1
|
Nishi K, Matsumoto H, Sunadome H, Nagasaki T, Oguma T, Tashima N, Hayashi Y, Terada S, Morita K, Yoshimura C, Nishizaka Y, Sano A, Iwanaga T, Sano H, Haraguchi R, Tohda Y, Kawaguchi T, Matsuda F, Hirai T. IL1RL1 variant may affect the response to type 2 biologics in patients with severe asthma. ERJ Open Res 2025; 11:00448-2024. [PMID: 39811553 PMCID: PMC11726575 DOI: 10.1183/23120541.00448-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 01/16/2025] Open
Abstract
Background Asthma is a heterogeneous disease with variable response to treatment. Genetic backgrounds are involved in the severity of type 2 asthma, but their effects on responses to biologics remain unknown. This study aimed to clarify the role of genetic factors in response to biologics in patients with severe asthma. Methods Adults with severe asthma receiving biologics were enrolled in this multicentre, observational, real-world study. The responses to biologics were evaluated using Physicians' Global Evaluation of Treatment Effectiveness (GETE). Optimal biologic for each patient was also determined based on the best GETE score for the biologic used or currently used biologic. Three single nucleotide polymorphisms (IL1RL1, rs1420101; IL4RA, rs8832; and TSLP rs1837253) were examined. Results Among the 113 patients analysed, 53 (46.9%) had an excellent GETE score for at least one biologic. These patients with an excellent GETE score for at least one biologic, particularly for benralizumab, had the risk genotype of rs1420101 more frequently than the remaining patients, independent of the clinical demographics. Regarding the optimal biologic for each patient, anti-IL-5 drugs were optimal for patients with the rs1420101 TT or rs8832 GG genotype. Furthermore, dupilumab was similarly effective, regardless of the risk genotypes examined in this study. Conclusion IL1RL1 rs1420101 TT genotype and/or IL4RA rs8832 GG genotype may predict an excellent or optimal response to biologic therapy in each patient, particularly to anti-interleukin-5 targeted therapy. The elucidation of genetic predisposition may improve the management of severe asthma in the era of biologics.
Collapse
Affiliation(s)
- Kenta Nishi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hironobu Sunadome
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tadao Nagasaki
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine and Allergology, Kindai University Nara Hospital, Nara, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Noriyuki Tashima
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine, Medical Research Institute Kitano Hospital, PIIF Tazuke-kofukai, Osaka, Japan
| | - Yusuke Hayashi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoru Terada
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kyohei Morita
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Osaka, Japan
| | - Chie Yoshimura
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Osaka, Japan
| | - Yasuo Nishizaka
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Osaka, Japan
| | - Akiko Sano
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takashi Iwanaga
- Center for General Medical Education and Clinical Training, Kindai University Hospital, Osaka, Japan
| | - Hiroyuki Sano
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Ryuta Haraguchi
- Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yuji Tohda
- Kindai University Hospital, Osaka, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Shrestha AB, Pokharel P, Singh H, Shrestha S, Shrestha S, Sedhai YR. Association between bronchial asthma and TSLP gene polymorphism: a systematic review and meta-analysis. Ann Med Surg (Lond) 2024; 86:4684-4694. [PMID: 39118763 PMCID: PMC11305796 DOI: 10.1097/ms9.0000000000002107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/14/2024] [Indexed: 08/10/2024] Open
Abstract
Aims This study entails an association between bronchial asthma and common single nucleotide polymorphisms (SNPs) in thymic stromal lymphopoietin (TSLP) gene; rs2289278, rs3806933, rs2289276, and rs1837253. Methods The databases of PubMed, Embase, Web of Science, and Google Scholar were searched for studies reporting TSLP polymorphisms and asthma from inception to January 2022. Hardy-Weinberg equilibriums (HWE) for each polymorphism of the control group were checked using the χ 2 test. The association was estimated by means of odds ratio (OR) with 95% CI in both dominant and recessive modes of inheritance, respectively. Results Altogether, 11 studies with 3121 asthma cases and 3041 healthy controls were added. Results from six studies showed that the SNP rs2289278 had a protective role in asthma development (OR=0.65, 95% CI: 0.44-0.97, P=0.04). Pooling of four studies showed that the SNP rs3806933 had higher odds of developing asthma (OR=1.32, 95% CI:1.14-1.54, P<0.01). However, the SNP rs2289276 and rs1837253 showed no significant association. From the subgroup analysis, SNPs rs2289278 and rs1837253 were protective against the development of asthma in Asia. However, SNP rs2289276 showed a risk association in Asia and in adults. Conclusion This meta-analysis shows that the SNP rs2289278 has a protective effect on the development of asthma; whereas rs3806933 has a risk of asthma. Additionally, this study adds genomic-based support to the recent FDA approval of tezepelumab, an anti-TSLP agent.
Collapse
Affiliation(s)
- Abhigan B. Shrestha
- Department of Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh
| | | | - Harendra Singh
- Department of Anesthesiology, Tribhuvan University Teaching Hospital, Kathmandu
| | - Sajina Shrestha
- Department of Internal Medicine, KIST Medical College, Imadol
| | - Shubham Shrestha
- Department of Internal Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Yub Raj Sedhai
- Division of Pulmonary Disease and Critical Care Medicine, University of Kentucky, College of Medicine, Bowling Green, Kentucky
| |
Collapse
|
3
|
Brister DL, Omer H, Whetstone CE, Ranjbar M, Gauvreau GM. Multifactorial Causes and Consequences of TLSP Production, Function, and Release in the Asthmatic Airway. Biomolecules 2024; 14:401. [PMID: 38672419 PMCID: PMC11048646 DOI: 10.3390/biom14040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Disruption of the airway epithelium triggers a defensive immune response that begins with the production and release of alarmin cytokines. These epithelial-derived alarmin cytokines, including thymic stromal lymphopoietin (TSLP), are produced in response to aeroallergens, viruses, and toxic inhalants. An alarmin response disproportionate to the inhaled trigger can exacerbate airway diseases such as asthma. Allergens inhaled into previously sensitized airways are known to drive a T2 inflammatory response through the polarization of T cells by dendritic cells mediated by TSLP. Harmful compounds found within air pollution, microbes, and viruses are also triggers causing airway epithelial cell release of TSLP in asthmatic airways. The release of TSLP leads to the development of inflammation which, when unchecked, can result in asthma exacerbations. Genetic and inheritable factors can contribute to the variable expression of TSLP and the risk and severity of asthma. This paper will review the various triggers and consequences of TSLP release in asthmatic airways.
Collapse
Affiliation(s)
| | | | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (D.L.B.); (H.O.); (C.E.W.); (M.R.)
| |
Collapse
|
4
|
Tsuda T, Suzuki M, Kato Y, Kidoguchi M, Kumai T, Fujieda S, Sakashita M. The current findings in eosinophilic chronic rhinosinusitis. Auris Nasus Larynx 2024; 51:51-60. [PMID: 37574421 DOI: 10.1016/j.anl.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammatory disease of the nasal cavity and paranasal sinuses. Traditional classification is denoted by the presence (CRSwNP) or absence of nasal polyps (CRSsNP). Particularly, CRSwNP is distinguished by the presence of infiltrating cells and inflammatory markers in the nasal mucosa. Patients with CRSwNP in Western countries predominantly display a type 2 endotype, whereas those in Asian regions display a mixed type 2 endotype. Nevertheless, recent transcriptome analyses have revealed two types of nasal polyps - type 2 and non-type 2 polyps, suggesting that geographical differences in endotypes likely resulted from the different proportions of each endotype. Moreover, various endotypes of CRSsNP have been identified, making phenotype a crucial factor for predicting treatment efficacy. Type 2 endotypes, designated as eosinophilic CRS (ECRS) in Japan, are characterized by severe eosinophilic infiltration into the paranasal sinus tissue and are particularly refractory. In this review, we discuss the latest developments in ECRS. We also provide recent findings on the involvement of nasal epithelial cells in pathogenesis.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masanobu Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 14-jo nishi 5, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Yukinori Kato
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida, Eiheiji, Fukui 910-1193, Japan
| | - Masanori Kidoguchi
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida, Eiheiji, Fukui 910-1193, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida, Eiheiji, Fukui 910-1193, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida, Eiheiji, Fukui 910-1193, Japan.
| |
Collapse
|
5
|
Ranjbar M, Cusack RP, Whetstone CE, Nawaz S, Khoury C, Wattie J, Wiltshire L, Le Roux J, Cheng E, Srinathan T, Ho T, Sehmi R, Duong M, Gauvreau GM. Gene Polymorphisms of Epithelial Cell-Derived Alarmins and Their Effects on Protein Levels and Disease Severity in Patients with COVID-19. Genes (Basel) 2023; 14:1721. [PMID: 37761861 PMCID: PMC10530834 DOI: 10.3390/genes14091721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The immune response in COVID-19 is characterized by the release of alarmin cytokines, which play crucial roles in immune activation and inflammation. The interplay between these cytokines and genetic variations may influence disease severity and outcomes, while sex differences might further contribute to variations in the immune response. METHODS We measured the levels of alarmin cytokines in a cohort of COVID-19 and non-COVID-19 patients using a sensitive Meso Scale Discovery system. Additionally, we conducted an SNP analysis to identify genetic variations within the IL-33 and TSLP genes. The association between these genetic variations, cytokine production, and COVID-19 severity was examined. RESULTS Our findings revealed elevated levels of IL-33 and IL-25 in COVID-19-positive patients compared to COVID-19-negative patients (p < 0.05), indicating their potential as therapeutic targets for disease modulation. Moreover, a minor allele within the IL-33 gene (rs3939286) was found to be associated with a protective effect against severe COVID-19 (p < 0.05), and minor alleles of the TSLP gene (rs2289276 and rs13806933) were found to significantly reduce TSLP protein levels in serum (p < 0.05). Sex-specific effects of TSLP and IL-33 SNPs were observed, suggesting a potential influence of sex hormones and genetic variations on the regulation of cytokine production. CONCLUSION The present study highlights the importance of alarmin cytokines and genetic variations in COVID-19 severity, providing valuable insights into personalized treatment approaches. Our results suggest that targeting alarmin cytokines may offer potential therapeutic benefits in managing COVID-19. Furthermore, the sex-specific effects of genetic variations emphasize the need to consider individual genetic profiles and sex differences when designing targeted interventions.
Collapse
Affiliation(s)
- Maral Ranjbar
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | - Ruth P. Cusack
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | - Christiane E. Whetstone
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | - Shiraz Nawaz
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | - Christopher Khoury
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | - Jennifer Wattie
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | - Lesley Wiltshire
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | | | - Eric Cheng
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.)
| | - Thivya Srinathan
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.)
| | - Terence Ho
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.)
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Roma Sehmi
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.)
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - MyLinh Duong
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.)
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
- Population Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Gail M. Gauvreau
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| |
Collapse
|
6
|
Nedeva D, Kowal K, Mihaicuta S, Guidos Fogelbach G, Steiropoulos P, Jose Chong-Neto H, Tiotiu A. Epithelial alarmins: a new target to treat chronic respiratory diseases. Expert Rev Respir Med 2023; 17:773-786. [PMID: 37746733 DOI: 10.1080/17476348.2023.2262920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION In response to injury, epithelial cells release alarmins including thymic stromal lymphopoietin (TSLP), high mobility group-box-1 (HMGB1), interleukin (IL)-33 and -25 that can initiate innate immune responses. These alarmins are recognized as activators of T2-immune responses characteristic for asthma, but recent evidence highlighted their role in non-T2 inflammation, airway remodeling, and pulmonary fibrosis making them an attractive therapeutic target for chronic respiratory diseases (CRD). AREAS COVERED In this review, firstly we discuss the role of TSLP, IL-33, IL-25, and HMGB1 in the pathogenesis of asthma, COPD, idiopathic pulmonary fibrosis, and cystic fibrosis according to the published data. In the second part, we summarize the current evidence concerning the efficacy of the antialarmin therapies in CRD. Recent clinical trials showed that anti-TSLP and IL-33/R antibodies can improve severe asthma outcomes. Blocking the IL-33-mediated pathway decreased the exacerbation rate in COPD patients with more important benefit for former-smokers. EXPERT OPINION Despite progress in the understanding of the alarmins' role in the pathogenesis of CRD, all their mechanisms of action are not yet identified. Blocking IL-33 and TSLP pathways offers an interesting option to treat severe asthma and COPD, but future investigations are needed to establish their place in the treatment strategies.
Collapse
Affiliation(s)
- Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Department of Internal Medicine and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Stefan Mihaicuta
- Center for Research and Innovation in Precision Medicine and Pharmacy, University of Medicine and Pharmacy, Timisoara, Romania
- Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clinicas Federal University of Paraná, Curitiba, PR, Brazil
| | - Angelica Tiotiu
- Department of Pulmonology, University Hospital of Nancy, Vandœuvre-lès-Nancy, France
- Development, Adaptation and Disadvantage. Cardiorespiratory regulations and motor control (EA 3450 DevAH), University of Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
7
|
O'Byrne PM, Panettieri RA, Taube C, Brindicci C, Fleming M, Altman P. Development of an inhaled anti-TSLP therapy for asthma. Pulm Pharmacol Ther 2023; 78:102184. [PMID: 36535465 DOI: 10.1016/j.pupt.2022.102184] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine, acts as a key mediator in airway inflammation and modulates the function of multiple cell types, including dendritic cells and group 2 innate lymphoid cells. TSLP plays a role in asthma pathogenesis as an upstream cytokine, and data suggest that TSLP blockade with the anti-TSLP monoclonal antibody, tezepelumab, could be efficacious in a broad asthma population. Currently approved asthma biologic therapies target allergic or eosinophilic disease and require phenotyping; therefore, an unmet need exists for a therapy that can address Type 2 (T2)-high and T2-low inflammation in asthma. All currently approved biologic treatments are delivered intravenously or subcutaneously; an inhaled therapy route that allows direct targeting of the lung with reduced systemic impact may offer advantages. Currently in development, ecleralimab (CSJ117) represents the first inhaled anti-TSLP antibody fragment that binds soluble TSLP and prevents TSLP receptor activation, thereby inhibiting further inflammatory signalling cascades. This anti-TSLP antibody fragment is being developed for patients with severe uncontrolled asthma despite standard of care inhaled therapy. A Phase IIa proof of concept study, using allergen bronchoprovocation as a model for asthma exacerbations, found that ecleralimab was well-tolerated and reduced allergen-induced bronchoconstriction in adult patients with mild asthma. These results suggest ecleralimab may be a promising, new therapeutic class for asthma treatment.
Collapse
Affiliation(s)
- Paul M O'Byrne
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare and McMaster University, Hamilton, Ontario, Canada.
| | | | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen, Germany
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, New Jersey, USA.
| |
Collapse
|
8
|
The Genetic Factors of the Airway Epithelium Associated with the Pathology of Asthma. Genes (Basel) 2022; 13:genes13101870. [PMID: 36292755 PMCID: PMC9601469 DOI: 10.3390/genes13101870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a chronic disease of the airways characterized by inflammation, tightened muscles, and thickened airway walls leading to symptoms such as shortness of breath, chest tightness, and cough in patients. The increased risk of asthma in children of asthmatics parents supports the existence of genetic factors involved in the pathogenesis of this disease. Genome-wide association studies have discovered several single nucleotide polymorphisms associated with asthma. These polymorphisms occur within several genes and can contribute to different asthma phenotypes, affect disease severity, and clinical response to different therapies. The complexity in the etiology of asthma also results from interactions between environmental and genetic factors. Environmental exposures have been shown to increase the prevalence of asthma in individuals who are genetically susceptible. This review summarizes what is currently known about the genetics of asthma in relation to risk, response to common treatments, and gene-environmental interactions.
Collapse
|
9
|
Parnes JR, Molfino NA, Colice G, Martin U, Corren J, Menzies-Gow A. Targeting TSLP in Asthma. J Asthma Allergy 2022; 15:749-765. [PMID: 35685846 PMCID: PMC9172920 DOI: 10.2147/jaa.s275039] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine implicated in the initiation and persistence of inflammatory pathways in asthma. Released in response to a range of epithelial insults (eg, allergens, viruses, bacteria, pollutants, and smoke), TSLP initiates multiple downstream innate and adaptive immune responses involved in asthma inflammation. Inhibition of TSLP is postulated to represent a novel approach to treating the diverse phenotypes and endotypes of asthma. Tezepelumab, the TSLP inhibitor farthest along in clinical development, is a human monoclonal antibody (IgG2λ) that binds specifically to TSLP, preventing interactions with its heterodimeric receptor. Results of recently published phase 2 and 3 studies, reviewed in this article, provide evidence of the safety and efficacy of tezepelumab that builds on initial findings. Tezepelumab is safe, well tolerated, and provides clinically meaningful improvements in asthma control, including reduced incidence of exacerbations and hospitalizations in patients with severe asthma. Clinical benefits were associated with reductions in levels of a broad spectrum of cytokines (eg, interleukin [IL]-5, IL-13) and baseline biomarkers (eg, blood eosinophils, immunoglobulin [Ig]E, fractional exhaled nitric oxide [FeNO]) and were observed across a range of severe asthma phenotypes (ie, eosinophilic and non-eosinophilic). These data strengthen the notion that anti-TSLP elicits broad inhibitory effects on pathways that are key to asthma inflammation rather than on narrower inhibition of individual downstream factors. This review presents the rationale for targeting TSLP to treat asthma, as well as the clinical effects of TSLP blockade on asthma outcomes, biomarkers of disease activity, airway inflammation, lung physiology, and patient symptoms.
Collapse
|
10
|
Angiogenesis, Lymphangiogenesis, and Inflammation in Chronic Obstructive Pulmonary Disease (COPD): Few Certainties and Many Outstanding Questions. Cells 2022; 11:cells11101720. [PMID: 35626756 PMCID: PMC9139415 DOI: 10.3390/cells11101720] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, predominantly affecting the lung parenchyma and peripheral airways, that results in progressive and irreversible airflow obstruction. COPD development is promoted by persistent pulmonary inflammation in response to several stimuli (e.g., cigarette smoke, bacterial and viral infections, air pollution, etc.). Angiogenesis, the formation of new blood vessels, and lymphangiogenesis, the formation of new lymphatic vessels, are features of airway inflammation in COPD. There is compelling evidence that effector cells of inflammation (lung-resident macrophages and mast cells and infiltrating neutrophils, eosinophils, basophils, lymphocytes, etc.) are major sources of a vast array of angiogenic (e.g., vascular endothelial growth factor-A (VEGF-A), angiopoietins) and/or lymphangiogenic factors (VEGF-C, -D). Further, structural cells, including bronchial and alveolar epithelial cells, endothelial cells, fibroblasts/myofibroblasts, and airway smooth muscle cells, can contribute to inflammation and angiogenesis in COPD. Although there is evidence that alterations of angiogenesis and, to a lesser extent, lymphangiogenesis, are associated with COPD, there are still many unanswered questions.
Collapse
|
11
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
12
|
Sex Plays a Multifaceted Role in Asthma Pathogenesis. Biomolecules 2022; 12:biom12050650. [PMID: 35625578 PMCID: PMC9138801 DOI: 10.3390/biom12050650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Sex is considered an important risk factor for asthma onset and exacerbation. The prevalence of asthma is higher in boys than in girls during childhood, which shows a reverse trend after puberty—it becomes higher in adult females than in adult males. In addition, asthma severity, characterized by the rate of hospitalization and relapse after discharge from the emergency department, is higher in female patients. Basic research indicates that female sex hormones enhance type 2 adaptive immune responses, and male sex hormones negatively regulate type 2 innate immune responses. However, whether hormone replacement therapy in postmenopausal women increases the risk of current asthma and asthma onset remains controversial in clinical settings. Recently, sex has also been shown to influence the pathophysiology of asthma in its relationship with genetic or other environmental factors, which modulate asthmatic immune responses in the airway mucosa. In this narrative review, we highlight the role of sex in the continuity of the asthmatic immune response from sensing allergens to Th2 cell activation based on our own data. In addition, we elucidate the interactive role of sex with genetic or environmental factors in asthma exacerbation in women.
Collapse
|
13
|
Suzuki M, Cooksley C, Suzuki T, Ramezanpour M, Nakazono A, Nakamaru Y, Homma A, Vreugde S. TLR Signals in Epithelial Cells in the Nasal Cavity and Paranasal Sinuses. FRONTIERS IN ALLERGY 2022; 2:780425. [PMID: 35387020 PMCID: PMC8974762 DOI: 10.3389/falgy.2021.780425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
The respiratory tract is constantly at risk of invasion by microorganisms such as bacteria, viruses, and fungi. In particular, the mucosal epithelium of the nasal cavity and paranasal sinuses is at the very forefront of the battles between the host and the invading pathogens. Recent studies have revealed that the epithelium not only constitutes a physical barrier but also takes an essential role in the activation of the immune system. One of the mechanisms equipped in the epithelium to fight against microorganisms is the Toll-like receptor (TLR) response. TLRs recognize common structural components of microorganisms and activate the innate immune system, resulting in the production of a plethora of cytokines and chemokines in the response against microbes. As the epithelia-derived cytokines are deeply involved in the pathogenesis of inflammatory conditions in the nasal cavity and paranasal sinuses, such as chronic rhinosinusitis (CRS) and allergic rhinitis (AR), the molecules involved in the TLR response may be utilized as therapeutic targets for these diseases. There are several differences in the TLR response between nasal and bronchial epithelial cells, and knowledge of the TLR signals in the upper airway is sparse compared to that in the lower airway. In this review, we provide recent evidence on TLR signaling in the upper airway, focusing on the expression, regulation, and responsiveness of TLRs in human nasal epithelial cells (HNECs). We also discuss how TLRs in the epithelium are involved in the pathogenesis of, and possible therapeutic targeting, for CRS and AR.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Clare Cooksley
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Takayoshi Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mahnaz Ramezanpour
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Akira Nakazono
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sarah Vreugde
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
14
|
Boyle RJ, Shamji MH. Developments in the field of allergy in 2020 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2021; 51:1531-1537. [PMID: 34750898 DOI: 10.1111/cea.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
While 2020 will be remembered for the global coronavirus pandemic, there were also important advances in the field of allergy. In this review article, we summarize key findings reported in Clinical and Experimental Allergy during 2020. We hope this provides readers with an accessible snapshot of the work published in our journal during this time.
Collapse
Affiliation(s)
- Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| |
Collapse
|
15
|
Association between functional genetic variants in retinoid X receptor-α/γ and the risk of gestational diabetes mellitus in a southern Chinese population. Biosci Rep 2021; 41:229913. [PMID: 34633445 PMCID: PMC8529336 DOI: 10.1042/bsr20211338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
To clarify the effect of retinoid X receptor-α/γ (RXR-α/γ) genes functional genetic variants (RXR-α rs4842194 G>A, RXR-γ rs100537 A>G and rs2134095 T>C) on the risk of gestational diabetes mellitus (GDM), a case–control study with 573 GDM patients and 740 pregnant women with normal glucose tolerance was performed in Guangxi area of China. An odds ratio (OR) with its corresponding 95% confidence interval (CI) was used to assess the strengths of the association between genetic variation and GDM. After adjustment of age and pre-BMI, the logistic regression analysis showed that the rs2134095 was significantly associated with GDM risk (CC vs. TT/TC: adjusted OR = 0.71, 95% CI = 0.56–0.90) in all subjects, and this result remained highly significant after Bonferroni’s correction for multiple testing (P=0.004). The stratified analysis showed that rs2134095 was significantly associated with the risk of GDM among age > 30 years (adjusted OR = 0.61, 95% CI = 0.39–0.97), BMI > 22 kg/m2 (adjusted OR = 0.46, 95% CI = 0.30–0.70), systolic blood pressure (SBP) > 120 mmHg (adjusted OR = 1.96, 95% CI = 1.14–3.36), glycosylated hemoglobin A1c (HbA1c) < 6.5% (adjusted OR = 1.41, 95% CI = 1.11–1.78), TG ≤ 1.7 mmol/l (adjusted OR = 2.57, 95% CI = 1.45–4.53), TC ≤ 5.18 mmol/l (adjusted OR = 1.58, 95% CI = 1.13–2.22), high-density lipoprotein cholesterol (HDL-c) ≤ 1.5 mmol/l (adjusted OR = 1.70, 95% CI = 1.16–2.49) and low-density lipoprotein cholesterol (LDL-c) > 3.12 mmol/l (adjusted OR = 1.47, 95% CI = 1.08–2.00) subjects, under the recessive genetic model. We also found that rs2134095 interacted with age (Pinteraction=0.039), pre-BMI (Pinteraction=0.040) and TG (Pinteraction=0.025) influencing individual’s genetic susceptibility to GDM. The rs2134095 T>C is significantly associated with the risk of GDM by effect of a single locus and/or complex joint gene–gene and gene–environment interactions. Larger sample-size and different population studies are required to confirm the findings.
Collapse
|
16
|
Boyle RJ, Shamji MH. Asthma management and impact on COVID-19 outcomes. Clin Exp Allergy 2021; 51:1100-1102. [PMID: 34476864 PMCID: PMC8653073 DOI: 10.1111/cea.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| |
Collapse
|
17
|
Braile M, Fiorelli A, Sorriento D, Di Crescenzo RM, Galdiero MR, Marone G, Santini M, Varricchi G, Loffredo S. Human Lung-Resident Macrophages Express and Are Targets of Thymic Stromal Lymphopoietin in the Tumor Microenvironment. Cells 2021; 10:cells10082012. [PMID: 34440780 PMCID: PMC8392295 DOI: 10.3390/cells10082012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine highly expressed by epithelial cells and several innate and adaptive immune cells. TSLP exerts its biological effects by binding to a heterodimeric complex composed of TSLP receptor (TSLPR) and IL-7Rα. In humans, there are two TSLP isoforms: the short form (sfTSLP), constitutively expressed, and the long form (lfTSLP), which is upregulated in inflammation. TSLP has been implicated in the induction and progression of several experimental and human cancers. Primary human lung macrophages (HLMs), monocyte-derived macrophages (MDMs), and peripheral blood monocytes consitutively expressed sfTSLP mRNA. Incubation of HLMs, MDMs, and monocytes with lipopolysaccharide (LPS) or IL-4, but not with IL-13, induced TSLP release from HLMs. LPS, but not IL-4 or IL-13, induced CXCL8 release from HLMs. LPS, IL-4 alone or in combination with IL-13, induced the expression of lfTSLP, but not of sfTSLP from HLMs. Preincubation of HLMs with IL-4, alone or in combination with IL-13, but not IL-13 alone, synergistically enhanced TSLP release from LPS-activated macrophages. By contrast, IL-4, alone or in combination with IL-13, inhibited LPS-induced CXCL8 release from HLMs. Immunoreactive TSLP was detected in lysates of HLMs, MDMs, and monocytes. Incubation of HLMs with TSLP induced the release of proinflammatory (TNF-α), angiogenic (VEGF-A, angiopoietin 2), and lymphangiogenic (VEGF-C) factors. TSLP, TSLPR, and IL-7Rα were expressed in intratumoral and peritumoral areas of human lung cancer. sfTSLP and lfTSLP mRNAs were differentially expressed in peritumoral and intratumoral lung cancer tissues. The TSLP system, expressed in HLMs, MDMs, and monocytes, could play a role in chronic inflammatory disorders including lung cancer.
Collapse
Affiliation(s)
- Mariantonia Braile
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
| | - Alfonso Fiorelli
- Department of Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.F.); (R.M.D.C.); (M.S.)
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Rosa Maria Di Crescenzo
- Department of Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.F.); (R.M.D.C.); (M.S.)
| | - Maria Rosaria Galdiero
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Gianni Marone
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Mario Santini
- Department of Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.F.); (R.M.D.C.); (M.S.)
| | - Gilda Varricchi
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence: (G.V.); (S.L.)
| | - Stefania Loffredo
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence: (G.V.); (S.L.)
| |
Collapse
|
18
|
Menzies-Gow A, Wechsler ME, Brightling CE. Unmet need in severe, uncontrolled asthma: can anti-TSLP therapy with tezepelumab provide a valuable new treatment option? Respir Res 2020; 21:268. [PMID: 33059715 PMCID: PMC7560289 DOI: 10.1186/s12931-020-01505-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Despite treatment with standard-of-care medications, including currently available biologic therapies, many patients with severe asthma have uncontrolled disease, which is associated with a high risk of hospitalization and high healthcare costs. Biologic therapies approved for severe asthma have indications limited to patients with either eosinophilic or allergic phenotypes; there are currently no approved biologics for patients with eosinophil-low asthma. Furthermore, existing biologic treatments decrease exacerbation rates by approximately 50% only, which may be because they target individual, downstream elements of the asthma inflammatory response, leaving other components untreated. Targeting an upstream mediator of the inflammatory response may have a broader effect on airway inflammation and provide more effective asthma control. One such potential target is thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine released in response to multiple triggers associated with asthma exacerbations, such as viruses, allergens, pollutants and other airborne irritants. Mechanistic studies indicate that TSLP drives eosinophilic (including allergic) inflammation, neutrophilic inflammation and structural changes to the airway in asthma through actions on a wide variety of adaptive and innate immune cells and structural cells. Tezepelumab is a first-in-class human monoclonal antibody that blocks the activity of TSLP. In the phase 2b PATHWAY study (NCT02054130), tezepelumab reduced asthma exacerbations by up to 71% compared with placebo in patients with severe, uncontrolled asthma across the spectrum of inflammatory phenotypes, and improved lung function and asthma control. Phase 3 trials of tezepelumab are underway. NAVIGATOR (NCT03347279), a pivotal exacerbation study, aims to assess the potential efficacy of tezepelumab further in patients with a broad range of severe asthma phenotypes, including those with low blood eosinophil counts. SOURCE (NCT03406078) aims to evaluate the oral corticosteroid-sparing potential of tezepelumab. DESTINATION (NCT03706079) is a long-term extension study. In addition, an ongoing phase 2 bronchoscopy study, CASCADE (NCT03688074), aims to evaluate the effect of tezepelumab on airway inflammation and airway remodelling in patients across the spectrum of type 2 airway inflammation. Here, we summarize the unmet therapeutic need in severe asthma and the current treatment landscape, discuss the rationale for targeting TSLP in severe asthma therapy and describe the current development status of tezepelumab.
Collapse
|
19
|
Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets 2020; 24:777-792. [PMID: 32567399 DOI: 10.1080/14728222.2020.1783242] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Thymic stromal lymphopoietin (TSLP), an epithelial cytokine (alarmin), is a central regulator of the immune response to inhaled environmental insults such as allergens, viruses and pollutants, initiating a cascade of downstream inflammation. There is compelling evidence that TSLP plays a major role in the pathology of asthma, and therapies that aim to block its activity are in development. AREAS COVERED We review studies conducted in humans and human cells, largely published in PubMed January 2010-October 2019, that investigated the innate and adaptive immune mechanisms of TSLP in asthma relevant to type 2-driven (eosinophilic/allergic) inflammation and non-type 2-driven (non-eosinophilic/non-allergic) inflammation, and the role of TSLP as a mediator between immune cells and structural cells in the airway. Clinical data from studies evaluating TSLP blockade are also discussed. EXPERT OPINION The position of TSLP at the top of the inflammatory cascade makes it a promising therapeutic target in asthma. Systemic anti-TSLP monoclonal antibody therapy with tezepelumab has yielded positive results in clinical trials to date, reducing exacerbations and biomarkers of inflammation in patients across the spectrum of inflammatory endotypes. Inhaled anti-TSLP is an alternative route currently under evaluation. The long-term safety and efficacy of TSLP blockade need to be evaluated.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University , Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University , Hamilton, Ontario, Canada
| | | | - Janet M Griffiths
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D , Gaithersburg, MD, USA
| |
Collapse
|