1
|
Kim SR, Um YJ, Chung SI, Jeong KY, Park HJ, Park KH, Park JW, Park SG, Lee JH. Anti-aminoacyl-tRNA synthetase-interacting multifunctional protein-1 antibody improves airway inflammation in mice with house dust mite induced asthma. World Allergy Organ J 2024; 17:100956. [PMID: 39262899 PMCID: PMC11388501 DOI: 10.1016/j.waojou.2024.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Background Several biologics have been developed and used to treat severe asthma. However, commercialized biologics have limitations in treating T2-low asthma because their main target is the T2 inflammation marker. Therefore, there is an unmet need for treating T2-low severe asthma. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) is an auxiliary protein in the mammalian multi-aminoacyl-tRNA synthetase complex. AIMP1 also acts as a cytokine and induces the secretion of proinflammatory cytokines. Since anti-AIMP1 has been shown to reduce interleukin (IL)-6, tumor necrosis factor-α, and IL-17A levels in a mouse model, it could be effective in the treatment of T2-low severe asthma. Methods Wild-type BALB/c mice were sensitized and challenged with intranasal inoculation of a crude HDM extract. Atliximab, a chimeric AIMP1 antibody, was administered once (20 μg, 40 μg, 100 μg) on Day 14. We evaluated airway hyperresponsiveness (AHR), performed cellular analyses of the bronchoalveolar lavage fluid (BALF), measured inflammatory cytokine levels, and examined peribronchial histological features. Results Atliximab reduced AIMP1 levels in asthmatic mice in a dose-dependent manner. AHR and Inflammatory cells such as neutrophils and eosinophils in the BALF decreased in asthmatic mice treated with atliximab. The levels of IL-6, IL-13, and transforming growth factor-β (TGF-β) in the lung tissue decreased in asthmatic mice treated with a high dose of atliximab (100 μg). Atliximab also reduced goblet cell hyperplasia and peribronchial fibrosis. Conclusions Atliximab improved asthmatic airway inflammation including neutrophilic inflammation in HDM-induced asthma mice. These data suggest that anti-AIMP1 plays an important role in the treatment of severe T2-low asthma.
Collapse
Affiliation(s)
- Sung-Ryeol Kim
- Yongin Severance Hospital, Yonsei University College of Medicine, Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyounggi-do, Republic of Korea
| | - Yun Jung Um
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Sook In Chung
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Yong Jeong
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Jung Park
- Gangnam Severance Hospital, Yonsei University College of Medicine, Department of Internal Medicine, Seoul, Republic of Korea
| | - Kyung Hee Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei University College of Medicine, Division of Allergy and Immunology, Department of Internal Medicine, Seoul, Republic of Korea
| | - Jung-Won Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei University College of Medicine, Division of Allergy and Immunology, Department of Internal Medicine, Seoul, Republic of Korea
| | - Sang Gyu Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Jae-Hyun Lee
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei University College of Medicine, Division of Allergy and Immunology, Department of Internal Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Shah SA, Oakes RS, Jewell CM. Advancing immunotherapy using biomaterials to control tissue, cellular, and molecular level immune signaling in skin. Adv Drug Deliv Rev 2024; 209:115315. [PMID: 38670230 PMCID: PMC11111363 DOI: 10.1016/j.addr.2024.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Immunotherapies have been transformative in many areas, including cancer treatments, allergies, and autoimmune diseases. However, significant challenges persist in extending the reach of these technologies to new indications and patients. Some of the major hurdles include narrow applicability to patient groups, transient efficacy, high cost burdens, poor immunogenicity, and side effects or off-target toxicity that results from lack of disease-specificity and inefficient delivery. Thus, there is a significant need for strategies that control immune responses generated by immunotherapies while targeting infection, cancer, allergy, and autoimmunity. Being the outermost barrier of the body and the first line of host defense, the skin presents a unique immunological interface to achieve these goals. The skin contains a high concentration of specialized immune cells, such as antigen-presenting cells and tissue-resident memory T cells. These cells feature diverse and potent combinations of immune receptors, providing access to cellular and molecular level control to modulate immune responses. Thus, skin provides accessible tissue, cellular, and molecular level controls that can be harnessed to improve immunotherapies. Biomaterial platforms - microneedles, nano- and micro-particles, scaffolds, and other technologies - are uniquely capable of modulating the specialized immunological niche in skin by targeting these distinct biological levels of control. This review highlights recent pre-clinical and clinical advances in biomaterial-based approaches to target and modulate immune signaling in the skin at the tissue, cellular, and molecular levels for immunotherapeutic applications. We begin by discussing skin cytoarchitecture and resident immune cells to establish the biological rationale for skin-targeting immunotherapies. This is followed by a critical presentation of biomaterial-based pre-clinical and clinical studies aimed at controlling the immune response in the skin for immunotherapy and therapeutic vaccine applications in cancer, allergy, and autoimmunity.
Collapse
Affiliation(s)
- Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD, 21201, USA.
| |
Collapse
|
3
|
Gill HS. Microneedle technology for allergen immunotherapy via the skin. J Allergy Clin Immunol 2024; 153:656-662. [PMID: 38211644 DOI: 10.1016/j.jaci.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
|
4
|
Wang Y, Chen Z, Davis B, Lipman W, Xing S, Zhang L, Wang T, Hafiz P, Xie W, Yan Z, Huang Z, Song J, Bai W. Digital automation of transdermal drug delivery with high spatiotemporal resolution. Nat Commun 2024; 15:511. [PMID: 38218967 PMCID: PMC10787768 DOI: 10.1038/s41467-023-44532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024] Open
Abstract
Transdermal drug delivery is of vital importance for medical treatments. However, user adherence to long-term repetitive drug delivery poses a grand challenge. Furthermore, the dynamic and unpredictable disease progression demands a pharmaceutical treatment that can be actively controlled in real-time to ensure medical precision and personalization. Here, we report a spatiotemporal on-demand patch (SOP) that integrates drug-loaded microneedles with biocompatible metallic membranes to enable electrically triggered active control of drug release. Precise control of drug release to targeted locations (<1 mm2), rapid drug release response to electrical triggers (<30 s), and multi-modal operation involving both drug release and electrical stimulation highlight the novelty. Solution-based fabrication ensures high customizability and scalability to tailor the SOP for various pharmaceutical needs. The wireless-powered and digital-controlled SOP demonstrates great promise in achieving full automation of drug delivery, improving user adherence while ensuring medical precision. Based on these characteristics, we utilized SOPs in sleep studies. We revealed that programmed release of exogenous melatonin from SOPs improve sleep of mice, indicating potential values for basic research and clinical treatments.
Collapse
Affiliation(s)
- Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zeka Chen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brayden Davis
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Will Lipman
- Department of Psychology and Neuroscience, University of North Carolina at chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sicheng Xing
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tian Wang
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Priyash Hafiz
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Wanrong Xie
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zijie Yan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhili Huang
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Wang Z, Wu L, Wang W. Innovative delivery systems for epicutaneous immunotherapy. Front Immunol 2023; 14:1238022. [PMID: 37675117 PMCID: PMC10479942 DOI: 10.3389/fimmu.2023.1238022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Allergen-specific immunotherapy (AIT) describes the establishment of peripheral tolerance through repeated allergen exposure, which qualifies as the only curative treatment for allergic diseases. Although conventional subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) have been approved to treat respiratory allergies clinically, the progress made is far from satisfactory. Epicutaneous immunotherapy (EPIT) exploits the skin's immune properties to modulate immunological response, which is emerging as a promising alternative and has shown effectiveness in many preclinical and clinical studies for both respiratory and food allergies. It is worth noting that the stratum corneum (SC) barrier impedes the effective delivery of allergens, while disrupting the SC layer excessively often triggers unexpected Th2 immune responses. This work aims to comprehend the immunological mechanisms of EPIT, and summarize the innovative system for sufficient delivery of allergens as well as tolerogenic adjuvants. Finally, the safety, acceptability, and cost-effectiveness of these innovative delivery systems are discussed, which directs the development of future immunotherapies with all desirable characteristics.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pharmacy, The First Hospital of Jiaxing, First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Lingzhi Wu
- Department of Pharmacy, The First Hospital of Jiaxing, First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wei Wang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
6
|
Treating allergies via skin - Recent advances in cutaneous allergen immunotherapy. Adv Drug Deliv Rev 2022; 190:114458. [PMID: 35850371 DOI: 10.1016/j.addr.2022.114458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Subcutaneous allergen immunotherapy has been practiced clinically for decades to treat airborne allergies. Recently, the cutaneous route, which exploits the immunocompetence of the skin has received attention, which is evident from attempts to use it to treat peanut allergy. Delivery of allergens into the skin is inherently impeded by the barrier imposed by stratum corneum, the top layer of the skin. While the stratum corneum barrier must be overcome for efficient allergen delivery, excessive disruption of this layer can predispose to development of allergic inflammation. Thus, the most desirable allergen delivery approach must provide a balance between the level of skin disruption and the amount of allergen delivered. Such an approach should aim to achieve high allergen delivery efficiency across various skin types independent of age and ethnicity, and optimize variables such as safety profile, allergen dosage, treatment frequency, application time and patient compliance. The ability to precisely quantify the amount of allergen being delivered into the skin is crucial since it can allow for allergen dose optimization and can promote consistency and reproducibility in treatment response. In this work we review prominent cutaneous delivery approaches, and offer a perspective on further improvisation in cutaneous allergen-specific immunotherapy.
Collapse
|
7
|
Boyle RJ, Shamji MH. Developments in the field of allergy in 2020 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2021; 51:1531-1537. [PMID: 34750898 DOI: 10.1111/cea.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
While 2020 will be remembered for the global coronavirus pandemic, there were also important advances in the field of allergy. In this review article, we summarize key findings reported in Clinical and Experimental Allergy during 2020. We hope this provides readers with an accessible snapshot of the work published in our journal during this time.
Collapse
Affiliation(s)
- Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| |
Collapse
|