This study utilized human lung fibroblast cell lines, Medical Research Council cell strain 5 (MRC-5) and HF19 cells frequently used on experimental studies regarding allergic and respiratory disorders. The human lung fibroblasts were stimulated with house dust mite (Der p1) or tumor necrosis factor alpha (TNF-α) for 24 h, and we quantified TRPA1 mRNA and protein by qRT-PCR and western blot analysis, respectively. TRPA1 mRNA expressions were upregulated after TNF-α treatment. Calcium imaging analysis revealed that TNF-α treatment apparently sensitized TRPA1-mediated calcium influx by TRPA1 agonist allyl isothiocyanate (AITC) and the selective TRPA1 channel blocker HC-030031 effectively reduced the calcium response. Lastly, TRPA1 activation was not only involved in increased IL-8 cytokine release, but also in upregulating gene expression of matrix metalloprotease 9 (MMP9) in the human lung fibroblasts treated with TNF-α Together, these results indicate that presence of inflammatory mediators such as TNF-α could upregulate the non-neuronal expression of TRPA1 on fibroblasts which may aggravate further the release of inflammatory cytokines observed in human airway diseases.
Collapse
Affiliation(s)
- Jennifer Maries Go Yap
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Takashi Ueda
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Norihisa Takeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Kensuke Fukumitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Satoshi Fukuda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Takehiro Uemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Tomoko Tajiri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan.
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| |
Collapse
|
13
|
Nadeem A, Al-Harbi NO, Ahmad SF, Ibrahim KE, Alotaibi MR, Siddiqui N, Alsharari SD, Attia SM, Al-Harbi MM. Protease activated receptor-2 mediated upregulation of IL-17 receptor signaling on airway epithelial cells is responsible for neutrophilic infiltration during acute exposure of house dust mite allergens in mice. Chem Biol Interact 2019; 304:52-60. [PMID: 30853428 DOI: 10.1016/j.cbi.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/14/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
Asthma, a chronic inflammatory disease affecting the airways is primarily caused due to immune system dysfunction. Different inhaled allergens such as house dust mites (HDM), fungi, cockroach allergens are the main contributors to allergic asthma. Protease activated receptor-2 (PAR-2) signaling plays an important role in allergic asthma through modulation of immune mediators in airway epithelial cells (AECs). Interleukin-17A (IL-17A) signals via subunits of IL-17 receptor (IL-17R), i.e. interleukin-17 receptor A (IL-17RA) and interleukin-17 receptor C (IL-17RC), and plays a necessary role in neutrophilic infiltration in response to infectious/allergenic stimuli, however it is not known if PAR-2 activation affects IL-17A/IL-17R signaling during acute exposure to house dust mite (HDM) allergens. Therefore, our study exposed mice to HDM allergens for five days and evaluated its effect on IL-17A/IL-17R signaling, chemokine/cytokines and neutrophilic inflammation in mice. Our study shows that HDM allergens upregulate IL-17A levels in the lung and IL-17RA/IL-17RC expression in AECs. PAR-2 activation by trypsin also upregulates neutrophilic influx and IL-17A/IL-17R signaling in the lung. Upregulated IL-17A/IL-17R signaling was associated with increased BAL neutrophils, pulmonary MPO activity and proinflammatory chemokines and cytokines (IL-23, IL-6, and MCP-1 in AECs/lung) in HDM exposed mice. Further, HDM-induced IL-17A, IL-17R and chemokines/cytokines were attenuated by PAR-2 antagonist, ENMD-1068. Furthermore, HDM-primed mice treated with IL-17A had greater neutrophilic inflammation and higher levels of inflammatory cytokines/chemokines than PBS-exposed mice treated with IL-17A. This proposes that acute exposure to HDM allergens activate AECs at a very early stage where PAR-2/IL-17R signaling serves a crucial role in neutrophilic inflammation.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Shakir D Alsharari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Eosinophilic Upper Airway Inflammation in a Murine Model Using an Adoptive Transfer System Induces Hyposmia and Epithelial Layer Injury with Convex Lesions. Med Sci (Basel) 2019; 7:medsci7020022. [PMID: 30764556 PMCID: PMC6409781 DOI: 10.3390/medsci7020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a refractory upper airway disease, accompanied mainly by eosinophilia and/or asthma. In addition, the disease correlates with a high rate of hyposmia, following a marked infiltration of eosinophils into the inflamed site, the paranasal sinus. Although eosinophils are known to contribute to the development of hyposmia and CRSwNP pathology, the underlying mechanisms remain unclear. This study aimed to investigate whether eosinophilic upper airway inflammation induces hyposmia and CRSwNP in a murine model using an adoptive transfer system. Methods: To induce eosinophilic rhinosinusitis, splenocytes, including a high proportion (over 50%) of activated eosinophils (SPLhEos), were collected from interleukin-5 transgenic mice following double intraperitoneal injections of antigens, such as ovalbumin, house dust mite, or fungus. Activated SPLhEos with corresponding antigens were then transferred into the nasal cavity of recipient mice, which were sensitized and challenged by the corresponding antigen four times per week. Olfactory function, histopathological, and computed tomography (CT) analyses were performed 2 days after the final transfer of eosinophils. Results: Hyposmia was induced significantly in mice that received SPLhEos transfer compared with healthy and allergic mice, but it did not promote morphological alteration of the paranasal sinus. Pathological analysis revealed that epithelial layer injury and metaplasia similar to polyps, with prominent eosinophil infiltration, was induced in recipient tissue. However, there was no nasal polyp development with interstitial edema that was similar to those recognized in human chronic rhinosinusitis. Conclusions: This study supports the previously unsuspected contribution of eosinophils to CRS development in the murine model and suggests that murine-activated eosinophilic splenocytes contribute to the development of hyposmia due to more mucosal inflammation than physical airway obstruction and epithelial layer injury with convex lesions.
Collapse
|
15
|
Ueda Y, Nakagome K, Kobayashi T, Noguchi T, Soma T, Ohashi-Doi K, Tokuyama K, Nagata M. Dermatophagoides farinae Upregulates the Effector Functions of Eosinophils through αMβ2-Integrin and Protease-Activated Receptor-2. Int Arch Allergy Immunol 2019; 178:295-306. [PMID: 30630188 DOI: 10.1159/000495008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/31/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Even in subjects who are not sensitized to house dust mite (HDM), allergic symptoms can be aggravated by exposure to dust, suggesting that innate immune responses may be involved in these processes. Since eosinophils express pattern recognition receptors, HDM may directly upregulate eosinophil functions through these re ceptors. The objective of this study was to examine whether Dermatophagoides farinae (Df), a representative HDM, or Der f 1, a major allergen of Df, modifies the effector functions of eosinophils. METHODS Eosinophils isolated from the blood of healthy donors or allergic patients were stimulated with Df extract or Der f 1, and their adhesion to recombinant human intercellular adhesion molecule (ICAM)-1 was measured using eosinophil peroxidase assays. Generation of the eosinophil superoxide anion (O2-) was examined based on the superoxide dismutase-inhibitable reduction of cytochrome C. Eosinophil-derived neurotoxin (EDN) concentrations in cell media were measured by ELISA as a marker of degranulation. RESULTS Df extract or Der f 1 directly induced eosinophil adhesion to ICAM-1, O2- generation, and EDN release. Anti-αM- or anti-β2-integrin antibodies or protease-activated receptor (PAR)-2 antagonists suppressed the eosinophil adhesion, O2- generation, and EDN release induced by Df extract or Der f 1. Eosinophils from allergic patients showed higher adhesion to ICAM-1 than those from healthy donors. CONCLUSIONS These findings suggested that Df extract and Der f 1 directly activate eosinophil functions through αMβ2-integrin and PAR-2. Eosinophil activation by HDM may play roles in the aggravation of allergic symptoms, not only in HDM-sensitized patients, but also in nonsensitized patients.
Collapse
Affiliation(s)
- Yutaka Ueda
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Department of Pediatrics, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University, Saitama, Japan
| | - Kazuyuki Nakagome
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan, .,Allergy Center, Saitama Medical University, Saitama, Japan,
| | - Takehito Kobayashi
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University, Saitama, Japan
| | - Toru Noguchi
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University, Saitama, Japan
| | - Tomoyuki Soma
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University, Saitama, Japan
| | | | - Kenichi Tokuyama
- Department of Pediatrics, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University, Saitama, Japan
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
16
|
Yee MC, Nichols HL, Polley D, Saifeddine M, Pal K, Lee K, Wilson EH, Daines MO, Hollenberg MD, Boitano S, DeFea KA. Protease-activated receptor-2 signaling through β-arrestin-2 mediates Alternaria alkaline serine protease-induced airway inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 315:L1042-L1057. [PMID: 30335499 PMCID: PMC6337008 DOI: 10.1152/ajplung.00196.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/06/2018] [Accepted: 08/22/2018] [Indexed: 01/01/2023] Open
Abstract
Alternaria alternata is a fungal allergen associated with severe asthma and asthma exacerbations. Similarly to other asthma-associated allergens, Alternaria secretes a serine-like trypsin protease(s) that is thought to act through the G protein-coupled receptor protease-activated receptor-2 (PAR2) to induce asthma symptoms. However, specific mechanisms underlying Alternaria-induced PAR2 activation and signaling remain ill-defined. We sought to determine whether Alternaria-induced PAR2 signaling contributed to asthma symptoms via a PAR2/β-arrestin signaling axis, identify the protease activity responsible for PAR2 signaling, and determine whether protease activity was sufficient for Alternaria-induced asthma symptoms in animal models. We initially used in vitro models to demonstrate Alternaria-induced PAR2/β-arrestin-2 signaling. Alternaria filtrates were then used to sensitize and challenge wild-type, PAR2-/- and β-arrestin-2-/- mice in vivo. Intranasal administration of Alternaria filtrate resulted in a protease-dependent increase of airway inflammation and mucin production in wild-type but not PAR2-/- or β-arrestin-2-/- mice. Protease was isolated from Alternaria preparations, and select in vitro and in vivo experiments were repeated to evaluate sufficiency of the isolated Alternaria protease to induce asthma phenotype. Administration of a single isolated serine protease from Alternaria, Alternaria alkaline serine protease (AASP), was sufficient to fully activate PAR2 signaling and induce β-arrestin-2-/--dependent eosinophil and lymphocyte recruitment in vivo. In conclusion, Alternaria filtrates induce airway inflammation and mucus hyperplasia largely via AASP using the PAR2/β-arrestin signaling axis. Thus, β-arrestin-biased PAR2 antagonists represent novel therapeutic targets for treating aeroallergen-induced asthma.
Collapse
Affiliation(s)
- Michael C Yee
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
| | - Heddie L Nichols
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
| | - Danny Polley
- Cumming School of Medicine, Department of Physiology and Pharmacology and Department of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Mahmoud Saifeddine
- Cumming School of Medicine, Department of Physiology and Pharmacology and Department of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Kasturi Pal
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
- Cell Molecular and Developmental Biology and Biochemistry Graduate Program, University of California Riverside , Riverside, California
| | - Kyu Lee
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
- Molecular Biology Graduate Program, University of California Riverside , Riverside, California
| | - Emma H Wilson
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
| | - Michael O Daines
- Department of Pediatrics, University of Arizona Health Sciences , Tucson, Arizona
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences , Tucson, Arizona
| | - Morley D Hollenberg
- Cumming School of Medicine, Department of Physiology and Pharmacology and Department of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Scott Boitano
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences , Tucson, Arizona
- Department of Physiology, University of Arizona Health Sciences , Tucson, Arizona
| | - Kathryn A DeFea
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
- Cell Molecular and Developmental Biology and Biochemistry Graduate Program, University of California Riverside , Riverside, California
- Molecular Biology Graduate Program, University of California Riverside , Riverside, California
| |
Collapse
|
17
|
George T, Chakraborty M, Giembycz MA, Newton R. A bronchoprotective role for Rgs2 in a murine model of lipopolysaccharide-induced airways inflammation. Allergy Asthma Clin Immunol 2018; 14:40. [PMID: 30305828 PMCID: PMC6166284 DOI: 10.1186/s13223-018-0266-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
Background Asthma exacerbations are associated with the recruitment of neutrophils to the lungs. These cells release proteases and mediators, many of which act at G protein-coupled receptors (GPCRs) that couple via Gq to promote bronchoconstriction and inflammation. Common asthma therapeutics up-regulate expression of the regulator of G protein signalling (RGS), RGS2. As RGS2 reduces signaling from Gq-coupled GPCRs, we have defined role(s) for this GTPase-activating protein in an acute neutrophilic model of lung inflammation. Methods Wild type and Rgs2−/− C57Bl6 mice were exposed to nebulized lipopolysaccharide (LPS). Lung function (respiratory system resistance and compliance) was measured using a SCIREQ flexivent small animal ventilator. Lung inflammation was assessed by histochemistry, cell counting and by cytokine and chemokine expression in bronchoalveolar lavage (BAL) fluid. Results Lipopolysaccharide inhalation induced transient airways hyperreactivity (AHR) and neutrophilic lung inflammation. While AHR and inflammation was greatest 3 h post-LPS exposure, BAL neutrophils persisted for 24 h. At 3 h post-LPS inhalation, multiple inflammatory cytokines (CSF2, CSF3, IL6, TNF) and chemokines (CCL3, CCL4, CXCL1, CXCL2) were highly expressed in the BAL fluid, prior to declining by 24 h. Compared to wild type counterparts, Rgs2−/− mice developed significantly greater airflow resistance in response to inhaled methacholine (MCh) at 3 h post-LPS exposure. At 24 h post-LPS exposure, when lung function was recovering in the wild type animals, MCh-induced resistance was increased, and compliance decreased, in Rgs2−/− mice. Thus, Rgs2−/− mice show AHR and stiffer lungs 24 h post-LPS exposure. Histological markers of inflammation, total and differential cell counts, and major cytokine and chemokine expression in BAL fluid were similar between wild type and Rgs2−/− mice. However, 3 and 24 h post-LPS exposure, IL12B expression was significantly elevated in BAL fluid from Rgs2−/− mice compared to wild type animals. Conclusions While Rgs2 is bronchoprotective in acute neutrophilic inflammation, no clear anti-inflammatory effect was apparent. Nevertheless, elevated IL12B expression in Rgs2−/− animals raises the possibility that RGS2 could dampen Th1 responses. These findings indicate that up-regulation of RGS2, as occurs in response to inhaled corticosteroids and long-acting β2-adrenoceptor agonists, may be beneficial in acute neutrophilic exacerbations of airway disease, including asthma. Electronic supplementary material The online version of this article (10.1186/s13223-018-0266-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tresa George
- 1Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6 Canada
| | - Mainak Chakraborty
- 2Immunology Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6 Canada
| | - Mark A Giembycz
- 1Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6 Canada
| | - Robert Newton
- 1Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6 Canada
| |
Collapse
|
18
|
Wang H, Li ZY, Jiang WX, Liao B, Zhai GT, Wang N, Zhen Z, Ruan JW, Long XB, Wang H, Liu WH, Liang GT, Xu WM, Kato A, Liu Z. The activation and function of IL-36γ in neutrophilic inflammation in chronic rhinosinusitis. J Allergy Clin Immunol 2018; 141:1646-1658. [DOI: 10.1016/j.jaci.2017.12.972] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 11/28/2022]
|
19
|
Asaduzzaman M, Davidson C, Nahirney D, Fiteih Y, Puttagunta L, Vliagoftis H. Proteinase-activated receptor-2 blockade inhibits changes seen in a chronic murine asthma model. Allergy 2018; 73:416-420. [PMID: 28940559 DOI: 10.1111/all.13313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Proteinase-Activated Receptor-2 (PAR2 ) is a G protein-coupled receptor activated by serine proteinases. We have shown that PAR2 activation in the airways is involved in the development of allergic inflammation and airway hyperresponsiveness (AHR) in acute murine models. We hypothesized that functional inhibition of PAR2 prevents allergic inflammation, AHR and airway remodeling in chronic allergic airway inflammation models. MATERIAL AND METHODS We developed and used a 12 week model of cockroach extract (CE)-mediated AHR, airway inflammation and remodeling in BALB/c mice. RESULTS Mice sensitized and challenged with CE for 12 weeks exhibit AHR, increased numbers of eosinophils in bronchoalveolar lavage (BAL) and increased collagen content in the lung tissue compared to saline controls. Administration of an anti-PAR2 antibody, SAM-11, after the initial development of airway inflammation significantly inhibited all these parameters. CONCLUSIONS Our data demonstrate that PAR2 signaling plays a key role in CE-induced AHR and airway inflammation/remodeling in long term models of allergic airway inflammation. Targeting PAR2 activation may be a successful therapeutic strategy for allergic asthma.
Collapse
Affiliation(s)
- M. Asaduzzaman
- Department of Medicine; Pulmonary Research Group; University of Alberta; Edmonton AB Canada
| | - C. Davidson
- Department of Medicine; Pulmonary Research Group; University of Alberta; Edmonton AB Canada
| | - D. Nahirney
- Department of Medicine; Pulmonary Research Group; University of Alberta; Edmonton AB Canada
| | - Y. Fiteih
- Department of Medicine; Pulmonary Research Group; University of Alberta; Edmonton AB Canada
| | - L. Puttagunta
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton AB Canada
| | - H. Vliagoftis
- Department of Medicine; Pulmonary Research Group; University of Alberta; Edmonton AB Canada
| |
Collapse
|
20
|
White MJV, Chinea LE, Pilling D, Gomer RH. Protease activated-receptor 2 is necessary for neutrophil chemorepulsion induced by trypsin, tryptase, or dipeptidyl peptidase IV. J Leukoc Biol 2017; 103:119-128. [PMID: 29345066 DOI: 10.1002/jlb.3a0717-308r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/22/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
Compared to neutrophil chemoattractants, relatively little is known about the mechanism neutrophils use to respond to chemorepellents. We previously found that the soluble extracellular protein dipeptidyl peptidase IV (DPPIV) is a neutrophil chemorepellent. In this report, we show that an inhibitor of the protease activated receptor 2 (PAR2) blocks DPPIV-induced human neutrophil chemorepulsion, and that PAR2 agonists such as trypsin, tryptase, 2f-LIGRL, SLIGKV, and AC55541 induce human neutrophil chemorepulsion. Several PAR2 agonists in turn block the ability of the chemoattractant fMLP to attract neutrophils. Compared to neutrophils from male and female C57BL/6 mice, neutrophils from male and female mice lacking PAR2 are insensitive to the chemorepulsive effects of DPPIV or PAR2 agonists. Acute respiratory distress syndrome (ARDS) involves an insult-mediated influx of neutrophils into the lungs. In a mouse model of ARDS, aspiration of PAR2 agonists starting 24 h after an insult reduce neutrophil numbers in the bronchoalveolar lavage (BAL) fluid, as well as the post-BAL lung tissue. Together, these results indicate that the PAR2 receptor mediates DPPIV-induced chemorepulsion, and that PAR2 agonists might be useful to induce neutrophil chemorepulsion.
Collapse
Affiliation(s)
- Michael J V White
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Luis E Chinea
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
21
|
Xue J, Yang L, Yang G, Geng X, Liu Z, Wang S, Zhao H, Liu Z, Zhao C, Yang P. Protease-activated receptor-2 suppresses interleukin (IL)-10 expression in B cells via upregulating Bcl2L12 in patients with allergic rhinitis. Allergy 2017; 72:1704-1712. [PMID: 28426164 DOI: 10.1111/all.13186] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS The function of interleukin (IL)-10-producing B cells (B10 cell) is compromised in patients with allergic diseases. Protease-activated receptor (PAR)-2 has immunoregulatory functions. This study aimed to elucidate the role of PAR2 in the suppression of IL-10 expression in peripheral B cells. METHODS Peripheral blood B cells were collected from patients with allergic rhinitis (AR). A correlation between the expression of Bcl2-like protein 12 (Bcl2L12) and IL-10 in the B cells was analyzed. An AR mouse model was developed. RESULTS We observed that the expression of IL-10 was lower in the peripheral B cells from patients with airway allergy. A negative correlation was identified between the expression of IL-10 and PAR2 in B cells. Activation of PAR2 of B cells increased the expression of Bcl2L12 and suppression of LPS-induced IL-10 expression, which were inhibited by knocking down the Bcl2L12 gene. Treating B cells from AR patients with Bcl2L12-shRNA-carrying liposomes reversed the capability of IL-10 expression and the immunosuppressive function. Administration of Bcl2L12 shRNA-carrying liposomes attenuated experimental AR in mice. CONCLUSIONS Activation of PAR2 inhibits the expression of IL-10 in B cells, which can be reversed by treating B cells with Bcl2L12 shRNA-carrying liposomes. The data suggest that regulation of Bcl2L12 may be a novel approach in the treatment for AR.
Collapse
Affiliation(s)
- J.‐M. Xue
- Department of Otolaryngology, Head & Neck Surgery The Second Hospital Shanxi Medical University Taiyuan China
| | - L.‐T. Yang
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
- The Affiliated ENT Hospital of Shenzhen University Shenzhen ENT Institute Shenzhen China
| | - G. Yang
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
- The Affiliated ENT Hospital of Shenzhen University Shenzhen ENT Institute Shenzhen China
| | - X.‐R. Geng
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
- The Affiliated ENT Hospital of Shenzhen University Shenzhen ENT Institute Shenzhen China
| | - Z.‐Q. Liu
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
- The Affiliated ENT Hospital of Shenzhen University Shenzhen ENT Institute Shenzhen China
| | - S. Wang
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - H.‐L. Zhao
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
- The Affiliated ENT Hospital of Shenzhen University Shenzhen ENT Institute Shenzhen China
| | - Z.‐G. Liu
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - C.‐Q. Zhao
- Department of Otolaryngology, Head & Neck Surgery The Second Hospital Shanxi Medical University Taiyuan China
| | - P.‐C. Yang
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| |
Collapse
|
22
|
van Rijt LS, Utsch L, Lutter R, van Ree R. Oxidative Stress: Promoter of Allergic Sensitization to Protease Allergens? Int J Mol Sci 2017; 18:ijms18061112. [PMID: 28545251 PMCID: PMC5485936 DOI: 10.3390/ijms18061112] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/18/2023] Open
Abstract
Allergies arise from aberrant T helper type 2 responses to allergens. Several respiratory allergens possess proteolytic activity, which has been recognized to act as an adjuvant for the development of a Th2 response. Allergen source-derived proteases can activate the protease-activated receptor-2, have specific effects on immune cells by cleaving cell membrane-bound regulatory molecules, and can disrupt tight junctions. The protease activity can induce a non-allergen-specific inflammatory response in the airways, which will set the stage for an allergen-specific Th2 response. In this review, we will discuss the evidence for the induction of oxidative stress as an underlying mechanism in Th2 sensitization to proteolytic allergens. We will discuss recent data linking the proteolytic activity of an allergen to its potential to induce oxidative stress and how this can facilitate allergic sensitization. Based on experimental data, we propose that a less proficient anti-oxidant response to allergen-induced oxidative stress contributes to the susceptibility to allergic sensitization. Besides the effect of oxidative stress on the immune response, we will also discuss how oxidative stress can increase the immunogenicity of an allergen by chemical modification.
Collapse
Affiliation(s)
- Leonie S van Rijt
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Lara Utsch
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - René Lutter
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald van Ree
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
23
|
George T, Bell M, Chakraborty M, Siderovski DP, Giembycz MA, Newton R. Protective Roles for RGS2 in a Mouse Model of House Dust Mite-Induced Airway Inflammation. PLoS One 2017; 12:e0170269. [PMID: 28107494 PMCID: PMC5249169 DOI: 10.1371/journal.pone.0170269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022] Open
Abstract
The GTPase-accelerating protein, regulator of G-protein signalling 2 (RGS2) reduces signalling from G-protein-coupled receptors (GPCRs) that signal via Gαq. In humans, RGS2 expression is up-regulated by inhaled corticosteroids (ICSs) and long-acting β2-adrenoceptor agonists (LABAs) such that synergy is produced in combination. This may contribute to the superior clinical efficacy of ICS/LABA therapy in asthma relative to ICS alone. In a murine model of house dust mite (HDM)-induced airways inflammation, three weeks of intranasal HDM (25 μg, 3×/week) reduced lung function and induced granulocytic airways inflammation. Compared to wild type animals, Rgs2-/- mice showed airways hyperresponsiveness (increased airways resistance and reduced compliance). While HDM increased pulmonary inflammation observed on hematoxylin and eosin-stained sections, there was no difference between wild type and Rgs2-/- animals. HDM-induced mucus hypersecretion was also unaffected by RGS2 deficiency. However, inflammatory cell counts in the bronchoalveolar lavage fluid of Rgs2-/- animals were significantly increased (57%) compared to wild type animals and this correlated with increased granulocyte (neutrophil and eosinophil) numbers. Likewise, cytokine and chemokine (IL4, IL17, IL5, LIF, IL6, CSF3, CXCLl, CXCL10 and CXCL11) release was increased by HDM exposure. Compared to wild type, Rgs2-/- animals showed a trend towards increased expression for many cytokines/chemokines, with CCL3, CCL11, CXCL9 and CXCL10 being significantly enhanced. As RGS2 expression was unaffected by HDM exposure, these data indicate that RGS2 exerts tonic bronchoprotection in HDM-induced airways inflammation. Modest anti-inflammatory and anti-remodelling roles for RGS2 are also suggested. If translatable to humans, therapies that maximize RGS2 expression may prove advantageous.
Collapse
Affiliation(s)
- Tresa George
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Bell
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Mainak Chakraborty
- Immunology Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - David P. Siderovski
- Blanchette Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Mark A. Giembycz
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
24
|
Lee NR, Lee JS, Baek SY, Kim DH, Gu A, Kim SY, Lee SJ, Kim IS. Effect of house dust mite on neutrophil apoptosis by cytokine secretion in lymphocytes. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-016-0041-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Jairaman A, Maguire CH, Schleimer RP, Prakriya M. Allergens stimulate store-operated calcium entry and cytokine production in airway epithelial cells. Sci Rep 2016; 6:32311. [PMID: 27604412 PMCID: PMC5015156 DOI: 10.1038/srep32311] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/05/2016] [Indexed: 01/01/2023] Open
Abstract
Aberrant immune responses to environmental allergens including insect allergens from house dust mites and cockroaches contribute to allergic inflammatory diseases such as asthma in susceptible individuals. Airway epithelial cells (AECs) play a critical role in this process by sensing the proteolytic activity of allergens via protease-activated receptors (PAR2) to initiate inflammatory and immune responses in the airway. Elevation of cytosolic Ca2+ is an important signaling event in this process, yet the fundamental mechanism by which allergens induce Ca2+ elevations in AECs remains poorly understood. Here we find that extracts from dust mite and cockroach induce sustained Ca2+ elevations in AECs through the activation of Ca2+ release-activated Ca2+ (CRAC) channels encoded by Orai1 and STIM1. CRAC channel activation occurs, at least in part, through allergen mediated stimulation of PAR2 receptors. The ensuing Ca2+ entry then activates NFAT/calcineurin signaling to induce transcriptional production of the proinflammatory cytokines IL-6 and IL-8. These findings highlight a key role for CRAC channels as regulators of allergen induced inflammatory responses in the airway.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, IL 60611, Chicago, USA
| | - Chelsea H Maguire
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, IL 60611, Chicago, USA
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, IL 60611, Chicago, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, IL 60611, Chicago, USA
| |
Collapse
|
26
|
Shrestha Palikhe N, Nahirney D, Laratta C, Gandhi VD, Vethanayagam D, Bhutani M, Mayers I, Cameron L, Vliagoftis H. Increased Protease-Activated Receptor-2 (PAR-2) Expression on CD14++CD16+ Peripheral Blood Monocytes of Patients with Severe Asthma. PLoS One 2015; 10:e0144500. [PMID: 26658828 PMCID: PMC4682828 DOI: 10.1371/journal.pone.0144500] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/19/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied. METHODS We recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry. RESULTS Subjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations. CONCLUSIONS PAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma.
Collapse
Affiliation(s)
- Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Drew Nahirney
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Cheryl Laratta
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Vivek Dipak Gandhi
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dilini Vethanayagam
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mohit Bhutani
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Alberta Asthma Center, University of Alberta, Edmonton, Alberta, Canada
| | - Irvin Mayers
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa Cameron
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Department of Pathology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- * E-mail: (HV); (LC)
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Alberta Asthma Center, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (HV); (LC)
| |
Collapse
|
27
|
Blankestijn MA, Boyle RJ, Gore R, Hawrylowicz C, Jarvis D, Knulst AC, Wardlaw AJ. Developments in the field of allergy in 2013 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2015; 44:1436-57. [PMID: 25346287 DOI: 10.1111/cea.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2013 was another exciting year for allergy in general and Clinical and Experimental Allergy in particular. In the field of asthma and rhinitis, there continued to be a focus on heterogeneity and phenotypes with increasing use of biostatistical techniques to determine clusters of similar populations. Obesity- and aspirin-associated disease are intriguing associations with asthma which were explored in a number of papers. We published a number of excellent papers on mechanisms of airway inflammation and how this relates to physiology, pathology, genetics and biomarkers in both human and experimental model systems. In terms of mechanisms, there is less on individual cell types in allergic disease at the moment, but the immunology of allergic disease continued to fascinate our authors. Another area that was popular both in the mechanisms and in the epidemiology sections was early life events and how these lead to allergic disease, with an increasing focus on the role of the microbiome and how this influences immune tolerance. In the clinical allergy section, oral immunotherapy for food allergy is clearly a major topic of interest at the moment as was in vitro testing to distinguish between sensitization and allergic disease. There was less on inhalant allergy this year, but a good representation from the drug allergy community including some interesting work on non-IgE-mediated mechanisms. In the allergen section, important new allergens continue to be discovered, but the major focus as in the last couple of years was on working out how component-resolved approaches can improve diagnosis and management of food and venom allergy.
Collapse
Affiliation(s)
- M A Blankestijn
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Gandhi VD, Vliagoftis H. Airway epithelium interactions with aeroallergens: role of secreted cytokines and chemokines in innate immunity. Front Immunol 2015; 6:147. [PMID: 25883597 PMCID: PMC4382984 DOI: 10.3389/fimmu.2015.00147] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/18/2015] [Indexed: 11/13/2022] Open
Abstract
Airway epithelial cells are the first line of defense against the constituents of the inhaled air, which include allergens, pathogens, pollutants, and toxic compounds. The epithelium not only prevents the penetration of these foreign substances into the interstitium, but also senses their presence and informs the organism’s immune system of the impending assault. The epithelium accomplishes the latter through the release of inflammatory cytokines and chemokines that recruit and activate innate immune cells at the site of assault. These epithelial responses aim to eliminate the inhaled foreign substances and minimize their detrimental effects to the organism. Quite frequently, however, the innate immune responses of the epithelium to inhaled substances lead to chronic and high level release of pro-inflammatory mediators that may mediate the lung pathology seen in asthma. The interactions of airway epithelial cells with allergens will be discussed with particular focus on interactions-mediated epithelial release of cytokines and chemokines and their role in the immune response. As pollutants are other major constituents of inhaled air, we will also discuss how pollutants may alter the responses of airway epithelial cells to allergens.
Collapse
Affiliation(s)
- Vivek D Gandhi
- Pulmonary Research Group, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Harissios Vliagoftis
- Pulmonary Research Group, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
29
|
Dumez ME, Herman J, Campizi V, Galleni M, Jacquet A, Chevigné A. Orchestration of an uncommon maturation cascade of the house dust mite protease allergen quartet. Front Immunol 2014; 5:138. [PMID: 24744761 PMCID: PMC3978338 DOI: 10.3389/fimmu.2014.00138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/18/2014] [Indexed: 11/13/2022] Open
Abstract
In more than 20% of the world population, sensitization to house dust mite allergens triggers typical allergic diseases such as allergic rhinitis and asthma. Amongst the 23 mite allergen groups hitherto identified, group 1 is cysteine proteases belonging to the papain-like family whereas groups 3, 6, and 9 are serine proteases displaying trypsin, chymotrypsin, and collagenolytic activities, respectively. While these proteases are more likely to be involved in the mite digestive system, they also play critical roles in the initiation and in the chronicity of the allergic response notably through the activation of innate immune pathways. All these allergenic proteases are expressed in mite as inactive precursor form. Until recently, the exact mechanisms of their maturation into active proteases remained to be fully elucidated. Recent breakthroughs in the understanding of the activation mechanisms of mite allergenic protease precursors have highlighted an uncommon and unique maturation pathway orchestrated by group 1 proteases that tightly regulates the proteolytic activities of groups 1, 3, 6, and 9 through complex intra- or inter-molecular mechanisms. This review presents and discusses the currently available knowledge of the activation mechanisms of group 1, 3, 6, and 9 allergens of Dermatophagoides pteronyssinus laying special emphasis on their localization, regulation, and interconnection.
Collapse
Affiliation(s)
- Marie-Eve Dumez
- Laboratory of Retrovirology, Department of Infection and Immunity, Centre de Recherche Public Santé , Luxembourg , Luxembourg ; Macromolécules Biologiques, Department of Life Sciences, Centre for Protein Engineering, University of Liège , Liège , Belgium
| | - Julie Herman
- Macromolécules Biologiques, Department of Life Sciences, Centre for Protein Engineering, University of Liège , Liège , Belgium
| | - Vincenzo Campizi
- Laboratory of Retrovirology, Department of Infection and Immunity, Centre de Recherche Public Santé , Luxembourg , Luxembourg ; Macromolécules Biologiques, Department of Life Sciences, Centre for Protein Engineering, University of Liège , Liège , Belgium
| | - Moreno Galleni
- Macromolécules Biologiques, Department of Life Sciences, Centre for Protein Engineering, University of Liège , Liège , Belgium
| | - Alain Jacquet
- Faculty of Medicine, Department of Medicine, Division of Allergy and Clinical Immunology, Chulalongkorn University , Bangkok , Thailand
| | - Andy Chevigné
- Laboratory of Retrovirology, Department of Infection and Immunity, Centre de Recherche Public Santé , Luxembourg , Luxembourg
| |
Collapse
|