1
|
Nuyttens L, De Vlieger L, Diels M, Schrijvers R, Bullens DMA. The clinical and immunological basis of early food introduction in food allergy prevention. FRONTIERS IN ALLERGY 2023; 4:1111687. [PMID: 36756279 PMCID: PMC9899849 DOI: 10.3389/falgy.2023.1111687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
IgE-mediated food allergy has an estimated prevalence of 6%-10% in developed countries. Allergen avoidance has long been the main focus in the prevention of food allergy and late solid food introduction after 6-12 months of age was recommended in high-risk infants. However, the rising prevalence of food allergy despite delayed exposure to allergens and the observations that IgE-mediated sensitization to food products could even occur before the introduction of solid foods resulted in a shift towards early solid food introduction as an attempt to prevent IgE-mediated food allergy. Since then, many trials focused on the clinical outcome of early allergen introduction and overall seem to point to a protective effect on the development of IgE-mediated food allergies. For non-IgE-mediated diseases of food allergy, evidence of early food introduction seems less clear. Moreover, data on the underlying immunological processes in early food introduction is lacking. The goal of this review is to summarize the available data of immunological changes in early food introduction to prevent IgE and non-IgE mediated food allergy.
Collapse
Affiliation(s)
- L. Nuyttens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - L. De Vlieger
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium
| | - M. Diels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - R. Schrijvers
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium,Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - D. M. A. Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium,Correspondence: D. M. A Bullens
| |
Collapse
|
2
|
Martins Costa Gomes G, de Gouveia Belinelo P, Starkey MR, Murphy VE, Hansbro PM, Sly PD, Robinson PD, Karmaus W, Gibson PG, Mattes J, Collison AM. Cord blood group 2 innate lymphoid cells are associated with lung function at 6 weeks of age. Clin Transl Immunology 2021; 10:e1296. [PMID: 34306680 PMCID: PMC8292948 DOI: 10.1002/cti2.1296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Offspring born to mothers with asthma in pregnancy are known to have lower lung function which tracks with age. Human group 2 innate lymphoid cells (ILC2) accumulate in foetal lungs, at 10‐fold higher levels compared to adult lungs. However, there are no data on foetal ILC2 numbers and the association with respiratory health outcomes such as lung function in early life. We aimed to investigate cord blood immune cell populations from babies born to mothers with asthma in pregnancy. Methods Cord blood from babies born to asthmatic mothers was collected, and cells were stained in whole cord blood. Analyses were done using traditional gating approaches and computational methodologies (t‐distributed stochastic neighbour embedding and PhenoGraph algorithms). At 6 weeks of age, the time to peak tidal expiratory flow as a percentage of total expiratory flow time (tPTEF/tE%) was determined as well as Lung Clearance Index (LCI), during quiet natural sleep. Results Of 110 eligible infants (March 2017 to November 2019), 91 were successfully immunophenotyped (82.7%). Lung function was attempted in 61 infants (67.0%), and 43 of those infants (70.5% of attempted) had technically acceptable tPTEF/tE% measurements. Thirty‐four infants (55.7% of attempted) had acceptable LCI measurements. Foetal ILC2 numbers with increased expression of chemoattractant receptor‐homologous molecule (CRTh2), characterised by two distinct analysis methodologies, were associated with poorer infant lung function at 6 weeks of age.” Conclusion Foetal immune responses may be a surrogate variable for or directly influence lung function outcomes in early life.
Collapse
Affiliation(s)
- Gabriela Martins Costa Gomes
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Patricia de Gouveia Belinelo
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Malcolm R Starkey
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia.,Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Vanessa E Murphy
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Centenary UTS Centre for Inflammation Centenary Institute Sydney NSW Australia
| | - Peter D Sly
- Child Health Research Centre University of Queensland Brisbane QLD Australia
| | - Paul D Robinson
- Department of Respiratory Medicine The Children's Hospital at Westmead Sydney NSW Australia
| | | | - Peter G Gibson
- Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Sleep Medicine Department John Hunter Hospital Newcastle NSW Australia
| | - Joerg Mattes
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia.,Paediatric Respiratory & Sleep Medicine Department John Hunter Children's Hospital Newcastle NSW Australia
| | - Adam M Collison
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| |
Collapse
|
3
|
Intrauterine Exposures and Maternal Health Status during Pregnancy in Relation to Later Child Health: A Review of Pregnancy Cohort Studies in Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147702. [PMID: 34300152 PMCID: PMC8307645 DOI: 10.3390/ijerph18147702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
We show a description of pregnancy cohorts in the European region. Our investigation identified 66 pregnancy cohorts, mostly hosted in Western Central Europe. Among these 66 cohorts, 24 began recruitment before the year 2000, while six cohorts are still enrolling. The most common topics were lifestyle, environment and nutrition with allergies and neurodevelopment being a minority. We observed a pattern of positive correlations between data collected using medical records, structured interviews, and the collection of biological samples. Objectively assessed data were negatively correlated with self-administered questionnaires. Eight cohorts addressed intrauterine exposure, focusing on environmental pollutants such as endocrine-disrupting chemicals. The effects of these compounds on the developing foetus have been studied greatly, but more research on their effects is still needed. Many cohorts investigated genetics through the collection of biological samples from the mothers and children, to improve knowledge on the mother-to-child transmission of genetic information, antibodies, microbiota, etc. Paediatric epidemiology represents an important field of research since preserving healthy lives from conception onwards is the most efficient way to improve population health. According to our report, it seems that this field of research is well developed in Europe, where numerous high profile studies are currently ongoing.
Collapse
|
4
|
Martins Costa Gomes G, Karmaus W, Murphy VE, Gibson PG, Percival E, Hansbro PM, Starkey MR, Mattes J, Collison AM. Environmental Air Pollutants Inhaled during Pregnancy Are Associated with Altered Cord Blood Immune Cell Profiles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147431. [PMID: 34299892 PMCID: PMC8303567 DOI: 10.3390/ijerph18147431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Air pollution exposure during pregnancy may be a risk factor for altered immune maturation in the offspring. We investigated the association between ambient air pollutants during pregnancy and cell populations in cord blood from babies born to mothers with asthma enrolled in the Breathing for Life Trial. For each patient (n = 91), daily mean ambient air pollutant levels were extracted during their entire pregnancy for sulfur dioxide (SO2), nitric oxide, nitrogen dioxide, carbon monoxide, ozone, particulate matter <10 μm (PM10) or <2.5 μm (PM2.5), humidity, and temperature. Ninety-one cord blood samples were collected, stained, and assessed using fluorescence-activated cell sorting (FACS). Principal Component (PC) analyses of both air pollutants and cell types with linear regression were employed to define associations. Considering risk factors and correlations between PCs, only one PC from air pollutants and two from cell types were statistically significant. PCs from air pollutants were characterized by higher PM2.5 and lower SO2 levels. PCs from cell types were characterized by high numbers of CD8 T cells, low numbers of CD4 T cells, and by high numbers of plasmacytoid dendritic cells (pDC) and low numbers of myeloid DCs (mDCs). PM2.5 levels during pregnancy were significantly associated with high numbers of pDCs (p = 0.006), and SO2 with high numbers of CD8 T cells (p = 0.002) and low numbers of CD4 T cells (p = 0.011) and mDCs (p = 4.43 × 10−6) in cord blood. These data suggest that ambient SO2 and PM2.5 exposure are associated with shifts in cord blood cell types that are known to play significant roles in inflammatory respiratory disease in childhood.
Collapse
Affiliation(s)
- Gabriela Martins Costa Gomes
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
| | - Wilfried Karmaus
- School of Public Health, University of Memphis, Memphis, TN 38152, USA;
| | - Vanessa E. Murphy
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
| | - Peter G. Gibson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia; (P.G.G.); (P.M.H.)
- Sleep Medicine Department, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Elizabeth Percival
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia; (P.G.G.); (P.M.H.)
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Malcolm R. Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia;
| | - Joerg Mattes
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
- Paediatric Respiratory & Sleep Medicine Department, John Hunter Children’s Hospital, Newcastle, NSW 2305, Australia
| | - Adam M. Collison
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
- Correspondence: ; Tel.: +61-2-4042-0219
| |
Collapse
|
5
|
Value of cord blood Treg population properties and function-associated characteristics for predicting allergy development in childhood. Cent Eur J Immunol 2021; 45:393-402. [PMID: 33613093 PMCID: PMC7882409 DOI: 10.5114/ceji.2020.103413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
Allergic diseases represent some of the most common immunological disorders with high clinical and economic impact. Despite intensive research, there are still few universally accepted and reliable biomarkers capable of predicting their development at an early age. There is therefore a pressing need for identification of potential predictive factors and validation of their prognostic value by correlating them with allergy development. Dysbalance of the branches of immune response, most often excessive Th2 polarization, is the principal cause of allergic diseases. Regulatory T cells (Treg) are a crucial population for the timely establishment of physiological immune polarization and induction and maintenance of tolerance against environmental antigens. This makes them a potentially promising candidate for an early marker predicting allergy development. In our study, we analysed samples of cord blood of children of allergic mothers and children of healthy mothers by flow cytometry and retrospectively correlated the data with clinical allergy status of the children at the age of 6 to 10 years. Studied parameters included cord blood Treg population proportions and functional properties - intracellular presence of IL-10 and TGF-b, MFI of FoxP3. We observed higher percentage of Tregs in cord blood of children who did not develop allergy compared with allergic children. Further, we found higher numbers of IL-10+ Tregs in cord blood of healthy children of healthy mothers than in cord blood of children of allergic mothers and decreased TGF-b+ cord blood Tregs in the group of allergic children of allergic mothers compared to all other groups.
Collapse
|
6
|
Roberts G, Boyle R, Bryce PJ, Crane J, Hogan SP, Saglani S, Wickman M, Woodfolk JA. Developments in the field of allergy mechanisms in 2015 through the eyes of Clinical & Experimental Allergy. Clin Exp Allergy 2017; 46:1248-57. [PMID: 27682977 DOI: 10.1111/cea.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the first of two papers we described the development in the field of allergy mechanisms as described by Clinical and Experimental Allergy in 2015. Experimental models of allergic disease, basic mechanisms, clinical mechanisms and allergens are all covered. A second paper will cover clinical aspects.
Collapse
Affiliation(s)
- G Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK. .,NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK. .,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK.
| | - R Boyle
- Paediatric Research Unit, Imperial College London, London, UK
| | - P J Bryce
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - M Wickman
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - J A Woodfolk
- Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
7
|
Skevaki C, Van den Berg J, Jones N, Garssen J, Vuillermin P, Levin M, Landay A, Renz H, Calder PC, Thornton CA. Immune biomarkers in the spectrum of childhood noncommunicable diseases. J Allergy Clin Immunol 2017; 137:1302-16. [PMID: 27155027 DOI: 10.1016/j.jaci.2016.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
A biomarker is an accurately and reproducibly quantifiable biological characteristic that provides an objective measure of health status or disease. Benefits of biomarkers include identification of therapeutic targets, monitoring of clinical interventions, and development of personalized (or precision) medicine. Challenges to the use of biomarkers include optimizing sample collection, processing and storage, validation, and often the need for sophisticated laboratory and bioinformatics approaches. Biomarkers offer better understanding of disease processes and should benefit the early detection, treatment, and management of multiple noncommunicable diseases (NCDs). This review will consider the utility of biomarkers in patients with allergic and other immune-mediated diseases in childhood. Typically, biomarkers are used currently to provide mechanistic insight or an objective measure of disease severity, with their future role in risk stratification/disease prediction speculative at best. There are many lessons to be learned from the biomarker strategies used for cancer in which biomarkers are in routine clinical use and industry-wide standardized approaches have been developed. Biomarker discovery and validation in children with disease lag behind those in adults; given the early onset and therefore potential lifelong effect of many NCDs, there should be more studies incorporating cohorts of children. Many pediatric biomarkers are at the discovery stage, with a long path to evaluation and clinical implementation. The ultimate challenge will be optimization of prevention strategies that can be implemented in children identified as being at risk of an NCD through the use of biomarkers.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- International Inflammation (in-FLAME) Network of the World Universities Network; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, University Hospital Giessen and Marburg GmbH Baldingerstr, Marburg, Germany
| | - Jolice Van den Berg
- International Inflammation (in-FLAME) Network of the World Universities Network; Department of Immunology/Microbiology Rush University Medical Center Chicago, Chicago, Ill
| | - Nicholas Jones
- International Inflammation (in-FLAME) Network of the World Universities Network; Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales
| | - Johan Garssen
- International Inflammation (in-FLAME) Network of the World Universities Network; Utrecht Institute for Pharmaceutical Sciences, Division of Pharmacology, Beta Faculty, Utrecht University, Utrecht, The Netherlands
| | - Peter Vuillermin
- International Inflammation (in-FLAME) Network of the World Universities Network; Child Health Research Unit, Barwon Health, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Levin
- International Inflammation (in-FLAME) Network of the World Universities Network; Division of Asthma and Allergy, University of Cape Town, and the Department of Pediatrics and Child Health, Red Cross Children's Hospital, Cape Town, South Africa
| | - Alan Landay
- International Inflammation (in-FLAME) Network of the World Universities Network; Department of Immunology/Microbiology Rush University Medical Center Chicago, Chicago, Ill
| | - Harald Renz
- International Inflammation (in-FLAME) Network of the World Universities Network; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, University Hospital Giessen and Marburg GmbH Baldingerstr, Marburg, Germany
| | - Philip C Calder
- International Inflammation (in-FLAME) Network of the World Universities Network; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, and NIHR Southampton Biomedical Research Centre, Southampton University Hospital NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Catherine A Thornton
- International Inflammation (in-FLAME) Network of the World Universities Network; Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales.
| |
Collapse
|
8
|
Abstract
It has been recognized for centuries that allergic disease runs in families, implying a role for genetic factors in determining individual susceptibility. More recently, a range of evidence shows that many of these genetic factors, together with in utero environmental exposures, lead to the development of allergic disease through altered immune and organ development. Environmental exposures during pregnancy including diet, nutrient intake and toxin exposures can alter the epigenome and interact with inherited genetic and epigenetic risk factors to directly and indirectly influence organ development and immune programming. Understanding of these factors will be essential in identifying at-risk individuals and possible development of therapeutic interventions for the primary prevention of allergic disease. In this review, we summarize the evidence that suggests allergic disease begins in utero, together with possible mechanisms for the effect of environmental exposures during pregnancy on allergic disease risk, including epigenetics.
Collapse
Affiliation(s)
- Gabrielle A Lockett
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Johanna Huoman
- Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Sciences, Unit of Autoimmunity and Immune Regulation, Linköping University, Linköping, Sweden
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,International Inflammation network (in-FLAME) of the World Universities Network
| |
Collapse
|