1
|
Li Y, Qu Z, Wang X, Wang Q, Lv Z, Wang W, Ying S, Zhang L, Lan F. House dust mite allergen directly activates ILC2 cells via the TLR4 signaling pathway in allergic airway diseases. Cell Immunol 2024; 405-406:104884. [PMID: 39437527 DOI: 10.1016/j.cellimm.2024.104884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Unlike T cells and B cells, the activation process of group 2 innate lymphoid cells (ILC2s) is mainly driven by epithelial cell derived cytokines rather than specific antigen recognition. Whether antigens have a direct role in activating ILC2s remains poorly understood. METHODS Following stimulation, type 2 cytokine secretions and cell death were assessed in house dust mite (HDM)-stimulated ILC2s. To investigate the underlying mechanisms, RNA-sequencing (RNA-seq) was performed on HDM-stimulated ILC2s. The validation experiments were done through in vitro stimulation assays and an HDM-induced asthmatic murine model, using specific inhibitors targeting receptor and relevant proteins of signaling pathways. RESULTS HDM stimulation increased the secretion of IL-5 and IL-13 cytokines from ILC2s, inhibited apoptosis of ILC2, and promoted the proliferation of ILC2s. As confirmed by RNA-seq, HDM stimulation upregulated genes in ILC2s, including those responsible for type 2 cytokines, ILC2s-specific transcriptional factors, and related receptors. Both toll-like receptor (TLR) 1 and TLR4 were constitutively expressed on ILC2s, however, only TLR4 was predominantly upregulated upon HDM stimulation. TAK242, a specific TLR4 inhibitor, significantly blocked the effect of HDM on ILC2s, in terms of type 2 cytokine secretions and cell death. Using specific inhibitors in pathways, we confirmed that HDM promoted ILC2s activation via TLR4-ERK, p38, and NF-κB signaling pathways. CONCLUSIONS Allergen HDM directly activates ILC2s through TLR4 mediated-ERK/p38/NF-κB signaling pathway. These findings provide new insights into how antigens propagate type 2 immune response via ILC2s, contributing to chronic inflammations in allergic airway diseases.
Collapse
Affiliation(s)
- Yan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Zhennan Qu
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xue Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Qiqi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Luo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing 100005, China.
| | - Feng Lan
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
2
|
Lv Y, Jiang G, Jiang Y, Peng C, Li W. TLR2-ERK signaling pathway regulates expression of galectin-3 in a murine model of OVA-induced allergic airway inflammation. Toxicol Lett 2024; 397:55-66. [PMID: 38754639 DOI: 10.1016/j.toxlet.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Toll-like receptor 2 (TLR2) and galectin-3 (Gal-3) are involved in the pathological process of asthma, but the underlying mechanism is not fully understood. We hypothesized that TLR2 pathway may regulate expression of Gal-3 in allergic airway inflammation. Wild-type (WT) and TLR2-/- mice were sensitized on day 0 and challenged with ovalbumin (OVA) on days 14-21 to establish a model of allergic airway inflammation, and were treated with a specific ERK inhibitor U0126. Histological changes in the lungs were analyzed by hematoxylin-eosin (HE) and Periodic Acid-Schiff (PAS) staining; cytokines and anti-OVA immunoglobulin E (IgE) were tested by ELISA; and related protein expression in lung tissues was measured by western blot. We found that the expression levels of TLR2 and Gal-3 markedly increased concomitantly with airway inflammation after OVA induction, while TLR2 deficiency significantly alleviated airway inflammation and reduced Gal-3 expression. Moreover, the expression levels of phosphorylated mitogen-activated protein kinases (p-MAPKs) were significantly elevated in OVA-challenged WT mice, while TLR2 deficiency only significantly decreased phosphorylated extracellular signal-regulated kinase (p-ERK) levels. Furthermore, we found that U0126 treatment significantly alleviated allergic airway inflammation and decreased Gal-3 levels in OVA-challenged WT mice, but had no further effect in OVA-challenged TLR2-/- mice. These above results suggested that TLR2 is an upstream signal molecule of ERK. We further demonstrated that TLR2 regulates Gal-3 expression through the ERK pathway in LTA-stimulated macrophages in vitro. Our findings showed that the TLR2-ERK signaling pathway regulates Gal-3 expression in a murine model of allergic airway inflammation.
Collapse
Affiliation(s)
- Yunxiang Lv
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China.
| | - Guiyun Jiang
- Department of Clinical laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Yanru Jiang
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China
| | - Caiqiu Peng
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China
| | - Wei Li
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China.
| |
Collapse
|
3
|
Thio CLP, Chang YJ. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: from inflammatory mediators to environmental and metabolic factors. Exp Mol Med 2023; 55:1872-1884. [PMID: 37696890 PMCID: PMC10545775 DOI: 10.1038/s12276-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 09/13/2023] Open
Abstract
A dysregulated type 2 immune response is one of the fundamental causes of allergic asthma. Although Th2 cells are undoubtedly central to the pathogenesis of allergic asthma, the discovery of group 2 innate lymphoid cells (ILC2s) has added another layer of complexity to the etiology of this chronic disease. Through their inherent innate type 2 responses, ILC2s not only contribute to the initiation of airway inflammation but also orchestrate the recruitment and activation of other members of innate and adaptive immunity, further amplifying the inflammatory response. Moreover, ILC2s exhibit substantial cytokine plasticity, as evidenced by their ability to produce type 1- or type 17-associated cytokines under appropriate conditions, underscoring their potential contribution to nonallergic, neutrophilic asthma. Thus, understanding the mechanisms of ILC2 functions is pertinent. In this review, we present an overview of the current knowledge on ILC2s in asthma and the regulatory factors that modulate lung ILC2 functions in various experimental mouse models of asthma and in humans.
Collapse
Affiliation(s)
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
4
|
Park JS, Gazzaniga FS, Kasper DL, Sharpe AH. Microbiota-dependent regulation of costimulatory and coinhibitory pathways via innate immune sensors and implications for immunotherapy. Exp Mol Med 2023; 55:1913-1921. [PMID: 37696895 PMCID: PMC10545783 DOI: 10.1038/s12276-023-01075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023] Open
Abstract
Our bodies are inhabited by trillions of microorganisms. The host immune system constantly interacts with the microbiota in barrier organs, including the intestines. Over decades, numerous studies have shown that our mucosal immune system is dynamically shaped by a variety of microbiota-derived signals. Elucidating the mediators of these interactions is an important step for understanding how the microbiota is linked to mucosal immune homeostasis and gut-associated diseases. Interestingly, the efficacy of cancer immunotherapies that manipulate costimulatory and coinhibitory pathways has been correlated with the gut microbiota. Moreover, adverse effects of these therapies in the gut are linked to dysregulation of the intestinal immune system. These findings suggest that costimulatory pathways in the immune system might serve as a bridge between the host immune system and the gut microbiota. Here, we review mechanisms by which commensal microorganisms signal immune cells and their potential impact on costimulation. We highlight how costimulatory pathways modulate the mucosal immune system through not only classical antigen-presenting cells but also innate lymphocytes, which are highly enriched in barrier organs. Finally, we discuss the adverse effects of immune checkpoint inhibitors in the gut and the possible relationship with the gut microbiota.
Collapse
Affiliation(s)
- Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Francesca S Gazzaniga
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis L Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Pergolizzi S, Fumia A, D'Angelo R, Mangano A, Lombardo GP, Giliberti A, Messina E, Alesci A, Lauriano ER. Expression and function of toll-like receptor 2 in vertebrate. Acta Histochem 2023; 125:152028. [PMID: 37075649 DOI: 10.1016/j.acthis.2023.152028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Toll-like receptors (TLRs) are essential for identifying and detecting pathogen-associated molecular patterns (PAMPs) produced by a variety of pathogens, including viruses and bacteria. Since TLR2 is the only TLR capable of creating functional heterodimers with more than two other TLR types, it is very important for vertebrate immunity. TLR2 not only broadens the variety of PAMPs that it can recognize but has also the potential to diversify the subsequent signaling cascades. TLR2 is ubiquitous, which is consistent with the wide variety of tasks and functions it serves. Immune cells, endothelial cells, and epithelial cells have all been found to express TLR2. This review aims to gather currently available information about the preservation of this intriguing immunological molecule in the phylum of vertebrates.
Collapse
Affiliation(s)
- Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", 98124 Messina, Italy
| | - Roberta D'Angelo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelica Mangano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelo Giliberti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
6
|
Sun Y, Chen Y, Wang J, Yuan W, Xue R, Li C, Xia Q, Hu L, Wei Y, He M, Lai K. Intratracheally administered iron oxide nanoparticles induced murine lung inflammation depending on T cells and B cells. Food Chem Toxicol 2023; 175:113735. [PMID: 36935073 DOI: 10.1016/j.fct.2023.113735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Iron oxide nanoparticles (Fe2O3 NPs), produced in track traffic system and a wide range of industrial production, poses a great threat to human health. However, there is little research about the mechanism of Fe2O3 NPs toxicity on respiratory system. Rag1-/- mice which lack functional T and B cells were intratracheally challenged with Fe2O3 NPs, and interleukin (IL)-33 as an activator of group 2 innate lymphoid cells (ILC2s) to observe ILC2s changes. The lung inflammatory response to Fe2O3 NPs was alleviated in Rag1-/- mice compared with wild type (WT) mice. Infiltration of inflammatory cells and collagen deposition in tissue, leukocyte numbers (neutrophils, macrophages and lymphocytes), cytokine levels, such as IL-6, IL-13 and thymic stromal lymphopoietin (TSLP), and expression of Toll-like receptor (TLR)2, TLR4, and downstream myeloid differentiation factor (MyD)88, nuclear factor (NF)-κB and tumor necrosis factor (TNF)-α were decreased in lungs. Fe2O3 NPs markedly elevated ILC2s compared with the control, but ILC2s numbers were much lower compared with IL-33 in both WT and Rag1-/- mice. Furthermore, ILC2s amounts were strongly greater in Rag1-/- mice than WT mice. Our results suggested that Fe2O3 NPs induced sub-chronic pulmonary inflammation, which is majorly dependent on T cells and B cells rather than ILC2s.
Collapse
Affiliation(s)
- Yuan Sun
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Yuwei Chen
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Jiawei Wang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Wenke Yuan
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Rou Xue
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Qing Xia
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Longji Hu
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Yuan Wei
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Miao He
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, 110122, China.
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
7
|
Warner K, Ghaedi M, Chung DC, Jacquelot N, Ohashi PS. Innate lymphoid cells in early tumor development. Front Immunol 2022; 13:948358. [PMID: 36032129 PMCID: PMC9411809 DOI: 10.3389/fimmu.2022.948358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022] Open
Abstract
Innate and adaptive immune cells monitor, recognize, and eliminate transformed cells. Innate lymphoid cells (ILCs) are innate counterparts of T cells that play a key role in many facets of the immune response and have a profound impact on disease states, including cancer. ILCs regulate immune responses by responding and integrating a wide range of signals within the local microenvironment. As primarily tissue-resident cells, ILCs are ideally suited to sense malignant transformation and initiate anti-tumor immunity. However, as ILCs have been associated with anti-tumor and pro-tumor activities in established tumors, they could potentially have dual functions during carcinogenesis by promoting or suppressing the malignant outgrowth of premalignant lesions. Here we discuss emerging evidence that shows that ILCs can impact early tumor development by regulating immune responses against transformed cells, as well as the environmental cues that potentially induce ILC activation in premalignant lesions.
Collapse
Affiliation(s)
- Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Douglas C. Chung
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Tuazon JA, Kilburg-Basnyat B, Oldfield LM, Wiscovitch-Russo R, Dunigan-Russell K, Fedulov AV, Oestreich KJ, Gowdy KM. Emerging Insights into the Impact of Air Pollution on Immune-Mediated Asthma Pathogenesis. Curr Allergy Asthma Rep 2022; 22:77-92. [PMID: 35394608 PMCID: PMC9246904 DOI: 10.1007/s11882-022-01034-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Increases in ambient levels of air pollutants have been linked to lung inflammation and remodeling, processes that lead to the development and exacerbation of allergic asthma. Conventional research has focused on the role of CD4+ T helper 2 (TH2) cells in the pathogenesis of air pollution-induced asthma. However, much work in the past decade has uncovered an array of air pollution-induced non-TH2 immune mechanisms that contribute to allergic airway inflammation and disease. RECENT FINDINGS In this article, we review current research demonstrating the connection between common air pollutants and their downstream effects on non-TH2 immune responses emerging as key players in asthma, including PRRs, ILCs, and non-TH2 T cell subsets. We also discuss the proposed mechanisms by which air pollution increases immune-mediated asthma risk, including pre-existing genetic risk, epigenetic alterations in immune cells, and perturbation of the composition and function of the lung and gut microbiomes. Together, these studies reveal the multifaceted impacts of various air pollutants on innate and adaptive immune functions via genetic, epigenetic, and microbiome-based mechanisms that facilitate the induction and worsening of asthma.
Collapse
Affiliation(s)
- J A Tuazon
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, 43210, USA
| | - B Kilburg-Basnyat
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, 27858, USA
| | - L M Oldfield
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
- Department of Synthetic Genomics, Replay Holdings LLC, San Diego, 92121, USA
| | - R Wiscovitch-Russo
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - K Dunigan-Russell
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, 43210, USA
| | - A V Fedulov
- Division of Surgical Research, Department of Surgery, Alpert Medical School, Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| | - K J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, The James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - K M Gowdy
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Rossi GA, Ballarini S, Salvati P, Sacco O, Colin AA. Alarmins and innate lymphoid cells 2 activation: A common pathogenetic link connecting respiratory syncytial virus bronchiolitis and later wheezing/asthma? Pediatr Allergy Immunol 2022; 33:e13803. [PMID: 35754131 DOI: 10.1111/pai.13803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Severe respiratory syncytial virus (RSV) infection in infancy is associated with increased risk of recurrent wheezing in childhood. Both acute and long-term alterations in airway functions are thought to be related to inefficient antiviral immune response. The airway epithelium, the first target of RSV, normally acts as an immunological barrier able to elicit an effective immune reaction but may also be programmed to directly promote a Th2 response, independently from Th2 lymphocyte involvement. Recognition of RSV transcripts and viral replication intermediates by bronchial epithelial cells brings about release of TSLP, IL-33, HMGB1, and IL-25, dubbed "alarmins." These epithelial cell-derived proteins are particularly effective in stimulating innate lymphoid cells 2 (ILC2) to release IL-4, IL-5, and IL-13. ILC2, reflect the innate counterparts of Th2 cells and, when activate, are potent promoters of airway inflammation and hyperresponsiveness in RSV bronchiolitis and childhood wheezing/asthma. Long-term epithelial progenitors or persistent epigenetic modifications of the airway epithelium following RSV infection may play a pathogenetic role in the short- and long-term increased susceptibility to obstructive lung diseases in response to RSV in the young. Additionally, ILC2 function may be further regulated by RSV-induced changes in gut microbiota community composition that can be associated with disease severity in infants. A better understanding of the alarmin-ILC interactions in childhood might provide insights into the mechanisms characterizing these immune-mediated diseases and indicate new targets for prevention and therapeutic interventions.
Collapse
Affiliation(s)
- Giovanni A Rossi
- Department of Pediatrics, Pediatric Pulmonology and Respiratory Endoscopy Unit, G. Gaslini institute and University Hospital, Genoa, Italy
| | - Stefania Ballarini
- Department of Medicine and Surgery, Section of Immunometabolism, Immunogenetics and Translational Immunology, University of Perugia, Perugia, Italy
| | - Pietro Salvati
- Department of Pediatrics, Pediatric Pulmonology and Respiratory Endoscopy Unit, G. Gaslini institute and University Hospital, Genoa, Italy
| | - Oliviero Sacco
- Department of Pediatrics, Pediatric Pulmonology and Respiratory Endoscopy Unit, G. Gaslini institute and University Hospital, Genoa, Italy
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
10
|
Walker NM, Liu J, Young SM, Woode RA, Clarke LL. Goblet cell hyperplasia is not epithelial-autonomous in the Cftr knockout intestine. Am J Physiol Gastrointest Liver Physiol 2022; 322:G282-G293. [PMID: 34878935 PMCID: PMC8793866 DOI: 10.1152/ajpgi.00290.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 02/03/2023]
Abstract
Goblet cell hyperplasia is an important manifestation of cystic fibrosis (CF) disease in epithelial-lined organs. Explants of CF airway epithelium show normalization of goblet cell numbers; therefore, we hypothesized that small intestinal enteroids from Cftr knockout (KO) mice would not exhibit goblet cell hyperplasia. Toll-like receptors 2 and 4 (Tlr2 and Tlr4) were investigated as markers of inflammation and influence on goblet cell differentiation. Ex vivo studies found goblet cell hyperplasia in Cftr KO jejunum compared with wild-type (WT) mice. IL-13, SAM pointed domain-containing ETS transcription factor (Spdef), Tlr2, and Tlr4 protein expression were increased in Cftr KO intestine relative to WT. In contrast, WT and Cftr KO enteroids did not exhibit differences in basal or IL-13-stimulated goblet cell numbers, or differences in expression of Tlr2, Tlr4, and Spdef. Ileal goblet cell numbers in Cftr KO/Tlr4 KO and Cftr KO/Tlr2 KO mice were not different from Cftr KO mice, but enumeration was confounded by altered mucosal morphology. Treatment with Tlr4 agonist LPS did not affect goblet cell numbers in WT or Cftr KO enteroids, whereas the Tlr2 agonist Pam3Csk4 stimulated goblet cell hyperplasia in both genotypes. Pam3Csk4 stimulation of goblet cell numbers was associated with suppression of Notch1 and Neurog3 expression and upregulated determinants of goblet cell differentiation. We conclude that goblet cell hyperplasia and inflammation of the Cftr KO small intestine are not exhibited by enteroids, indicating that this manifestation of CF intestinal disease is not epithelial-automatous but secondary to the altered CF intestinal environment.NEW & NOTEWORTHY Studies of small intestinal organoids from cystic fibrosis (CF) mice show that goblet cell hyperplasia and increased Toll-like receptor 2/4 expression are not primary manifestations of the CF intestine. Intestinal goblet cell hyperplasia in the CF mice was not strongly altered by genetic ablation of Tlr2 and Tlr 4, but could be induced in both wild-type and CF intestinal organoids by a Tlr2-dependent suppression of Notch signaling.
Collapse
Affiliation(s)
- Nancy M Walker
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jinghua Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Sarah M Young
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Pathobiology, University of Missouri, Columbia, Missouri
| | - Rowena A Woode
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Lane L Clarke
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
11
|
Kang H, Bang JY, Mo Y, Shin JW, Bae B, Cho SH, Kim HY, Kang HR. Effect of Acinetobacter lwoffii on the modulation of macrophage activation and asthmatic inflammation. Clin Exp Allergy 2021; 52:518-529. [PMID: 34874580 DOI: 10.1111/cea.14077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although lung macrophages are directly exposed to external stimuli, their exact immunologic roles in asthma are still largely unknown. The aim of this study was to investigate the anti-asthmatic effect of Acinetobacter lwoffii in terms of lung macrophage modulation. METHODS Six-week-old female BALB/c mice were sensitized and challenged with ovalbumin (OVA) with or without intranasal administration of A. lwoffii during the sensitization period. Airway hyperresponsiveness and inflammation were evaluated. Using flow cytometry, macrophages were subclassified according to their activation status. In the in vitro study, a murine alveolar macrophage cell line (MH-S) treated with or without A. lwoffii before IL-13 stimulation were analysed by quantitative RT-PCR. RESULTS In a murine asthma model, the number of inflammatory cells, including macrophages and eosinophils, decreased in mice treated with A. lwoffii (A. lwoffii/OVA group) compared with untreated mice (OVA group). The enhanced expression of MHCII in macrophages in the OVA group was decreased by A. lwoffii treatment. M2 macrophage subtypes were significantly altered. A. lwoffii treatment decreased CD11b+ M2a and CD11b+ M2c macrophages, which showed strong positive correlations with Th2 cells, ILC2 and eosinophils. In contrast, CD11b+ M2b macrophages were significantly increased by A. lwoffii treatment and showed strong positive correlations with ILC1 and ILC3. In vitro, A. lwoffii down-regulated the expression of M2 markers related but up-regulated those related to M2b macrophages. CONCLUSIONS AND CLINICAL RELEVANCE Intranasal A. lwoffii exposure suppresses asthma development by suppressing the type 2 response via modulating lung macrophage activation, shifting M2a and M2c macrophages to M2b macrophages.
Collapse
Affiliation(s)
- Hanbit Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Young Bang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yosep Mo
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Woo Shin
- Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Orimo K, Tamari M, Saito H, Matsumoto K, Nakae S, Morita H. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy 2021; 76:3332-3348. [PMID: 33866593 DOI: 10.1111/all.14863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Discovery of innate lymphoid cells (ILCs), which are non-T and non-B lymphocytes that have no antigen-specific receptors, changed the classical concept of the mechanism of allergy, which had been explained mainly as antigen-specific acquired immunity based on IgE and Th2 cells. The discovery led to dramatic improvement in our understanding of the mechanism of non-IgE-mediated allergic inflammation. Numerous studies conducted in the past decade have elucidated the characteristics of each ILC subset in various organs and tissues and their ontogeny. We now know that each ILC subset exhibits heterogeneity. Moreover, the functions and activating/suppressing factors of each ILC subset were found to differ among both organs and types of tissue. Therefore, in this review, we summarize our current knowledge of ILCs by focusing on the organ/tissue-specific features of each subset to understand their roles in various organs. We also discuss ILCs' involvement in human inflammatory diseases in various organs and potential therapeutic/preventive strategies that target ILCs.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency Saitama Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| |
Collapse
|
13
|
Mi LL, Zhu Y, Lu HY. A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases (Review). Mol Med Rep 2021; 23:403. [PMID: 33786611 PMCID: PMC8025469 DOI: 10.3892/mmr.2021.12042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) are important innate immune cells that are involved in type 2 inflammation, in both mice and humans. ILC2s are stimulated by factors, including interleukin (IL)-33 and IL-25, and activated ILC2s secrete several cytokines that mediate type 2 immunity by inducing profound changes in physiology, including activation of alternative (M2) macrophages. M2 macrophages possess immune modulatory, phagocytic, tissue repair and remodeling properties, and can regulate ILC2s under infection. The present review summarizes the role of ILC2s as innate cells and M2 macrophages as anti-inflammatory cells, and discusses current literature on their important biological significance. The present review also highlights how the crosstalk between ILC2s and M2 macrophages contributes to lung development, induces pulmonary parasitic expulsion, exacerbates pulmonary viral and fungal infections and allergic airway diseases, and promotes the development of lung diseases, such as pulmonary fibrosis, chronic obstructive pulmonary disease and carcinoma of the lungs.
Collapse
Affiliation(s)
- Lan-Lan Mi
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yue Zhu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
14
|
Matucci A, Bormioli S, Nencini F, Chiccoli F, Vivarelli E, Maggi E, Vultaggio A. Asthma and Chronic Rhinosinusitis: How Similar Are They in Pathogenesis and Treatment Responses? Int J Mol Sci 2021; 22:3340. [PMID: 33805199 PMCID: PMC8037977 DOI: 10.3390/ijms22073340] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Severe asthma and rhinosinusitis represent frequent comorbidities, complicating the overall management of the disease. Both asthma and chronic rhinosinusitis (CRS) can be differentiated into endotypes: those with type 2 eosinophilic inflammation and those with a non-type 2 inflammation. A correct definition of phenotype/endotype for these diseases is crucial, taking into account the availability of novel biological therapies. Even though patients suffering from type 2 severe asthma-with or without CRS with nasal polyps-significantly benefit from treatment with biologics, the existence of different levels of patient response has been clearly demonstrated. In fact, in clinical practice, it is a common experience that patients reach a good clinical response for asthma symptoms, but not for CRS. At first glance, a reason for this could be that although asthma and CRS can coexist in the same patient, they can manifest with different degrees of severity; therefore, efficacy may not be equally achieved. Many questions regarding responders and nonresponders, predictors of response, and residual disease after blocking type 2 pathways are still unanswered. In this review, we discuss whether treatment with biological agents is equally effective in controlling both asthma and sinonasal symptoms in patients in which asthma and chronic rhinosinusitis with nasal polyps coexist.
Collapse
Affiliation(s)
- Andrea Matucci
- Immunoallergology Unit, University Hospital Careggi, 50134 Florence, Italy; (S.B.); (F.N.); (E.V.); (A.V.)
| | - Susanna Bormioli
- Immunoallergology Unit, University Hospital Careggi, 50134 Florence, Italy; (S.B.); (F.N.); (E.V.); (A.V.)
| | - Francesca Nencini
- Immunoallergology Unit, University Hospital Careggi, 50134 Florence, Italy; (S.B.); (F.N.); (E.V.); (A.V.)
| | - Fabio Chiccoli
- Immunology and Cellular Therapy Unit, University Hospital Careggi, 50134 Florence, Italy;
| | - Emanuele Vivarelli
- Immunoallergology Unit, University Hospital Careggi, 50134 Florence, Italy; (S.B.); (F.N.); (E.V.); (A.V.)
| | - Enrico Maggi
- Immunology Department, Children Hospital Bambino Gesù, IRCCS, 00165 Rome, Italy
| | - Alessandra Vultaggio
- Immunoallergology Unit, University Hospital Careggi, 50134 Florence, Italy; (S.B.); (F.N.); (E.V.); (A.V.)
| |
Collapse
|
15
|
Andrea M, Susanna B, Francesca N, Enrico M, Alessandra V. The emerging role of type 2 inflammation in asthma. Expert Rev Clin Immunol 2020; 17:63-71. [PMID: 33280431 DOI: 10.1080/1744666x.2020.1860755] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Bronchial asthma (BA) is a chronic airways inflammatory disease. Based on the biological mechanisms that underline the disease, asthma has been classified as type 2 or non-type 2 phenotype.Areas covered: An emerging role has been identified for group 2 innate lymphoid cells (ILC2s) able to produce the classical type 2 cytokines. The role of Th2 cells and IL-4 is crucial in the pathogenesis of allergic BA as supported by asthma models. IL-13, shares many biological functions with IL-4 such as induction of IgE synthesis and regulation of eosinophil trafficking. However, IL-13 does not induce Th2 cell differentiation. The Authors reviewed evidence on the new concept of type 2 inflammation and the cellular and molecular network behind this process. Literature data in the PubMed were analyzed for peer-reviewed articles published until September 2020.Expert opinion: The current trend is to consider Th2- and ILC2-driven pathways as two separate pathogenic mechanisms, recent data underscore that adaptive Th2- and innate cell responses represent two integrated systems in the production of IL-4, IL-5, and IL-13 leading to the current 'concept' of type 2 inflammation. This review highlights the role of Th2 cells and ILC2 in the recent new concept of type 2 inflammation.
Collapse
Affiliation(s)
- Matucci Andrea
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Bormioli Susanna
- Immunology and Cellular Therapy, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Nencini Francesca
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Maggi Enrico
- Immunology Department, Children Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Vultaggio Alessandra
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
16
|
Murakami Y, Ishii T, Nunokawa H, Kurata K, Narita T, Yamashita N. TLR9-IL-2 axis exacerbates allergic asthma by preventing IL-17A hyperproduction. Sci Rep 2020; 10:18110. [PMID: 33093516 PMCID: PMC7581806 DOI: 10.1038/s41598-020-75153-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
Allergic asthma is one of most famous allergic diseases, which develops lung and airway inflammation. Recent studies have revealed the relationship between the pathology of allergic asthma and the increase of host-derived DNA in inflamed lung, but the role of the DNA-recognizing innate immune receptor for the inflammation is unknown well. Here we investigated the role of Toll-Like Receptor 9 in the pathogenesis of allergic asthma without synthesized CpG-ODNs. To examine that, we analyzed the pathology and immunology of house-dust-mite (HDM)-induced allergic asthma in Tlr9–/– mice and TLR9-inhibitory-antibody-treated mice. In Tlr9–/– mice, airway hyperresponsiveness (AHR) and the number of eosinophils decreased, and production of the Th2 cytokines IL-13, IL-5, and IL-4 was suppressed, compared with in wild-type mice. Interestingly, unlike Th2 cytokine production, IL-17A production was increased in Tlr9–/– mice. Furthermore, production of IL-2, which decreases IL-17A production, was reduced in Tlr9–/– mice. Blockade of TLR9 by treatment with TLR9-inhibitory-antibody, NaR9, effectively suppressed the development of allergic asthma pathology. IL-17A production in NaR9-treated mice was enhanced, which is comparable to Tlr9-/- mice. These results suggest that the TLR9–IL-2 axis plays an important role in Th2 inflammation by modulating IL-17A production in HDM-induced allergic asthma and that targeting of TLR9 might be a novel therapeutic method for allergic asthma.
Collapse
Affiliation(s)
- Yusuke Murakami
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Takashi Ishii
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Hiroki Nunokawa
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | | | - Tomoya Narita
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Naomi Yamashita
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, Nishitokyo-shi, Tokyo, 202-8585, Japan.
| |
Collapse
|
17
|
Norlander AE, Peebles RS. Innate Type 2 Responses to Respiratory Syncytial Virus Infection. Viruses 2020; 12:E521. [PMID: 32397226 PMCID: PMC7290766 DOI: 10.3390/v12050521] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common and contagious virus that results in acute respiratory tract infections in infants. In many cases, the symptoms of RSV remain mild, however, a subset of individuals develop severe RSV-associated bronchiolitis. As such, RSV is the chief cause of infant hospitalization within the United States. Typically, the immune response to RSV is a type 1 response that involves both the innate and adaptive immune systems. However, type 2 cytokines may also be produced as a result of infection of RSV and there is increasing evidence that children who develop severe RSV-associated bronchiolitis are at a greater risk of developing asthma later in life. This review summarizes the contribution of a newly described cell type, group 2 innate lymphoid cells (ILC2), and epithelial-derived alarmin proteins that activate ILC2, including IL-33, IL-25, thymic stromal lymphopoietin (TSLP), and high mobility group box 1 (HMGB1). ILC2 activation leads to the production of type 2 cytokines and the induction of a type 2 response during RSV infection. Intervening in this innate type 2 inflammatory pathway may have therapeutic implications for severe RSV-induced disease.
Collapse
Affiliation(s)
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2650, USA;
| |
Collapse
|
18
|
Wu HM, Zhao CC, Xie QM, Xu J, Fei GH. TLR2-Melatonin Feedback Loop Regulates the Activation of NLRP3 Inflammasome in Murine Allergic Airway Inflammation. Front Immunol 2020; 11:172. [PMID: 32117301 PMCID: PMC7025476 DOI: 10.3389/fimmu.2020.00172] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 2 (TLR2) is suggested to initiate the activation of NLRP3 inflammasome, and considered to be involved in asthma. The findings that melatonin modulates TLRs-mediated immune responses, together with the suppressing effect of TLRs on endogenous melatonin synthesis, support the possibility that a feedback loop exists between TLRs system and endogenous melatonin synthesis. To determine whether TLR2-melatonin feedback loop exists in allergic airway disease and regulates NLRP3 inflammasome activity, wild-type (WT) and TLR2−/− mice were challenged with OVA to establish allergic airway disease model. Following OVA challenge, WT mice exhibited increased-expression of TLR2, activation of NLRP3 inflammasome and marked airway inflammation, which were all effectively inhibited in the TLR2−/− mice, indicating that TLR2-NLRP3 mediated airway inflammation. Meanwhile, melatonin biosynthesis was reduced in OVA-challenged WT mice, while such reduction was notably rescued by TLR2 deficiency, suggesting that TLR2-NLRP3-mediated allergic airway inflammation was associated with decreased endogenous melatonin biosynthesis. Furthermore, addition of melatonin to OVA-challenged WT mice pronouncedly ameliorated airway inflammation, decreased TLR2 expression and NLRP3 inflammasome activation, further implying that melatonin in turn inhibited airway inflammation via suppressing TLR2-NLRP3 signal. Most interestingly, although melatonin receptor antagonist luzindole significantly reduced the protein expressions of ASMT, AANAT and subsequent level of melatonin in OVA-challenged TLR2−/− mice, it exhibited null effect on leukocytes infiltration, Th2-cytokines production and NLRP3 activity. These results indicate that a TLR2-melatonin feedback loop regulates NLRP3 inflammasome activity in allergic airway inflammation, and melatonin may be a promising therapeutic medicine for airway inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Hui-Mei Wu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Geriatric Molecular Medicine, Anhui Medical University, Hefei, China
| | - Cui-Cui Zhao
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Geriatric Molecular Medicine, Anhui Medical University, Hefei, China
| | - Qiu-Meng Xie
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Geriatric Molecular Medicine, Anhui Medical University, Hefei, China
| | - Juan Xu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Geriatric Molecular Medicine, Anhui Medical University, Hefei, China
| | - Guang-He Fei
- Department of Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|